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Vertex Cover

e Graph G =(V,E) ® °
o Vertex Cover: C C V, Ve = (u,v) € E,

@ Minimum Vertex Cover OPT: Vertex
Cover of the smallest size

Graph Streaming:

@ G arrives as a
o Trivial: Store all edges (Q(n?) space)

e Goal: Minimize memory (o(n?) space)
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Minimum Vertex Cover:

e O(1)-approximation requires Q(n?) space

@ a-approximation algorithms (

o Lower bound: Q(g—i) [DK20]
o Upper bound: O(g—z-loga) [DK20]

):
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Understanding polylog factors

These type of polylog gaps appear frequently in the literature

@ One main reason is storing counters or edges

Are they inherent to the problem?
@ [SW15] showed that for several problems (Bipartiteness, Approximate

Minimum Cut, etc.) the can be improved to

@ [NY19] showed that Connectivity has a of

e [AS22] gave the showing that the polylog factors can be
removed by giving an for a-approximate Maximum

Matching using O(n?/a3) bits, matching the lower bound [DK20]
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Our Work

Theorem

There exists a algorithm for

«a-approximate minimum vertex cover that succeeds with high probability
2, .
and uses O(™;) bits of space for any o < n'=% where § > 0.

n
«

[this work]
o(%)
Q(ZTZZ) O(l’;—z2 log @)
[DK20] [DK20]
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An algorithm that uses !
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a-Approx Det. Dynamic Vertex Cover [DK20]

Simplifying Assumption (for the talk):

@ The input graph is bipartite
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a-Approx Det. Dynamic Vertex Cover [DK20]

@ Vertex groups of size «
a ‘ e about

@ Use counters to check if there is at least
one edge between each pair of groups

e about

© Construct the group-level graph
@ Compute a group-level vertex cover

© Return vertices of the covering groups

This is an a-approximation.

Space: O(g—i) counters, each using O(log «)
bits. Hence, O(g—i log &) bits.
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What's the issue?

Problem: ~ ~

@ Each counter counts upto o> edges.
e Counters use O(log ) bits. . 0(1) ¥

Goal:
e Counters to count upto O(1) edges
e Counters to use O(1) bits.
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Solving the issue for sparse graphs

For G with =~ 272 edges
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Solving the issue for sparse graphs

. 2
For G with ~ 75 edges ~ ~

@ Randomly partition into groups of size «

n

2 .
@ 5 pairs of groups < 0(1) K
o Counters use O(1) bits (in expectation)

~ o
~ ~
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Solving the issue for sparse graphs

For G with ~ 372 edges
@ Randomly partition into groups of size «
° g—z pairs of groups

o Counters use O(1) bits (in expectation)

. 2
For G with ~ ﬁ edges or more:

e Counters use O(log ) bits
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Solving the issue (in general)

G may not be sparse
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Solving the issue (in general)

G may not be

Match-or-Sparsify Lemma:

o either [M| > Z then

— V is an a-approx
2

e or |Gr| = O(%)

= counters use bits (in expectation)

M| > n/a

=H

—> |[M|<n/a

|G| = O(n?/a?) edges
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Space Optimal Algorithm

@ Randomly partition vertices (2 groups)

@ Run
o if [M| is large, return V

© Check if an edge is present between
pairs and compute group-level vertex
cover

@ Return vertices of the covering groups
including those with matched vertices

Checkout the long talk!
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Summary

©Q Thereis a that whp outputs an
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Summary

©Q Thereis a that whp outputs an
a-approximation to minimum vertex cover using O(n?/a?) bits of
space

@ The lower bound of [DK20] makes our algorithm optimal

@ The polylog(n) overhead is not always necessary (Like [AS22])
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Open Problems

e Could to this work and [AS22] be used to bypass
the polylog(n) overheads of other problems?

o E.g. Dominating Set, Spectral Sparsification

o Can we get a deterministic algorithm for this problem that uses only
2 .
O(73) bits of space or ?

o The current best deterministic algorithm is that of [DK20] which uses
O((’;—z2 log &) bits of space
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Open Problems

e Could to this work and [AS22] be used to bypass
the polylog(n) overheads of other problems?

o E.g. Dominating Set, Spectral Sparsification
o Can we get a deterministic algorithm for this problem that uses only

O(g—z) bits of space or ?

o The current best deterministic algorithm is that of [DK20] which uses
O((’;—z2 log &) bits of space

Thank you!
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