Space Optimal Vertex Cover in Dynamic Streams J

Kheeran K. Naidu & Vihan Shah

University of Bristol & Rutgers University

kheeran.naidu®@bristol.ac.uk & vihan.shah98@rutgers.edu

1/28

@ Introduction

© Optimal Algorithm

© Key Lemma

@ Conclusion

2/28

@ Introduction

3/28

Vertex Cover

e Graph G = (V,E)

° °
o Vertex Cover: C C V, Ve = (u,v) € E, o 4
o/o

@ Minimum Vertex Cover OPT: Vertex
Cover of the smallest size

4/28

Vertex Cover

e Graph G = (V,E)

o Vertex Cover: C C V, Ve = (u,v) € E,

@ Minimum Vertex Cover OPT: Vertex
Cover of the smallest size

4/28

Vertex Cover

e Graph G = (V,E)

o Vertex Cover: C C V, Ve = (u,v) € E, o 4
/.

@ Minimum Vertex Cover OPT: Vertex
Cover of the smallest size

4/28

Classical Setting

Minimum Vertex Cover (NP-Complete)

The smallest set of vertices which includes at least a single endpoint of
every edge.

Approximation in Poly-Time

Return the vertices of a maximal GREEDY Matching algorithm to get a
2-approximation

Note: A can have at most 2 |OPT| vertices

5/28

Classical Setting

Assumption (Infeasible for massive graphs)

Classical algorithms rely on the assumption that they have a random
access to the input of the algorithm

5/28

Graph Streaming
o G=(V,E)
o Edges of G
o Trivial Solution: Store all edges (Q(n?) space)

e Goal: Minimize Memory (o(n?) space)

6/28

Streaming Models

Insertion-Only

Dynamic

7/28

Streaming Models

Insertion-Only

Dynamic

7/28

Streaming Models

Insertion-Only

€1

Dynamic

7/28

Streaming Models

Insertion-Only

€1

€2

Dynamic

/..

7/28

Streaming Models

Insertion-Only

€1

€2

€3

Dynamic

7/28

Streaming Models

Insertion-Only

€1

€2

€3

€4

Dynamic

A\

7/28

Streaming Models

Insertion-Only

€1

€2

€3

€4

€5

Dynamic

7/28

Streaming Models

Insertion-Only

€1

€2

€3

€4

€5

€6

Dynamic

s

7/28

Streaming Models

Insertion-Only

€1

€2

€3

€4

€5

€6

Dynamic

7/28

Streaming Models

Insertion-Only

€1

€2

€3

€4

€5

€6

€3

Dynamic

7/28

Streaming Models

Insertion-Only (finite stream)

€1

€2

€3

€4

€5

€6

€3

Dynamic

7/28

Streaming Models

Insertion-Only (finite stream)

€1

€2

€3

€4

€5

€6

€7

€3

e Exact solution requires Q(n?) space

o GREEDY gives a 2-approximation

Dynamic

7/28

Streaming Models

Insertion-Only (finite stream)

€1

€2

€3

€4

€5

€6

€7

€3

e Exact solution requires Q(n?) space

o GREEDY gives a 2-approximation

Dynamic

7/28

Streaming Models

Insertion-Only (finite stream)

e1 | e | e3 | e | e | e | €7 | es
. < e
]

e Exact solution requires Q(n?) space

o GREEDY gives a 2-approximation

Dynamic

€1

7/28

Streaming Models

Insertion-Only (finite stream)

€1

€2

€3

€4

€5

€6

€7

€3

e Exact solution requires Q(n?) space

o GREEDY gives a 2-approximation

Dynamic

€1

€2

=

7/28

Streaming Models

Insertion-Only (finite stream)

e1 | e | e3 | e | e | e | €7 | es
. < e
]

e Exact solution requires Q(n?) space

o GREEDY gives a 2-approximation

Dynamic

€1 €2 €3 []

7/28

Streaming Models

Insertion-Only (finite stream)

e1 | e | e3 | e | e | e | €7 | es
. < e
]

e Exact solution requires Q(n?) space

o GREEDY gives a 2-approximation

Dynamic

€1 € | €3 | €)

7/28

Streaming Models

Insertion-Only (finite stream)

€1

€2

€3

€4

€5

€6

€7

€3

e Exact solution requires Q(n?) space

o GREEDY gives a 2-approximation

Dynamic

€1

€2

o« o
o« e
o .o
o’ i °
o\o

7/28

Streaming Models

Insertion-Only (finite stream)

e1 | e | e3 | e | e | e | €7 | es

il

. . . °
e Exact solution requires Q(n?) space
o GREEDY gives a 2-approximation
Dynamic
€ | €& | 6 | e | & | & *—e
° °

