Space Optimal Vertex Cover in Dynamic Streams

Kheeran K. Naidu & Vihan Shah

University of Bristol & Rutgers University kheeran.naidu@bristol.ac.uk & vihan.shah98@rutgers.edu

• Graph G = (V, E)

- Graph G = (V, E)
- Vertex Cover: $C \subseteq V$, $\forall e = (u, v) \in E$, $u \in C$ or $v \in C$

- Graph G = (V, E)
- Vertex Cover: $C \subseteq V$, $\forall e = (u, v) \in E$, $u \in C$ or $v \in C$
- Minimum Vertex Cover OPT: Vertex Cover of the smallest size

- Graph G = (V, E)
- Vertex Cover: $C \subseteq V$, $\forall e = (u, v) \in E$, $u \in C$ or $v \in C$
- Minimum Vertex Cover OPT: Vertex Cover of the smallest size

Graph Streaming:

• G arrives as a stream of edges

- Graph G = (V, E)
- Vertex Cover: $C \subseteq V$, $\forall e = (u, v) \in E$, $u \in C$ or $v \in C$
- Minimum Vertex Cover OPT: Vertex Cover of the smallest size

Graph Streaming:

- G arrives as a stream of edges
- Trivial: Store all edges $(\Omega(n^2)$ space)

- Graph G = (V, E)
- Vertex Cover: $C \subseteq V$, $\forall e = (u, v) \in E$, $u \in C$ or $v \in C$
- Minimum Vertex Cover OPT: Vertex Cover of the smallest size

Graph Streaming:

- G arrives as a stream of edges
- Trivial: Store all edges $(\Omega(n^2)$ space)
- Goal: Minimize memory $(o(n^2)$ space)

- G = (V, E) arrives as a stream of edges
- Edge insertions and deletions

- G = (V, E) arrives as a stream of edges
- Edge insertions and deletions

- •
- •
- •

- G = (V, E) arrives as a stream of edges
- Edge insertions and deletions

 e_1

- G = (V, E) arrives as a stream of edges
- Edge insertions and deletions

- G = (V, E) arrives as a stream of edges
- Edge insertions and deletions

- G = (V, E) arrives as a stream of edges
- Edge insertions and deletions

e_1 e_2	<i>e</i> ₃	e 1
-------------	-----------------------	----------------

- G = (V, E) arrives as a stream of edges
- Edge insertions and deletions

e_1	e_2	<i>e</i> ₃	$\overline{e_1}$	<u>e</u> ₃
-------	-------	-----------------------	------------------	-----------------------

- G = (V, E) arrives as a stream of edges
- Edge insertions and deletions

e_1	<i>e</i> ₂	<i>e</i> ₃	$\overline{e_1}$	e ₃	<i>e</i> ₄
-------	-----------------------	-----------------------	------------------	----------------	-----------------------

- G = (V, E) arrives as a stream of edges
- Edge insertions and deletions

e_1	e_2	<i>e</i> ₃	$\overline{e_1}$	e ₃	<i>e</i> ₄	<i>e</i> 5
-------	-------	-----------------------	------------------	----------------	-----------------------	------------

- G = (V, E) arrives as a stream of edges
- Edge insertions and deletions

e_1	e_2	<i>e</i> ₃	<u>e</u> 1	<u>e</u> ₃	<i>e</i> ₄	<i>e</i> ₅	<i>e</i> ₁
-------	-------	-----------------------	------------	-----------------------	-----------------------	-----------------------	-----------------------

- G = (V, E) arrives as a stream of edges
- Edge insertions and deletions

	e_1	e_2	<i>e</i> ₃	$\overline{e_1}$	<u>e</u> ₃	<i>e</i> ₄	<i>e</i> 5	e_1	
--	-------	-------	-----------------------	------------------	-----------------------	-----------------------	------------	-------	--

- G = (V, E) arrives as a stream of edges
- Edge insertions and deletions

e_1 e_2 e_3	<u>e</u> 1	<u>e</u> ₃	e ₄	<i>e</i> ₅	e_1
-------------------	------------	-----------------------	----------------	-----------------------	-------

Minimum Vertex Cover:

