Space Optimal Vertex Cover in Dynamic Streams J

Kheeran K. Naidu & Vihan Shah

University of Bristol & Rutgers University

kheeran.naidu®@bristol.ac.uk & vihan.shah98@rutgers.edu

1/14

Vertex Cover

e Graph G =(V,E) ® °

2/14

Vertex Cover

e Graph G =(V,E) ° °
o Vertex Cover: C C V, Ve = (u,v) € E,
° °
;///////////o
3

2/14

Vertex Cover

e Graph G =(V,E)
o Vertex Cover: C C V, Ve = (u,v) € E,

@ Minimum Vertex Cover OPT: Vertex
Cover of the smallest size

2/14

Vertex Cover

e Graph G =(V,E) ® °
o Vertex Cover: C C V, Ve = (u,v) € E,

@ Minimum Vertex Cover OPT: Vertex
Cover of the smallest size

Graph Streaming:

@ G arrives as a

2/14

Vertex Cover

e Graph G =(V,E) ® °
o Vertex Cover: C C V, Ve = (u,v) € E,

@ Minimum Vertex Cover OPT: Vertex
Cover of the smallest size
Graph Streaming:

@ G arrives as a

o Trivial: Store all edges (Q(n?) space)

2/14

Vertex Cover

e Graph G =(V,E) ® °
o Vertex Cover: C C V, Ve = (u,v) € E,

@ Minimum Vertex Cover OPT: Vertex
Cover of the smallest size

Graph Streaming:

@ G arrives as a
o Trivial: Store all edges (Q(n?) space)

e Goal: Minimize memory (o(n?) space)

2/14

Dynamic Graph Streams

o G=(V,E) arrives as a

o Edge insertions and deletions

3/14

Dynamic Graph Streams

o G=(V,E) arrives as a

° °
o Edge insertions and deletions o .
° °

3/14

Dynamic Graph Streams

o G=(V,E) arrives as a

o Edge insertions and deletions

€1

3/14

Dynamic Graph Streams

o G=(V,E) arrives as a

o Edge insertions and deletions

€1

€2

/..

3/14

Dynamic Graph Streams

o G=(V,E) arrives as a

o Edge insertions and deletions

€1

€2

€3

=2

3/14

Dynamic Graph Streams

o G=(V,E) arrives as a

o Edge insertions and deletions

€1

€2

€3

€1

° »)
*’
'l
o, °
L4

¢)

3/14

Dynamic Graph Streams

o G=(V,E) arrives as a

o Edge insertions and deletions

€1

€2

€3

€1

€3

3/14

Dynamic Graph Streams

o G=(V,E) arrives as a

o Edge insertions and deletions

€1

€2

€3

€1

€3

€4

3/14

Dynamic Graph Streams

o G=(V,E) arrives as a

o Edge insertions and deletions

€1

€2

€3

€1

€3

€4

€5

3/14

Dynamic Graph Streams

o G=(V,E) arrives as a

o Edge insertions and deletions

€1

€2

€3

€1

€3

€4

€5

€1

3/14

Dynamic Graph Streams

o G=(V,E) arrives as a

o Edge insertions and deletions

€1

€2

€3

€1

€3

€4

€5

€1

>

3/14

Dynamic Graph Streams

o G=(V,E) arrives as a

o Edge insertions and deletions X
[} [J

€1 | €2 | €3 | e | e3 | €4 | 65 | €1

Minimum Vertex Cover:

e O(1)-approximation requires Q(n?) space

@ a-approximation algorithms ():

3/14

Dynamic Graph Streams

o G=(V,E) arrives as a

o Edge insertions and deletions

€1

€2

€3

€1

€3

€4

€5

€1

>

Minimum Vertex Cover:

e O(1)-approximation requires Q(n?) space

@ a-approximation algorithms (

o Lower bound: Q(g—i) [DK20]
o Upper bound: O(g—z-loga) [DK20]

):

3/14

Understanding polylog factors

These type of polylog gaps appear frequently in the literature

@ One main reason is storing counters or edges

4/14

Understanding polylog factors

These type of polylog gaps appear frequently in the literature

@ One main reason is storing counters or edges

Are they inherent to the problem?

4/14

Understanding polylog factors

These type of polylog gaps appear frequently in the literature

@ One main reason is storing counters or edges

Are they inherent to the problem?

