Space Optimal Vertex Cover in Dynamic Streams

Kheeran K. Naidu & Vihan Shah

University of Bristol & Rutgers University kheeran.naidu@bristol.ac.uk & vihan.shah98@rutgers.edu Introduction

Optimal Algorithm

3 Key Lemma

4 Conclusion

Introduction

2 Optimal Algorithm

3 Key Lemma

4 Conclusion

Vertex Cover

• Graph
$$G = (V, E)$$

• Vertex Cover:
$$C \subseteq V$$
, $\forall e = (u, v) \in E$, $u \in C$ or $v \in C$

 Minimum Vertex Cover OPT: Vertex Cover of the smallest size

Vertex Cover

- Graph G = (V, E)
- Vertex Cover: $C \subseteq V$, $\forall e = (u, v) \in E$, $u \in C$ or $v \in C$

 Minimum Vertex Cover OPT: Vertex Cover of the smallest size

Vertex Cover

- Graph G = (V, E)
- Vertex Cover: $C \subseteq V$, $\forall e = (u, v) \in E$, $u \in C$ or $v \in C$

 Minimum Vertex Cover OPT: Vertex Cover of the smallest size

Classical Setting

Minimum Vertex Cover (NP-Complete)

The smallest set of vertices which includes at least a single endpoint of every edge.

Approximation in Poly-Time

Return the vertices of a maximal GREEDY Matching algorithm to get a 2-approximation

Note: A 2-approximate vertex cover can have at most 2 | OPT | vertices

Classical Setting

Assumption (Infeasible for massive graphs)

Classical algorithms rely on the assumption that they have a random access to the input of the algorithm

Graph Streaming

- \bullet G = (V, E)
- Edges of G appear in a stream
- Trivial Solution: Store all edges $(\Omega(n^2)$ space)
- Goal: Minimize Memory $(o(n^2)$ space)

Insertion-Only

Insertion-Only

- •
- •

Insertion-Only

Insertion-Only (finite stream)

ϵ	1	e_2	<i>e</i> ₃	<i>e</i> ₄	<i>e</i> ₅	<i>e</i> ₆	e ₇	<i>e</i> ₈	
------------	---	-------	-----------------------	-----------------------	-----------------------	-----------------------	----------------	-----------------------	--

Insertion-Only (finite stream)

- Exact solution requires $\Omega(n^2)$ space
- Greedy gives a 2-approximation

Insertion-Only (finite stream)

- Exact solution requires $\Omega(n^2)$ space
- Greedy gives a 2-approximation

- •
- •

Insertion-Only (finite stream)

- Exact solution requires $\Omega(n^2)$ space
- Greedy gives a 2-approximation

Dynamic

 e_1

Insertion-Only (finite stream)

	e_1	e_2	<i>e</i> ₃	<i>e</i> ₄	<i>e</i> ₅	e ₆	e ₇	<i>e</i> ₈
--	-------	-------	-----------------------	-----------------------	-----------------------	----------------	----------------	-----------------------

- Exact solution requires $\Omega(n^2)$ space
- Greedy gives a 2-approximation

Insertion-Only (finite stream)

- Exact solution requires $\Omega(n^2)$ space
- Greedy gives a 2-approximation

Insertion-Only (finite stream)

- Exact solution requires $\Omega(n^2)$ space
- Greedy gives a 2-approximation

e_1	e_2	<i>e</i> ₃	$\overline{e_1}$
-------	-------	-----------------------	------------------

Insertion-Only (finite stream)

- Exact solution requires $\Omega(n^2)$ space
- Greedy gives a 2-approximation

Insertion-Only (finite stream)

- Exact solution requires $\Omega(n^2)$ space
- Greedy gives a 2-approximation

Insertion-Only (finite stream)

- Exact solution requires $\Omega(n^2)$ space
- Greedy gives a 2-approximation

	e_1	e_2	<i>e</i> ₃	$\overline{e_1}$	<u>e</u> ₃	e ₄	<i>e</i> ₅
--	-------	-------	-----------------------	------------------	-----------------------	----------------	-----------------------

Insertion-Only (finite stream)

- Exact solution requires $\Omega(n^2)$ space
- Greedy gives a 2-approximation

e_1	e ₂	<i>e</i> ₃	$\overline{e_1}$	<u>e</u> ₃	e ₄	<i>e</i> ₅	<i>e</i> ₁
-------	----------------	-----------------------	------------------	-----------------------	----------------	-----------------------	-----------------------

Insertion-Only (finite stream)

- Exact solution requires $\Omega(n^2)$ space
- Greedy gives a 2-approximation

Dynamic (finite stream)

Insertion-Only (finite stream)

- Exact solution requires $\Omega(n^2)$ space
- Greedy gives a 2-approximation

Dynamic (finite stream)

