
Generalizing Greenwald-Khanna Streaming

Quantile Summaries for Weighted Inputs

March 13, 2023

Sepehr Assadi

Rutgers
University

Nirmit Joshi

Northwestern
University

Milind Prabhu

University of
Michigan

Vihan Shah

Rutgers
University

Acknowledgement

Rajiv Gandhi

Rutgers University–Camden

2

Introduction

Streaming Quantile Estimation Problem

• Input:
1. S = {x1, . . . , xn} of elements from an ordered universe (in the

streaming fashion).

2. Fixed approximation parameter ε > 0.

• Goal: At the end of the stream, for any ϕ ∈ (0, 1], we want to

estimate ϕ-quantile of S up to an additive error of ε.

• On queried for any ϕ ∈ (0, 1], we want to be able to return

x ∈ S such that

(ϕ− ε)n ≤ rank(x , S) ≤ (ϕ+ ε)n.

0 . . . (ϕ− ε)n ϕn (ϕ+ ε)n

r

. . . n

• Rank of an element:

rank(x , S) = |{y ∈ S | y ≤ x}| 3

Weighted Generalized Problem

• Input:

1. A weighted stream Sw = {(x1,w1), . . . , (xn,wn)}.
2. w(x) is a positive integer.

Wn =
n∑

i=1

w(xi)

3. Fixed ε > 0

1 1 1 1 3 3 6 6 6 6 6 10 10 10 10

4

Weighted Generalized Problem

• Input:

1. A weighted stream Sw = {(x1,w1), . . . , (xn,wn)}.
2. w(x) is a positive integer.

Wn =
n∑

i=1

w(xi)

3. Fixed ε > 0

1 1 1 1 3 3 6 6 6 6 6 10 10 10 10

• Range of rank:

1 1 1 1 3 3 6 6 6 6 6 10 10 10 10

7 11

5

Weighted Generalization Problem

• Goal: At the end, for any ϕ ∈ (0, 1], we want to return an

element xj such that

(Range of Ranks of xj) ∩
[
(ϕ− ε)Wn, (ϕ+ ε)Wn

]
̸= ∅

1 1 1 1 3 3 6 6 6 6 6 10 10 10 10

(ϕ± ε)Wn

6

Motivation

A fundamental problem in:

• Data Mining and Data Science

• Machine Learning

• Computer Science

Quantiles provide concise information about the data distribution

as they allow us to estimate the CDF of the underlying distribution.

7

Information Theoretic Lower Bound (Unweighted)

• S = {x1, . . . , xn} known apriori

• Which elements to store to approximately answer quantiles

queries?

• Store ε-quantile, 3ε-quantile, 5ε-quantile, This requires

only O(1/ε) elements.

x1 x2 x3 x4 x5 x6 x7 x8 x9 x10 x11 x12 x13 x14 x15

• This is also necessary!! We must store Ω(1/ε) elements.

0 . . . (ϕ′ − ε) ϕ′ (ϕ′ + ε)

ϕ

. . . 1

8

Streaming Setting

Memory ≪ Input Size

Elements x1, . . . , xn come one by one in any arbitrary order.

9

Related Work

Deterministic Algorithms:

• Manku, Rajagopalan and Lindsay [MRL’98, SIGMOD] the

MRL algorithm: uses O(1ε log
2(εn)) space.

• Greenwald and Khanna [GK’01, SIGMOD] proposed the GK

algorithm: uses O(1ε log(εn)) space.

• The best-known 22-year-old deterministic quantile summary.

Randomized Algorithm:

• [KLL’16, FOCS]: answers with probabilistic guarantee (1− δ)

and achieves O((1ε) log log(1/εδ)) space.

10

Related Work: GK Algorithm

Question 1

Can we improve this space-bound of O(1ε log(εn)) bound? Or

is this optimal?

Answer

Cormode and Vesleý [CV’20, PODS] recently resolved this

question by proving Ω(1ε log(εn)) lower bound.