@ [SW15] showed that for several problems (Bipartiteness, Approximate
Minimum Cut, etc.) the can be improved to

o [NY19] showed that Connectivity has a of

4/14

Understanding polylog factors

These type of polylog gaps appear frequently in the literature

@ One main reason is storing counters or edges

Are they inherent to the problem?
@ [SW15] showed that for several problems (Bipartiteness, Approximate

Minimum Cut, etc.) the can be improved to

@ [NY19] showed that Connectivity has a of

e [AS22] gave the showing that the polylog factors can be
removed by giving an for a-approximate Maximum

Matching using O(n?/a3) bits, matching the lower bound [DK20]

4/14

Our Work

Theorem

There exists a algorithm for

«a-approximate minimum vertex cover that succeeds with high probability
2, .
and uses O(™;) bits of space for any o < n'=% where § > 0.

n
«

[this work]
o(%)
Q(ZTZZ) O(l’;—z2 log @)
[DK20] [DK20]

5/14

Our Work

Theorem

There exists a algorithm for

«a-approximate minimum vertex cover that succeeds with high probability
2, .
and uses O(™;) bits of space for any o < n'=° where § > 0.

n
«

[this work]
o(%)
Q(ZTZZ) O(l’;—z2 log @)
[DK20] [DK20]

An algorithm that uses !

5/14

a-Approx Det. Dynamic Vertex Cover [DK20]

Simplifying Assumption (for the talk):

@ The input graph is bipartite

6/14

a-Approx Det. Dynamic Vertex Cover [DK20]

~ ~ @ Vertex groups of size «
o e about

~ ~

~ ~

~ ~

6/14

a-Approx Det. Dynamic Vertex Cover [DK20]

~ @ Vertex groups of size «
e about

N @ Use counters to check if there is at least
one edge between each pair of groups

9 9 e about
x x
% %

6/14

a-Approx Det. Dynamic Vertex Cover [DK20]

~ ~ @ Vertex groups of size «
a e about
I’ o @ Use counters to check if there is at least
one edge between each pair of groups
9 9 e about
~ ~
\ \

6/14

a-Approx Det. Dynamic Vertex Cover [DK20]

~ ~ @ Vertex groups of size «
a e about
o o @ Use counters to check if there is at least
one edge between each pair of groups
9 9 e about
~ >
\ \

6/14

a-Approx Det. Dynamic Vertex Cover [DK20]

A ~ @ Vertex groups of size «
a e about
o o @ Use counters to check if there is at least
one edge between each pair of groups
9 9 e about
~ X
V \V

6/14

a-Approx Det. Dynamic Vertex Cover [DK20]

~ ~ @ Vertex groups of size «
a e about
o o @ Use counters to check if there is at least
one edge between each pair of groups
9 9 e about
~ ~
\ \

6/14

a-Approx Det. Dynamic Vertex Cover [DK20]

@ Vertex groups of size «
e about

@ Use counters to check if there is at least
one edge between each pair of groups

e about

© Construct the group-level graph

6/14

a-Approx Det. Dynamic Vertex Cover [DK20]

@ Vertex groups of size «
/ e about

@ Use counters to check if there is at least
/ one edge between each pair of groups

e about

) © Construct the group-level graph

@ Compute a group-level vertex cover

6/14

a-Approx Det. Dynamic Vertex Cover [DK20]

@ Vertex groups of size «
a ‘ e about

@ Use counters to check if there is at least
one edge between each pair of groups

e about

© Construct the group-level graph
@ Compute a group-level vertex cover

© Return vertices of the covering groups

6/14

a-Approx Det. Dynamic Vertex Cover [DK20]

@ Vertex groups of size «
a ‘ e about

@ Use counters to check if there is at least
one edge between each pair of groups

e about

© Construct the group-level graph
@ Compute a group-level vertex cover

© Return vertices of the covering groups

This is an a-approximation.

6/14

a-Approx Det. Dynamic Vertex Cover [DK20]

@ Vertex groups of size «
a ‘ e about

@ Use counters to check if there is at least
one edge between each pair of groups

e about

© Construct the group-level graph
@ Compute a group-level vertex cover

© Return vertices of the covering groups

This is an a-approximation.

Space: O(g—i) counters, each using O(log «)
bits. Hence, O(g—i log &) bits.

6/14

What's the issue?

A A
o o
o o
~ ~

7/14

What's the issue?

Problem:
@ Each counter counts upto o> edges.

e Counters use O(log «) bits.

«

7/14

What's the issue?

Problem: ~ ~

@ Each counter counts upto o> edges.
e Counters use O(log) bits. . 0(1) ¥

Goal:
e Counters to count upto O(1) edges
e Counters to use O(1) bits.