7/28

Streaming Models

Insertion-Only (finite stream)

e1 | e | e3 | e | e | e | €7 | es
. < e
]

e Exact solution requires Q(n?) space

o GREEDY gives a 2-approximation

Dynamic

€1 | € | €3 | e | e3 | €4 | 6

7/28

Streaming Models

Insertion-Only (finite stream)

€1

€2

€3

€4

€5

€6

€7

€3

e Exact solution requires Q(n?) space

o GREEDY gives a 2-approximation

Dynamic

€1

€2

€4

€5

€1

=

7/28

Streaming Models

Insertion-Only (finite stream)

€1

€2

€3

€4

€5

€6

€7

€3

e Exact solution requires Q(n?) space

o GREEDY gives a 2-approximation

Dynamic (finite stream)

€1

€2

€3

€1

€4

€5

€1

=
>

7/28

Streaming Models

Insertion-Only (finite stream)

€1

€2

€3

€4

€5

€6

€7

€3

e Exact solution requires Q(n?) space

o GREEDY gives a 2-approximation

Dynamic (finite stream)

€1

€2

€3

€1

€3

€4

€5

€1

@ O(1)-approximation requires (n?) space

=
>

7/28

Streaming Models

Insertion-Only (finite stream)

€1

€2

€3

€4

€5

€6

€7

€3

e Exact solution requires Q(n?) space

o GREEDY gives a 2-approximation

Dynamic (finite stream)

€1

€2

€3

€1

€3

€4

€5

€1

@ O(1)-approximation requires (n?) space
@ a-approximation algorithms (
o LB: Q() and UB: O(

n
a?

> log a) [DK20]

=
>

7/28

Understanding polylog factors

@ These types of polylog(n) gaps appear frequently in the literature
@ One main reason is storing counters or edges

e [SW15] showed that for many problems the can be
improved to include the log factors (Bipartiteness, Approximate
Minimum Cut etc)

o Connectivity has a of Q(nlog® n) ([NY19])

o [AS22] was the result that showed polylog(n) factors can be
removed in the upper bound by giving an algorithm for approximate
matching using O(n?/a?) bits

8/28

Our Results

Theorem

There exists a algorithm for

«a-approximate minimum vertex cover that succeeds with high probability
2, .
and uses O(™;) bits of space for any o < n'=% where § > 0.

n
«

[this work]
o(%)
Q(ZTZZ) O(l’;—z2 log @)
[DK20] [DK20]

9/28

Our Results

Theorem

There exists a algorithm for

«a-approximate minimum vertex cover that succeeds with high probability
2, .
and uses O(™;) bits of space for any o < n'=° where § > 0.

n
«

[this work]
o(%)
Q(ZTZZ) O(l’;—z2 log @)
[DK20] [DK20]

An algorithm that uses !

9/28

© Optimal Algorithm

10/28

a-Approx Det. Dynamic Vertex Cover [DK20]

Simplifying Assumption (for the talk):

@ The input graph is bipartite

11/28

a-Approx Det. Dynamic Vertex Cover [DK20]

~ ~ @ Vertex groups of size «
o e about

~ ~

~ ~

~ ~

11/28

a-Approx Det. Dynamic Vertex Cover [DK20]

~ @ Vertex groups of size «
e about

N @ Use counters to check if there is at least
one edge between each pair of groups

9 9 e about
x x
% %

11/28

a-Approx Det. Dynamic Vertex Cover [DK20]

~ ~ @ Vertex groups of size «
a e about
I’ o @ Use counters to check if there is at least
one edge between each pair of groups
9 9 e about
~ ~
\ \

11/28

a-Approx Det. Dynamic Vertex Cover [DK20]

~ ~ @ Vertex groups of size «
a e about
o o @ Use counters to check if there is at least
one edge between each pair of groups
9 9 e about
~ >
\ \

11/28

a-Approx Det. Dynamic Vertex Cover [DK20]

A ~ @ Vertex groups of size «
a e about
o o @ Use counters to check if there is at least
one edge between each pair of groups
9 9 e about
~ X
V \V

11/28

a-Approx Det. Dynamic Vertex Cover [DK20]

~ ~ @ Vertex groups of size «
a e about
o o @ Use counters to check if there is at least
one edge between each pair of groups
9 9 e about
~ ~
\ \

11/28

a-Approx Det. Dynamic Vertex Cover [DK20]

@ Vertex groups of size «
e about

@ Use counters to check if there is at least
one edge between each pair of groups

e about

© Construct the group-level graph

11/28

a-Approx Det. Dynamic Vertex Cover [DK20]

@ Vertex groups of size «
/ e about

@ Use counters to check if there is at least
/ one edge between each pair of groups

e about

) © Construct the group-level graph

@ Compute a group-level vertex cover

11/28

a-Approx Det. Dynamic Vertex Cover [DK20]

@ Vertex groups of size «
a e about

@ Use counters to check if there is at least
one edge between each pair of groups

e about

© Construct the group-level graph
@ Compute a group-level vertex cover

© Return vertices of the covering groups

11/28

a-Approx Det. Dynamic Vertex Cover [DK20]

@ Vertex groups of size «
a e about

@ Use counters to check if there is at least
one edge between each pair of groups

e about

© Construct the group-level graph
@ Compute a group-level vertex cover

© Return vertices of the covering groups

This is an a-approximation.