• O(1)-approximation requires $\Omega(n^2)$ space

Insertion-Only (finite stream)

- Exact solution requires $\Omega(n^2)$ space
- GREEDY gives a 2-approximation

Dynamic (finite stream)

- O(1)-approximation requires $\Omega(n^2)$ space
- α -approximation algorithms $(1 \le \alpha \ll n)$:
 - LB: $\Omega(\frac{n^2}{\alpha^2})$ and UB: $O(\frac{n^2}{\alpha^2}\log\alpha)$ [DK20]

Understanding polylog factors

- These types of polylog(n) gaps appear frequently in the literature
- One main reason is storing counters or edges
- [SW15] showed that for many problems the lower bounds can be improved to include the log factors (Bipartiteness, Approximate Minimum Cut etc)
- Connectivity has a lower bound of $\Omega(n \log^3 n)$ ([NY19])
- [AS22] was the first result that showed $\operatorname{polylog}(n)$ factors can be removed in the upper bound by giving an algorithm for approximate matching using $O(n^2/\alpha^3)$ bits

Our Results

Theorem

There exists a randomised dynamic graph streaming algorithm for α -approximate minimum vertex cover that succeeds with high probability and uses $O(\frac{n^2}{\alpha^2})$ bits of space for any $\alpha \leq n^{1-\delta}$ where $\delta > 0$.

Our Results

Theorem

There exists a randomised dynamic graph streaming algorithm for α -approximate minimum vertex cover that succeeds with high probability and uses $O(\frac{n^2}{\alpha^2})$ bits of space for any $\alpha \leq n^{1-\delta}$ where $\delta > 0$.

An algorithm that uses optimal space up to constant factors!

Introduction

Optimal Algorithm

3 Key Lemma

4 Conclusion

Simplifying Assumption (for the talk):

• The input graph is bipartite

It is easily lifted!

• Vertex groups of size α • about $\frac{n}{\alpha}$ groups

- Vertex groups of size α
 - about $\frac{n}{\alpha}$ groups
- Use counters to check if there is at least one edge between each pair of groups
 - about $\frac{n^2}{\alpha^2}$ pairs

- **①** Vertex groups of size α
 - about $\frac{n}{\alpha}$ groups
- Use counters to check if there is at least one edge between each pair of groups
 - about $\frac{n^2}{\alpha^2}$ pairs

- **1** Vertex groups of size α
 - about $\frac{n}{\alpha}$ groups
- Use counters to check if there is at least one edge between each pair of groups
 - about $\frac{n^2}{\alpha^2}$ pairs

- **1** Vertex groups of size α
 - about $\frac{n}{\alpha}$ groups
- Use counters to check if there is at least one edge between each pair of groups
 - about $\frac{n^2}{\alpha^2}$ pairs

- Vertex groups of size α
 - about $\frac{n}{\alpha}$ groups
- Use counters to check if there is at least one edge between each pair of groups
 - about $\frac{n^2}{\alpha^2}$ pairs

- Vertex groups of size α about $\frac{n}{\alpha}$ groups
- Use counters to check if there is at least one edge between each pair of groups
 - about $\frac{n^2}{\alpha^2}$ pairs
- Construct the group-level graph

- Vertex groups of size α
 - about $\frac{n}{\alpha}$ groups
- Use counters to check if there is at least one edge between each pair of groups
 - about $\frac{n^2}{\alpha^2}$ pairs
- Construct the group-level graph
- Ompute a group-level vertex cover

- f 0 Vertex groups of size lpha
 - about $\frac{n}{\alpha}$ groups
- Use counters to check if there is at least one edge between each pair of groups
 - about $\frac{n^2}{\alpha^2}$ pairs
- Construct the group-level graph
- Ompute a group-level vertex cover
- Seturn vertices of the covering groups

- Vertex groups of size α
 - about $\frac{n}{\alpha}$ groups
- Use counters to check if there is at least one edge between each pair of groups
 - about $\frac{n^2}{\alpha^2}$ pairs
- Construct the group-level graph
- Ompute a group-level vertex cover
- Seturn vertices of the covering groups

This is an α -approximation.

- - about $\frac{n}{\alpha}$ groups
- Use counters to check if there is at least one edge between each pair of groups
 - about $\frac{n^2}{\alpha^2}$ pairs
- Onstruct the group-level graph
- Ompute a group-level vertex cover
- Return vertices of the covering groups

This is an α -approximation.

Space: $O(\frac{n^2}{\alpha^2})$ counters, each using $O(\log \alpha)$ bits. Hence, $O(\frac{n^2}{\alpha^2} \log \alpha)$ bits.

What's the issue?

What's the issue?

Problem:

- Counters use $O(\log \alpha)$ bits.
- Each counter counts upto α^2 edges.

What's the issue?

