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Vertex Cover

e Graph G = (V,E)

° °
o Vertex Cover: C C V, Ve = (u,v) € E, o 4
o/o

@ Minimum Vertex Cover OPT: Vertex
Cover of the smallest size
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Classical Setting

Minimum Vertex Cover (NP-Complete)

The smallest set of vertices which includes at least a single endpoint of
every edge.

Approximation in Poly-Time

Return the vertices of a maximal GREEDY Matching algorithm to get a
2-approximation

Note: A can have at most 2 |OPT| vertices
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Classical Setting

Assumption (Infeasible for massive graphs)

Classical algorithms rely on the assumption that they have a random
access to the input of the algorithm
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Graph Streaming
o G=(V,E)
o Edges of G
o Trivial Solution: Store all edges (Q(n?) space)

e Goal: Minimize Memory (o(n?) space)
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@ O(1)-approximation requires (n?) space
@ a-approximation algorithms (
o LB: Q() and UB: O(

n
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Understanding polylog factors

@ These types of polylog(n) gaps appear frequently in the literature
@ One main reason is storing counters or edges

e [SW15] showed that for many problems the can be
improved to include the log factors (Bipartiteness, Approximate
Minimum Cut etc)

o Connectivity has a of Q(nlog® n) ([NY19])

o [AS22] was the result that showed polylog(n) factors can be
removed in the upper bound by giving an algorithm for approximate
matching using O(n?/a?) bits
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Our Results

Theorem

There exists a algorithm for

«a-approximate minimum vertex cover that succeeds with high probability
2, .
and uses O(™;) bits of space for any o < n'=% where § > 0.

n
«

[this work]
o(%)
Q(ZTZZ) O(l’;—z2 log @)
[DK20] [DK20]
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An algorithm that uses !
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© Optimal Algorithm
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a-Approx Det. Dynamic Vertex Cover [DK20]

Simplifying Assumption (for the talk):

@ The input graph is bipartite
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a-Approx Det. Dynamic Vertex Cover [DK20]

@ Vertex groups of size «
a e about

@ Use counters to check if there is at least
one edge between each pair of groups

e about

© Construct the group-level graph
@ Compute a group-level vertex cover

© Return vertices of the covering groups

This is an a-approximation.

Space: O(g—i) counters, each using O(log «)
bits. Hence, O((’;—z log &) bits.
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What's the issue?

M M
Problem:
e Counters use O(log «) bits.
5 < O0(1) KN
@ Each counter counts upto o“ edges.
Goal: ~ ~
o Counters to use O(1) bits.
e Counters to count upto O(1) edges ~ ~
(% %
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Solving the issue for sparse graphs

For G with ~ QTZ edges
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Solving the issue for sparse graphs

For G with ~ Z—Z edges ~ ~
@ Randomly partition into groups of size «
W o(1) K
2 .
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~ ~
% %

13/28



Solving the issue for sparse graphs

For G with ~ Z—Z edges
@ Randomly partition into groups of size «
n2

e 5 pairs of groups

e Counters use O(1) bits (in expectation)

. 2
For G with ~ ﬁ edges or more:

e Counters use O(log ) bits

13/28



Solving the issue (in general)

G may not be sparse
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Solving the issue (in general)

G may not be

Match-or-Sparsify Lemma:

o either [M| > Z then

— V is an a-approx
2

e or |Gr| = O(%)

= counters use bits (in expectation)

M| > n/a

=H

—> |[M|<n/a

|G| = O(n?/a?) edges
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Space Optimal Algorithm

@ Randomly partition vertices (2 groups)

@ Run
o if [M| is large, return V

© Check if an edge is present between
pairs and compute group-level vertex
cover

@ Return vertices of the covering groups
including those with matched vertices
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© Key Lemma
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How to prove Match-or-Sparsify Lemma

Lemma

There is an algorithm that uses O(g—i) bits of space and with high
probability outputs a matching M that satisfies at least one of the
following conditions:

e Match-case: |M| >

n
o

@ Sparsify-case: G, has O(C’;—z) edges.

> |G = O(n?/a?) edges
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Attempt 1: Uniform Sampling

Algorithm:

@ Sample é(;—i) edges uniformly at random

o Let M be a matching over the sampled edges
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Attempt 1: Uniform Sampling

Algorithm:

@ Sample é(g—i) edges uniformly at random
o Let M be a matching over the sampled edges

Space: (:)(g—i) - polylog(n) = O(g—i) bits

The residual graph is !

has maximum degree O(a?)
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Attempt 1: Uniform Sampling

has maximum degree O(a?)

The that a vertex u survives with Q(a?) neighbors:

o None of these Q(a?) edges are
sampled

@ There are at most n’ total edges

(1—@(“2)> < exp(~(1)) < —

n? ~ poly(n)
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Limitations
This algorithm only works for small «
o We want a sparse graph with at most O(n?/a?) edges
o The max degree bound is O(a?)

° implies o < n'/4
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Drawbacks
Drawback 1
@ Do not need when we find large matching

@ This algorithm is more like Match and Sparsify

Fix 1: Match or Sparsify

Drawback 2

@ There is a hard instance showing that uniform sampling does not
work for large «

o Uniform sampling is towards high degree vertices

Fix 2: Non-Uniform Sampling
Attempt 2: Addressing the drawbacks gives us the Lemma.
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Space

The algorithm works for any oo < n'=9 for any constant § > 0.

o When a = n'~9, space used is O(n?/a?) = O(n*®) bits

@ But the minimum vertex cover can be of size Q(n)
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Space

The algorithm works for any oo < n'=9 for any constant § > 0.

o When o = n'~9, space used is O(n?/a?) = O(n*) bits

@ But the minimum vertex cover can be of size Q(n)

@ Recall we either pick an group or no vertex from the group
o We output the indices of groups that are picked (space: O(1))

e Space: - 0(1) = O(n?/a?)
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@ Conclusion
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Summary

@ Match or Sparsify: In O(n?/a?) bits of space

o We either get a (which implies a large vertex cover)
o Orgeta
@ The ideas from [DK20] along with solve the

sparse case in O(n?/a?) bits of space

© We run both algorithms in parallel and get the final algorithm

24/28



Summary

@ Thereis a that whp outputs an
a-approximation to minimum vertex cover using O(n?/a?) bits of
space
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Summary

@ Thereis a that whp outputs an
a-approximation to minimum vertex cover using O(n?/a?) bits of
space

o The lower bound of [DK20] is ©(n?/a?) bits making our algorithm
optimal

@ polylog(n) overhead is not always necessary (Like [AS22])
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Open Problems

e Could to this work and [AS22] be used to bypass
polylog(n) overheads for other problems?

o E.g. Dominating Set, Spectral Sparsification

o Can we get a deterministic algorithm for this problem that uses only
2 .
O(73) bits of space or ?

o The current best deterministic algorithm is that of [DK20] which uses
O((’;—z2 log &) bits of space
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Open Problems

e Could to this work and [AS22] be used to bypass
polylog(n) overheads for other problems?

o E.g. Dominating Set, Spectral Sparsification
o Can we get a deterministic algorithm for this problem that uses only

O(g—z) bits of space or ?

o The current best deterministic algorithm is that of [DK20] which uses
O((’;—z2 log &) bits of space

Thank you!
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