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Vertex Cover

Graph G = (V ,E )

Vertex Cover: C ⊆ V , ∀e = (u, v) ∈ E ,
u ∈ C or v ∈ C

Minimum Vertex Cover opt: Vertex
Cover of the smallest size

32

Graph Streaming:

G arrives as a stream of edges

Trivial: Store all edges (Ω(n2) space)

Goal: Minimize memory (o(n2) space)
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Dynamic Graph Streams

G = (V ,E ) arrives as a stream of edges

Edge insertions and deletions

e1 e2 e3 e1 e3 e4 e5 e1

Minimum Vertex Cover:

O(1)-approximation requires Ω(n2) space

α-approximation algorithms (1 ≤ α� n):

Lower bound: Ω( n2

α2 ) [DK20]

Upper bound: O( n2

α2 ·logα) [DK20]
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Understanding polylog factors

These type of polylog gaps appear frequently in the literature

One main reason is storing counters or edges

Are they inherent to the problem?

[SW15] showed that for several problems (Bipartiteness, Approximate
Minimum Cut, etc.) the lower bounds can be improved to Ω(n log n)

[NY19] showed that Connectivity has a lower bound of Ω(n log3 n)

[AS22] gave the first result showing that the polylog factors can be
removed by giving an algorithm for α-approximate Maximum
Matching using O(n2/α3) bits, matching the lower bound [DK20]
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Our Work

Theorem

There exists a randomised dynamic graph streaming algorithm for
α-approximate minimum vertex cover that succeeds with high probability
and uses O( n2

α2 ) bits of space for any α ≤ n1−δ where δ > 0.

O( n2

α2 logα)
[DK20]

O( n2

α2 )

[this work]

Ω( n2

α2 )
[DK20]

An algorithm that uses optimal space up to constant factors!
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α-Approx Det. Dynamic Vertex Cover [DK20]

α

Simplifying Assumption (for the talk):

The input graph is bipartite

It is easily lifted!

1 Vertex groups of size α

about n
α groups

2 Use counters to check if there is at least
one edge between each pair of groups

about n2

α2 pairs

3 Construct the group-level graph

4 Compute a group-level vertex cover

5 Return vertices of the covering groups

This is an α-approximation.

Space: O( n2

α2 ) counters, each using O(logα)

bits. Hence, O( n2

α2 logα) bits.
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What’s the issue?

Problem:

Each counter counts upto α2 edges.

Counters use O(logα) bits.

Goal:

Counters to count upto O(1) edges

Counters to use O(1) bits.

α2O(1)
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Solving the issue for sparse graphs

For G with ≈ n2

α2 edges

Randomly partition into groups of size α
n2

α2 pairs of groups

Counters use O(1) bits (in expectation)

For G with ≈ n2

α1.99 edges or more:

Counters use Θ(logα) bits

O(1)

≈ n2

α2

α0.01

≈ n2

α1.99
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Solving the issue (in general)

G may not be sparse

Match-or-Sparsify Lemma:

either |M| ≥ n
α then |opt| ≥ n

α

=⇒ V is an α-approx

or |GR | = O( n2

α2 )

=⇒ counters use O(1) bits (in expectation)

|M| ≥ n/α

|M| < n/α

|GR | = O(n2/α2) edges
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Space Optimal Algorithm

1 Randomly partition vertices ( n
α groups)

2 Run Match-or-Sparsify lemma

if |M| is large, return V

3 Check if an edge is present between
pairs and compute group-level vertex
cover

4 Return vertices of the covering groups
including those with matched vertices

How to prove the Match-or-Sparsify lemma? Checkout the long talk!
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Summary

1 There is a dynamic streaming algorithm that whp outputs an
α-approximation to minimum vertex cover using O(n2/α2) bits of
space

Match or Sparsify in O(n2/α2) bits of space

The ideas from [DK20] along with random partitioning solve the sparse
case in O(n2/α2) bits of space

We run both algorithms in parallel and get the final algorithm

2 The lower bound of Ω(n2/α2) [DK20] makes our algorithm optimal

3 The polylog(n) overhead is not always necessary (Like [AS22])
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Open Problems

Could similar techniques to this work and [AS22] be used to bypass
the polylog(n) overheads of other problems?

E.g. Dominating Set, Spectral Sparsification

Can we get a deterministic algorithm for this problem that uses only

O( n2

α2 ) bits of space or improve the lower bound?

The current best deterministic algorithm is that of [DK20] which uses

O( n2

α2 logα) bits of space

Thank you!
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