Problem:

- Counters use $O(\log \alpha)$ bits.
- Each counter counts upto α^2 edges.

Goal:

- Counters to use O(1) bits.
- Counters to count upto O(1) edges

For G with $\approx \frac{n^2}{\alpha^2}$ edges

For G with $\approx \frac{n^2}{\alpha^2}$ edges

ullet Randomly partition into groups of size lpha

For G with $\approx \frac{n^2}{\alpha^2}$ edges

- ullet Randomly partition into groups of size lpha
- $\frac{n^2}{\alpha^2}$ pairs of groups
- Counters use O(1) bits (in expectation)

For
$$G$$
 with $\approx \frac{n^2}{\alpha^2}$ edges

- ullet Randomly partition into groups of size lpha
- $\frac{n^2}{\alpha^2}$ pairs of groups
- Counters use O(1) bits (in expectation)

For G with $\approx \frac{n^2}{\alpha^{1.99}}$ edges or more:

• Counters use $\Theta(\log \alpha)$ bits

Solving the issue (in general)

G may not be sparse

Solving the issue (in general)

G may not be sparse

Match-or-Sparsify Lemma:

• either $|M| \ge \frac{n}{\alpha}$ then $|OPT| \ge \frac{n}{\alpha}$ $\implies V$ is an α -approx

Solving the issue (in general)

G may not be sparse

Match-or-Sparsify Lemma:

- either $|M| \ge \frac{n}{\alpha}$ then $|OPT| \ge \frac{n}{\alpha}$ $\implies V$ is an α -approx
- or $|G_R| = O(\frac{n^2}{\alpha^2})$ \implies counters use O(1) bits (in expectation)

1 Randomly partition vertices $(\frac{n}{\alpha} \text{ groups})$

- **1** Randomly partition vertices $(\frac{n}{\alpha}$ groups)
- Run Match-or-Sparsify lemma
 - if |M| is large, return V

- **1** Randomly partition vertices $(\frac{n}{\alpha}$ groups)
- Run Match-or-Sparsify lemma
 - if |M| is large, return V
- Check if an edge is present between pairs and compute group-level vertex cover

- **1** Randomly partition vertices $(\frac{n}{\alpha}$ groups)
- Run Match-or-Sparsify lemma
 - if |M| is large, return V
- Check if an edge is present between pairs and compute group-level vertex cover
- Return vertices of the covering groups including those with matched vertices

- **1** Randomly partition vertices $(\frac{n}{\alpha}$ groups)
- Run Match-or-Sparsify lemma
 - if |M| is large, return V
- Check if an edge is present between pairs and compute group-level vertex cover
- Return vertices of the covering groups including those with matched vertices

How to prove the Match-or-Sparsify lemma?

Introduction

2 Optimal Algorithm

3 Key Lemma

4 Conclusion

How to prove Match-or-Sparsify Lemma

Lemma

There is an algorithm that uses $O(\frac{n^2}{\alpha^2})$ bits of space and with high probability outputs a matching M that satisfies <u>at least one</u> of the following conditions:

- Match-case: $|M| \ge \frac{n}{\alpha}$.
- Sparsify-case: G_R , has $O(\frac{n^2}{n^2})$ edges.

Algorithm:

- Sample $\tilde{\Theta}(\frac{n^2}{\alpha^2})$ edges uniformly at random
- Let *M* be a greedy matching over the sampled edges

Algorithm:

- ullet Sample $ilde{\Theta}(rac{n^2}{lpha^2})$ edges uniformly at random
- Let M be a greedy matching over the sampled edges

Space:
$$\tilde{\Theta}(\frac{n^2}{\alpha^2}) \cdot \operatorname{polylog}(n) = O(\frac{n^2}{\alpha^2})$$
 bits

Algorithm:

- ullet Sample $ilde{\Theta}(rac{n^2}{lpha^2})$ edges uniformly at random
- Let M be a greedy matching over the sampled edges

Space:
$$\tilde{\Theta}(\frac{n^2}{\alpha^2}) \cdot \operatorname{polylog}(n) = O(\frac{n^2}{\alpha^2})$$
 bits

The residual graph is sparse!