- O(1)-approximation requires $\Omega(n^2)$ space
- α -approximation algorithms $(1 \le \alpha \ll n)$:

- G = (V, E) arrives as a stream of edges
- Edge insertions and deletions

	e_1	e_2	<i>e</i> ₃	$\overline{e_1}$	<u>e</u> ₃	<i>e</i> ₄	<i>e</i> 5	e_1	
--	-------	-------	-----------------------	------------------	-----------------------	-----------------------	------------	-------	--

Minimum Vertex Cover:

- O(1)-approximation requires $\Omega(n^2)$ space
- α -approximation algorithms $(1 \le \alpha \ll n)$:
 - Lower bound: $\Omega(\frac{n^2}{\alpha^2})$ [DK20]
 - Upper bound: $O(\frac{n^2}{\alpha^2} \cdot \log \alpha)$ [DK20]

These type of polylog gaps appear frequently in the literature

• One main reason is storing counters or edges

These type of polylog gaps appear frequently in the literature

• One main reason is storing counters or edges

Are they inherent to the problem?

These type of polylog gaps appear frequently in the literature

• One main reason is storing counters or edges

Are they inherent to the problem?

- [SW15] showed that for several problems (Bipartiteness, Approximate Minimum Cut, etc.) the lower bounds can be improved to $\Omega(n \log n)$
- [NY19] showed that Connectivity has a lower bound of $\Omega(n \log^3 n)$

These type of polylog gaps appear frequently in the literature

• One main reason is storing counters or edges

Are they inherent to the problem?

- [SW15] showed that for several problems (Bipartiteness, Approximate Minimum Cut, etc.) the lower bounds can be improved to $\Omega(n \log n)$
- [NY19] showed that Connectivity has a lower bound of $\Omega(n \log^3 n)$
- [AS22] gave the first result showing that the polylog factors can be removed by giving an algorithm for α -approximate Maximum Matching using $O(n^2/\alpha^3)$ bits, matching the lower bound [DK20]

Our Work

Theorem

There exists a randomised dynamic graph streaming algorithm for α -approximate minimum vertex cover that succeeds with high probability and uses $O(\frac{n^2}{\alpha^2})$ bits of space for any $\alpha \leq n^{1-\delta}$ where $\delta > 0$.

Our Work

Theorem

There exists a randomised dynamic graph streaming algorithm for α -approximate minimum vertex cover that succeeds with high probability and uses $O(\frac{n^2}{\alpha^2})$ bits of space for any $\alpha \leq n^{1-\delta}$ where $\delta > 0$.

An algorithm that uses optimal space up to constant factors!

Simplifying Assumption (for the talk):

• The input graph is bipartite

It is easily lifted!

Vertex groups of size α
 about ⁿ/_α groups

- - about $\frac{n}{\alpha}$ groups
- Use counters to check if there is at least one edge between each pair of groups
 - about $\frac{n^2}{\alpha^2}$ pairs

- **1** Vertex groups of size α
 - about $\frac{n}{\alpha}$ groups
- Use counters to check if there is at least one edge between each pair of groups
 - about $\frac{n^2}{\alpha^2}$ pairs

- **1** Vertex groups of size α
 - about $\frac{n}{\alpha}$ groups
- Use counters to check if there is at least one edge between each pair of groups
 - about $\frac{n^2}{\alpha^2}$ pairs

- lacksquare Vertex groups of size lpha
 - about $\frac{n}{\alpha}$ groups
- Use counters to check if there is at least one edge between each pair of groups
 - about $\frac{n^2}{\alpha^2}$ pairs

- Vertex groups of size α
 - about $\frac{n}{\alpha}$ groups
- Use counters to check if there is at least one edge between each pair of groups
 - about $\frac{n^2}{\alpha^2}$ pairs

- Vertex groups of size α about $\frac{n}{\alpha}$ groups
- Use counters to check if there is at least one edge between each pair of groups
 - about $\frac{n^2}{\alpha^2}$ pairs
- Construct the group-level graph