7/14

Solving the issue for sparse graphs

For G with =~ 272 edges

8/14

Solving the issue for sparse graphs

. 2
For G with ~ 75 edges ~ ~

@ Randomly partition into groups of size «

o o
~ ~
~ ~

8/14

Solving the issue for sparse graphs

. 2
For G with ~ 75 edges ~ ~

@ Randomly partition into groups of size «

n

2 .
@ 5 pairs of groups < 0(1) K
o Counters use O(1) bits (in expectation)

~ o
~ ~
1% 1%

8/14

Solving the issue for sparse graphs

For G with ~ 372 edges
@ Randomly partition into groups of size «
° g—z pairs of groups

o Counters use O(1) bits (in expectation)

. 2
For G with ~ ﬁ edges or more:

e Counters use O(log) bits

8/14

Solving the issue (in general)

G may not be sparse

9/14

Solving the issue (in general)

G may not be

Match-or-Sparsify Lemma:

o either [M| > Z then
— V is an a-approx

M| > n/a

9/14

Solving the issue (in general)

G may not be

Match-or-Sparsify Lemma:

o either [M| > Z then

— V is an a-approx
2

e or |Gr| = O(%)

= counters use bits (in expectation)

M| > n/a

=H

—> |[M|<n/a

|G| = O(n?/a?) edges

9/14

Space Optimal Algorithm

10/ 14

Space Optimal Algorithm

@ Randomly partition vertices (2 groups)

10/14

Space Optimal Algorithm

@ Randomly partition vertices (4 groups)

@ Run Match-or-Sparsify lemma
o if , return

10/14

Space Optimal Algorithm

@ Randomly partition vertices (4 groups)

@ Run Match-or-Sparsify lemma
o if , return

© Check if an edge is present between
pairs and compute group-level vertex
cover

10/14

Space Optimal Algorithm

@ Randomly partition vertices (2 groups)

@ Run Match-or-Sparsify lemma
o if , return

© Check if an edge is present between
pairs and compute group-level vertex
cover

@ Return vertices of the covering groups
including those with matched vertices

10/14

Space Optimal Algorithm

@ Randomly partition vertices (2 groups)

@ Run
o if [M| is large, return V

© Check if an edge is present between
pairs and compute group-level vertex
cover

@ Return vertices of the covering groups
including those with matched vertices

Checkout the long talk!

10/14

Summary

©Q Thereis a that whp outputs an
a-approximation to minimum vertex cover using O(n?/a?) bits of
space

11/14

Summary

©Q Thereis a that whp outputs an
a-approximation to minimum vertex cover using O(n?/a?) bits of
space

@ The lower bound of [DK20] makes our algorithm optimal

11/14

Summary

©Q Thereis a that whp outputs an
a-approximation to minimum vertex cover using O(n?/a?) bits of
space

@ The lower bound of [DK20] makes our algorithm optimal

@ The polylog(n) overhead is not always necessary (Like [AS22])

11/14

Open Problems

e Could to this work and [AS22] be used to bypass
the polylog(n) overheads of other problems?

o E.g. Dominating Set, Spectral Sparsification

o Can we get a deterministic algorithm for this problem that uses only
2 .
O(73) bits of space or ?

o The current best deterministic algorithm is that of [DK20] which uses
O((’;—z2 log &) bits of space

12/14

Open Problems

e Could to this work and [AS22] be used to bypass
the polylog(n) overheads of other problems?

o E.g. Dominating Set, Spectral Sparsification
o Can we get a deterministic algorithm for this problem that uses only

O(g—z) bits of space or ?

o The current best deterministic algorithm is that of [DK20] which uses
O((’;—z2 log &) bits of space

Thank you!

12/14

References |

[§ Sepehr Assadi and Vihan Shah, An asymptotically optimal algorithm
for maximum matching in dynamic streams, 13th Innovations in
Theoretical Computer Science Conference, ITCS 2022, January 31 -
February 3, 2022, Berkeley, CA, USA (Mark Braverman, ed.), LIPIcs,
vol. 215, Schloss Dagstuhl - Leibniz-Zentrum fir Informatik, 2022,
pp. 9:1-9:23.

[@ Jacques Dark and Christian Konrad, Optimal lower bounds for
matching and vertex cover in dynamic graph streams, 35th
Computational Complexity Conference, CCC 2020, July 28-31, 2020,
Saarbriicken, Germany (Virtual Conference) (Shubhangi Saraf, ed.),
LIPIcs, vol. 169, Schloss Dagstuhl - Leibniz-Zentrum fiir Informatik,
2020, pp. 30:1-30:14.

13/14

References |l

[Jelani Nelson and Huacheng Yu, Optimal lower bounds for distributed
and streaming spanning forest computation, Proceedings of the
Thirtieth Annual ACM-SIAM Symposium on Discrete Algorithms,
SIAM, 2019, pp. 1844-1860.

[@ Xiaoming Sun and David P Woodruff, Tight bounds for graph
problems in insertion streams, Approximation, Randomization, and
Combinatorial Optimization. Algorithms and Techniques
(APPROX/RANDOM 2015), Schloss Dagstuhl-Leibniz-Zentrum fuer
Informatik, 2015.

14/14

	Introduction
	Optimal Algorithm
	Conclusion