 G_R has maximum degree $\tilde{O}(\alpha^2)$

 G_R has maximum degree $\tilde{O}(\alpha^2)$

The probability that a vertex u survives with $\tilde{\Omega}(\alpha^2)$ neighbors:

• None of these $\tilde{\Omega}(\alpha^2)$ edges are sampled

• There are at most n^2 total edges

$$\left(1 - \frac{\tilde{\Omega}(\alpha^2)}{\textcolor{red}{n^2}}\right)^{\tilde{\Theta}\left(\frac{n^2}{\alpha^2}\right)} \leq \exp(-\tilde{\Omega}(1)) \leq \frac{1}{\mathrm{poly}(n)}$$

Limitations

This algorithm only works for small α

- We want a sparse graph with at most $O(n^2/\alpha^2)$ edges
- The max degree bound is $\widetilde{O}(\alpha^2)$
- $n \cdot \widetilde{O}(\alpha^2) \leq O(\frac{n^2}{\alpha^2})$ implies $\alpha \ll n^{1/4}$

Drawbacks

Drawback 1

- Do not need sparse graph when we find large matching
- This algorithm is more like Match and Sparsify

Fix 1: Match or Sparsify

Drawback 2

- \bullet There is a hard instance showing that uniform sampling does not work for large α
- Uniform sampling is biased towards high degree vertices

Fix 2: Non-Uniform Sampling

Attempt 2: Addressing both the drawbacks gives us the Lemma.

Space

The main algorithm works for any $\alpha \leq n^{1-\delta}$ for any constant $\delta > 0$.

- When $\alpha = n^{1-\delta}$, space used is $O(n^2/\alpha^2) = O(n^{2\delta})$ bits
- But the minimum vertex cover can be of size $\Omega(n)$

Space

The main algorithm works for any $\alpha \leq n^{1-\delta}$ for any constant $\delta > 0$.

- When $\alpha = n^{1-\delta}$, space used is $O(n^2/\alpha^2) = O(n^{2\delta})$ bits
- But the minimum vertex cover can be of size $\Omega(n)$
- Recall we either pick an entire group or no vertex from the group
- We output the indices of groups that are picked (space: $\widetilde{O}(1)$)
- Space: $\frac{n}{\alpha} \cdot \widetilde{O}(1) = O(n^2/\alpha^2)$

Introduction

Optimal Algorithm

3 Key Lemma

4 Conclusion

- Match or Sparsify: In $O(n^2/\alpha^2)$ bits of space
 - We either get a large matching (which implies a large vertex cover)
 - Or get a sparse graph
- ② The ideas from [DK20] along with random partitioning solve the sparse case in $O(n^2/\alpha^2)$ bits of space
- We run both algorithms in parallel and get the final algorithm

• There is a dynamic streaming algorithm that whp outputs an α -approximation to minimum vertex cover using $O(n^2/\alpha^2)$ bits of space

- There is a dynamic streaming algorithm that whp outputs an α -approximation to minimum vertex cover using $O(n^2/\alpha^2)$ bits of space
- The lower bound of [DK20] is $\Omega(n^2/\alpha^2)$ bits making our algorithm optimal

- There is a dynamic streaming algorithm that who outputs an α -approximation to minimum vertex cover using $O(n^2/\alpha^2)$ bits of space
- The lower bound of [DK20] is $\Omega(n^2/\alpha^2)$ bits making our algorithm optimal
- polylog(n) overhead is not always necessary (Like [AS22])

Open Problems

- Could similar techniques to this work and [AS22] be used to bypass $\operatorname{polylog}(n)$ overheads for other problems?
 - E.g. Dominating Set, Spectral Sparsification
- Can we get a deterministic algorithm for this problem that uses only $O(\frac{n^2}{\alpha^2})$ bits of space or improve the lower bound?
 - The current best deterministic algorithm is that of [DK20] which uses $O(\frac{n^2}{\alpha^2}\log\alpha)$ bits of space

Open Problems

- Could similar techniques to this work and [AS22] be used to bypass $\operatorname{polylog}(n)$ overheads for other problems?
 - E.g. Dominating Set, Spectral Sparsification
- Can we get a deterministic algorithm for this problem that uses only $O(\frac{n^2}{\alpha^2})$ bits of space or improve the lower bound?
 - The current best deterministic algorithm is that of [DK20] which uses $O(\frac{n^2}{\alpha^2}\log\alpha)$ bits of space

Thank you!

References I

Jacques Dark and Christian Konrad, *Optimal lower bounds for matching and vertex cover in dynamic graph streams*, 35th Computational Complexity Conference, CCC 2020, July 28-31, 2020, Saarbrücken, Germany (Virtual Conference) (Shubhangi Saraf, ed.), LIPIcs, vol. 169, Schloss Dagstuhl - Leibniz-Zentrum für Informatik, 2020, pp. 30:1–30:14.

References II

Jelani Nelson and Huacheng Yu, *Optimal lower bounds for distributed and streaming spanning forest computation*, Proceedings of the Thirtieth Annual ACM-SIAM Symposium on Discrete Algorithms, SIAM, 2019, pp. 1844–1860.

Xiaoming Sun and David P Woodruff, *Tight bounds for graph problems in insertion streams*, Approximation, Randomization, and Combinatorial Optimization. Algorithms and Techniques (APPROX/RANDOM 2015), Schloss Dagstuhl-Leibniz-Zentrum fuer Informatik, 2015.