11/28

a-Approx Det. Dynamic Vertex Cover [DK20]

@ Vertex groups of size «
a e about

@ Use counters to check if there is at least
one edge between each pair of groups

e about

© Construct the group-level graph
@ Compute a group-level vertex cover

© Return vertices of the covering groups

This is an a-approximation.

Space: O(g—i) counters, each using O(log «)
bits. Hence, O((’;—z log &) bits.

11/28

What's the issue?

A A
~ ~
~ ~
~ ~

12/28

What's the issue?

Problem:
e Counters use O(log «) bits.

e Each counter counts upto a? edges.

«

12/28

What's the issue?

M M
Problem:
e Counters use O(log «) bits.
5 < O0(1) KN
@ Each counter counts upto o“ edges.
Goal: ~ ~
o Counters to use O(1) bits.
e Counters to count upto O(1) edges ~ ~
(% %

12/28

Solving the issue for sparse graphs

For G with ~ QTZ edges

13/28

Solving the issue for sparse graphs

. 2
For G with ~ 75 edges ~ ~

@ Randomly partition into groups of size «

o o
~ ~
~ ~

13/28

Solving the issue for sparse graphs

For G with ~ Z—Z edges ~ ~
@ Randomly partition into groups of size «
W o(1) K
2 .
e 75 pairs of groups
e Counters use O(1) bits (in expectation) 0 i)
~ ~
% %

13/28

Solving the issue for sparse graphs

For G with ~ Z—Z edges
@ Randomly partition into groups of size «
n2

e 5 pairs of groups

e Counters use O(1) bits (in expectation)

. 2
For G with ~ ﬁ edges or more:

e Counters use O(log) bits

13/28

Solving the issue (in general)

G may not be sparse

14 /28

Solving the issue (in general)

G may not be

Match-or-Sparsify Lemma:

o either [M| > Z then
— V is an a-approx

M| > n/a

14 /28

Solving the issue (in general)

G may not be

Match-or-Sparsify Lemma:

o either [M| > Z then

— V is an a-approx
2

e or |Gr| = O(%)

= counters use bits (in expectation)

M| > n/a

=H

—> |[M|<n/a

|G| = O(n?/a?) edges

14 /28

Space Optimal Algorithm

15/28

Space Optimal Algorithm

@ Randomly partition vertices (2 groups)

15/28

Space Optimal Algorithm

@ Randomly partition vertices (4 groups)

@ Run Match-or-Sparsify lemma
o if , return

15/28

Space Optimal Algorithm

@ Randomly partition vertices (4 groups)

@ Run Match-or-Sparsify lemma
o if , return

© Check if an edge is present between
pairs and compute group-level vertex
cover

15/28

Space Optimal Algorithm

@ Randomly partition vertices (2 groups)

@ Run Match-or-Sparsify lemma
o if , return

© Check if an edge is present between
pairs and compute group-level vertex
cover

@ Return vertices of the covering groups
including those with matched vertices

15/28

Space Optimal Algorithm

@ Randomly partition vertices (2 groups)

@ Run
o if [M| is large, return V

© Check if an edge is present between
pairs and compute group-level vertex
cover

@ Return vertices of the covering groups
including those with matched vertices

15/28

© Key Lemma

16/28

How to prove Match-or-Sparsify Lemma

Lemma

There is an algorithm that uses O(g—i) bits of space and with high
probability outputs a matching M that satisfies at least one of the
following conditions:

e Match-case: |M| >

n
o

@ Sparsify-case: G, has O(C’;—z) edges.

> |G = O(n?/a?) edges

17/28

Attempt 1: Uniform Sampling

Algorithm:

@ Sample é(;—i) edges uniformly at random

o Let M be a matching over the sampled edges

18/28

Attempt 1: Uniform Sampling

Algorithm:

@ Sample é(;—i) edges uniformly at random

o Let M be a matching over the sampled edges

Space: (:)(g—i) - polylog(n) = O(g—i) bits

18/28

Attempt 1: Uniform Sampling

Algorithm:

@ Sample é(g—i) edges uniformly at random
o Let M be a matching over the sampled edges

Space: (:)(g—i) - polylog(n) = O(g—i) bits

The residual graph is !

has maximum degree O(a?)