- Vertex groups of size α
 about ⁿ/_α groups
- Use counters to check if there is at least one edge between each pair of groups
 - about $\frac{n^2}{\alpha^2}$ pairs
- Onstruct the group-level graph
- Ompute a group-level vertex cover

- - about $\frac{n}{\alpha}$ groups
- Use counters to check if there is at least one edge between each pair of groups
 - about $\frac{n^2}{\alpha^2}$ pairs
- Construct the group-level graph
- Ompute a group-level vertex cover
- Seturn vertices of the covering groups

α -Approx Det. Dynamic Vertex Cover [DK20]

- lacksquare Vertex groups of size lpha
 - about $\frac{n}{\alpha}$ groups
- Use counters to check if there is at least one edge between each pair of groups
 - about $\frac{n^2}{\alpha^2}$ pairs
- Construct the group-level graph
- Ompute a group-level vertex cover
- Seturn vertices of the covering groups

This is an α -approximation.

α -Approx Det. Dynamic Vertex Cover [DK20]

- f 0 Vertex groups of size lpha
 - about $\frac{n}{\alpha}$ groups
- Use counters to check if there is at least one edge between each pair of groups
 - about $\frac{n^2}{\alpha^2}$ pairs
- Onstruct the group-level graph
- Ompute a group-level vertex cover
- Return vertices of the covering groups

This is an α -approximation.

Space: $O(\frac{n^2}{\alpha^2})$ counters, each using $O(\log \alpha)$ bits. Hence, $O(\frac{n^2}{\alpha^2} \log \alpha)$ bits.

What's the issue?

What's the issue?

Problem:

- Each counter counts upto α^2 edges.
- Counters use $O(\log \alpha)$ bits.

What's the issue?

Problem:

- Each counter counts upto α^2 edges.
- Counters use $O(\log \alpha)$ bits.

Goal:

- Counters to count upto O(1) edges
- Counters to use O(1) bits.

For G with $\approx \frac{n^2}{\alpha^2}$ edges

For G with $\approx \frac{n^2}{\alpha^2}$ edges

 \bullet Randomly partition into groups of size α

For G with $\approx \frac{n^2}{\alpha^2}$ edges

- ullet Randomly partition into groups of size lpha
- $\frac{n^2}{\alpha^2}$ pairs of groups
- Counters use O(1) bits (in expectation)

For G with $\approx \frac{n^2}{\alpha^2}$ edges

- ullet Randomly partition into groups of size lpha
- $\frac{n^2}{\alpha^2}$ pairs of groups
- Counters use O(1) bits (in expectation)

For G with $\approx \frac{n^2}{0^{1.99}}$ edges or more:

• Counters use $\Theta(\log \alpha)$ bits

Solving the issue (in general)

G may not be sparse

Solving the issue (in general)

G may not be sparse

Match-or-Sparsify Lemma:

• either $|M| \ge \frac{n}{\alpha}$ then $|OPT| \ge \frac{n}{\alpha}$ $\implies V$ is an α -approx

Solving the issue (in general)

G may not be sparse

Match-or-Sparsify Lemma:

- either $|M| \ge \frac{n}{\alpha}$ then $|OPT| \ge \frac{n}{\alpha}$ $\implies V$ is an α -approx
- or $|G_R| = O(\frac{n^2}{\alpha^2})$ \implies counters use O(1) bits (in expectation)

1 Randomly partition vertices $(\frac{n}{\alpha} \text{ groups})$

- **1** Randomly partition vertices $(\frac{n}{\alpha} \text{ groups})$
- Run Match-or-Sparsify lemma
 - if |M| is large, return V

- **1** Randomly partition vertices $(\frac{n}{\alpha}$ groups)
- Run Match-or-Sparsify lemma
 - if |M| is large, return V
- Check if an edge is present between pairs and compute group-level vertex cover

- **1** Randomly partition vertices $(\frac{n}{\alpha}$ groups)
- Run Match-or-Sparsify lemma
 - if |M| is large, return V
- Check if an edge is present between pairs and compute group-level vertex cover
- Return vertices of the covering groups including those with matched vertices

- **1** Randomly partition vertices $(\frac{n}{\alpha}$ groups)
- Run Match-or-Sparsify lemma
 - if |M| is large, return V
- Check if an edge is present between pairs and compute group-level vertex cover
- Return vertices of the covering groups including those with matched vertices

How to prove the Match-or-Sparsify lemma? Checkout the long talk!