18/28

Attempt 1: Uniform Sampling

has maximum degree O(a?)

The that a vertex u survives with Q(a?) neighbors:

o None of these Q(a?) edges are
sampled

@ There are at most n’ total edges

(1—@(“2)> < exp(~(1)) < —

n? ~ poly(n)

19/28

Limitations
This algorithm only works for small «
o We want a sparse graph with at most O(n?/a?) edges
o The max degree bound is O(a?)

° implies o < n'/4

20/28

Drawbacks
Drawback 1
@ Do not need when we find large matching

@ This algorithm is more like Match and Sparsify

Fix 1: Match or Sparsify

Drawback 2

@ There is a hard instance showing that uniform sampling does not
work for large «

o Uniform sampling is towards high degree vertices

Fix 2: Non-Uniform Sampling
Attempt 2: Addressing the drawbacks gives us the Lemma.

21/28

Space

The algorithm works for any oo < n'=9 for any constant § > 0.

o When a = n'~9, space used is O(n?/a?) = O(n*®) bits

@ But the minimum vertex cover can be of size Q(n)

22/28

Space

The algorithm works for any oo < n'=9 for any constant § > 0.

o When o = n'~9, space used is O(n?/a?) = O(n*) bits

@ But the minimum vertex cover can be of size Q(n)

@ Recall we either pick an group or no vertex from the group
o We output the indices of groups that are picked (space: O(1))

e Space: - 0(1) = O(n?/a?)

22/28

@ Conclusion

23/28

Summary

@ Match or Sparsify: In O(n?/a?) bits of space

o We either get a (which implies a large vertex cover)
o Orgeta
@ The ideas from [DK20] along with solve the

sparse case in O(n?/a?) bits of space

© We run both algorithms in parallel and get the final algorithm

24/28

Summary

@ Thereis a that whp outputs an
a-approximation to minimum vertex cover using O(n?/a?) bits of
space

25/28

Summary

@ Thereis a that whp outputs an
a-approximation to minimum vertex cover using O(n?/a?) bits of
space

o The lower bound of [DK20] is ©(n?/a?) bits making our algorithm
optimal

25/28

Summary

@ Thereis a that whp outputs an
a-approximation to minimum vertex cover using O(n?/a?) bits of
space

o The lower bound of [DK20] is ©(n?/a?) bits making our algorithm
optimal

@ polylog(n) overhead is not always necessary (Like [AS22])

25/28

Open Problems

e Could to this work and [AS22] be used to bypass
polylog(n) overheads for other problems?

o E.g. Dominating Set, Spectral Sparsification

o Can we get a deterministic algorithm for this problem that uses only
2 .
O(73) bits of space or ?

o The current best deterministic algorithm is that of [DK20] which uses
O((’;—z2 log &) bits of space

26/28

Open Problems

e Could to this work and [AS22] be used to bypass
polylog(n) overheads for other problems?

o E.g. Dominating Set, Spectral Sparsification
o Can we get a deterministic algorithm for this problem that uses only

O(g—z) bits of space or ?

o The current best deterministic algorithm is that of [DK20] which uses
O((’;—z2 log &) bits of space

Thank you!

26/28

References |

[§ Sepehr Assadi and Vihan Shah, An asymptotically optimal algorithm
for maximum matching in dynamic streams, 13th Innovations in
Theoretical Computer Science Conference, ITCS 2022, January 31 -
February 3, 2022, Berkeley, CA, USA (Mark Braverman, ed.), LIPIcs,
vol. 215, Schloss Dagstuhl - Leibniz-Zentrum fir Informatik, 2022,
pp. 9:1-9:23.

[@ Jacques Dark and Christian Konrad, Optimal lower bounds for
matching and vertex cover in dynamic graph streams, 35th
Computational Complexity Conference, CCC 2020, July 28-31, 2020,
Saarbriicken, Germany (Virtual Conference) (Shubhangi Saraf, ed.),
LIPIcs, vol. 169, Schloss Dagstuhl - Leibniz-Zentrum fiir Informatik,
2020, pp. 30:1-30:14.

27 /28

References |l

[Jelani Nelson and Huacheng Yu, Optimal lower bounds for distributed
and streaming spanning forest computation, Proceedings of the
Thirtieth Annual ACM-SIAM Symposium on Discrete Algorithms,
SIAM, 2019, pp. 1844-1860.

[@ Xiaoming Sun and David P Woodruff, Tight bounds for graph
problems in insertion streams, Approximation, Randomization, and
Combinatorial Optimization. Algorithms and Techniques
(APPROX/RANDOM 2015), Schloss Dagstuhl-Leibniz-Zentrum fuer
Informatik, 2015.

28/28

	Overview
	Introduction
	Optimal Algorithm
	Key Lemma
	Conclusion