Summary

- There is a dynamic streaming algorithm that who outputs an α -approximation to minimum vertex cover using $O(n^2/\alpha^2)$ bits of space
 - Match or Sparsify in $O(n^2/\alpha^2)$ bits of space
 - The ideas from [DK20] along with random partitioning solve the sparse case in $O(n^2/\alpha^2)$ bits of space
 - We run both algorithms in parallel and get the final algorithm

Summary

- There is a dynamic streaming algorithm that who outputs an α -approximation to minimum vertex cover using $O(n^2/\alpha^2)$ bits of space
 - Match or Sparsify in $O(n^2/\alpha^2)$ bits of space
 - The ideas from [DK20] along with random partitioning solve the sparse case in $O(n^2/\alpha^2)$ bits of space
 - We run both algorithms in parallel and get the final algorithm
- ② The lower bound of $\Omega(n^2/\alpha^2)$ [DK20] makes our algorithm optimal

Summary

- There is a dynamic streaming algorithm that who outputs an α -approximation to minimum vertex cover using $O(n^2/\alpha^2)$ bits of space
 - Match or Sparsify in $O(n^2/\alpha^2)$ bits of space
 - The ideas from [DK20] along with random partitioning solve the sparse case in $O(n^2/\alpha^2)$ bits of space
 - We run both algorithms in parallel and get the final algorithm
- ② The lower bound of $\Omega(n^2/\alpha^2)$ [DK20] makes our algorithm optimal
- **1** The polylog(n) overhead is not always necessary (Like [AS22])

Open Problems

- Could similar techniques to this work and [AS22] be used to bypass the polylog(n) overheads of other problems?
 - E.g. Dominating Set, Spectral Sparsification
- Can we get a deterministic algorithm for this problem that uses only $O(\frac{n^2}{\alpha^2})$ bits of space or improve the lower bound?
 - The current best deterministic algorithm is that of [DK20] which uses $O(\frac{n^2}{\alpha^2}\log\alpha)$ bits of space

Open Problems

- Could similar techniques to this work and [AS22] be used to bypass the polylog(n) overheads of other problems?
 - E.g. Dominating Set, Spectral Sparsification
- Can we get a deterministic algorithm for this problem that uses only $O(\frac{n^2}{\alpha^2})$ bits of space or improve the lower bound?
 - The current best deterministic algorithm is that of [DK20] which uses $O(\frac{n^2}{\alpha^2}\log\alpha)$ bits of space

Thank you!

References I

- Sepehr Assadi and Vihan Shah, *An asymptotically optimal algorithm for maximum matching in dynamic streams*, 13th Innovations in Theoretical Computer Science Conference, ITCS 2022, January 31 February 3, 2022, Berkeley, CA, USA (Mark Braverman, ed.), LIPIcs, vol. 215, Schloss Dagstuhl Leibniz-Zentrum für Informatik, 2022, pp. 9:1–9:23.
- Jacques Dark and Christian Konrad, *Optimal lower bounds for matching and vertex cover in dynamic graph streams*, 35th Computational Complexity Conference, CCC 2020, July 28-31, 2020, Saarbrücken, Germany (Virtual Conference) (Shubhangi Saraf, ed.), LIPIcs, vol. 169, Schloss Dagstuhl Leibniz-Zentrum für Informatik, 2020, pp. 30:1–30:14.

References II

Jelani Nelson and Huacheng Yu, *Optimal lower bounds for distributed and streaming spanning forest computation*, Proceedings of the Thirtieth Annual ACM-SIAM Symposium on Discrete Algorithms, SIAM, 2019, pp. 1844–1860.

Xiaoming Sun and David P Woodruff, *Tight bounds for graph problems in insertion streams*, Approximation, Randomization, and Combinatorial Optimization. Algorithms and Techniques (APPROX/RANDOM 2015), Schloss Dagstuhl-Leibniz-Zentrum fuer Informatik, 2015.