11

Related Work: GK Algorithm

Question 2

Can we simplify the GK Algorithm so that it allows for gener-

alization to related problems, such as the weighted quantile

problem?

Answer

This paper!!

12

Results

Results for the Unweighted Setting

Result 1

A simple and greedy algorithm that admits O(1ε log
2(εn))

space guarantee.

• Similar to the “GK-Adaptive” [LWYC’16, VLDB] that has no

theoretical guarantee.

• Leads to intuitions behind the counter-intuitive choices of the

GK algorithm.

Result 2

A new simpler description of the GK algorithm, which requires

O(1ε log(εn)) space.

13

Result for the Weighted Setting

• Trivial way: Feed multiple copies of the same element.

• Update time O(maxi wi)– prohibitively large.

Result 3

A non-trivial extension of the GK algorithm for weighted
inputs that uses

• O(1ε log(εn)) space.

• O(log(1/ε) + log log(εn)) update time per element.

assuming weights are poly(n) and ε ≥ 1/n1−δ for any

δ > 0

• If ε ≈ 1/n, even information-theoretically Ω(1/ε) = Ω(n)

elements needed.

This matches the best unweighted case guarantees. 14

Application

XGBoost

Weak

Learning

15

XGBoost

Weak

Learning

Strong

Learning

• Combine weak predictors to boost the confidence and

accuracy

• Algorithm: XGBoost library by Nvidia

• Uses the weighted extension of the MRL algorithm:

O(1ε log
2(εn)) space

• Our GK extension can be used here.... 16

Basic Setup: Unweighted to

Weighted Extension

Unweighted Quantile Summary (QS)

• QS: A data structure that allows us to answer ε-approximate

quantile queries

• It simply stores a subset of elements seen so far.

QS = {e1, . . . , es}

e1 < e2 < · · · < es

• For each element e ∈ QS:

rmin(ei) = lower bound on the rank of ei

rmax(ei) = upper bound on the rank of ei

0 . . . rmin(ei) r rmax(ei) . . . n

• Space Complexity=|QS| = # of elements stored at any time.

17

(g ,∆): Indirectly Handling (rmin, rmax)

For each element ei ∈ QS:

gi := rmin(ei)− rmin(ei−1)

∆i = rmax(ei)− rmin(ei)

0 . . .

rmin(ei−1)

rmin(ei)

rmax(ei−1)

rmax(ei) . . . n

gi ∆i

(rmin, rmax) ⇐⇒ (g ,∆)

18

Interpretation

High (g ,∆) ⇐⇒ High

uncertainty in the Ranks

19

Insert and Delete

• We can define Insert(x) operation

• Delete(ei): Just forget ei and keep rmin and rmax values

unchanged.

0 . . . rmin(ei−1) rmin(ei) rmin(ei+1) . . . n

gi gi+1

0 . . . rmin(ei−1) rmin(ei+1) . . . n

gi+1 := gi+1 + gi

20

Insert and Delete

Delte(ei)

1. Delete ei from QS.

2. Keep rmin and rmax values changed

3. Update gi+1 = gi+1 + gi .

21

Weighted Quantile Summary WQS

• WQS: A data structure that allows us to answer ε-approximate

weighted quantile queries

• It simply stores a subset of elements seen so far.

WQS = {e1, . . . , es}

e1 < e2 < · · · < es

• Store w(ei) for each element

• For each element e ∈ WQS:

rmin(ei) = lower bound on the rank of first copy ei

rmax(ei) = upper bound on the rank of first copy ei

22

Weighted Quantile Summary WQS

rmin(j-th copy of ei) = rmin(ei) + j − 1

rmax(j-th copy of ei) = rmax(ei) + j − 1

In particular,
rmin(e lci) = rmin(ei) + w(ei)− 1

rmax(e lci) = rmax(ei) + w(ei)− 1

0 . . . rmin(efci) rmin(e lci) . . .Wn

w(ei)− 1

23

(g ,∆)

∆i := rmax(ei)− rmin(ei)

gi := rmin(efci)− rmin(e lci−1)

0 . . .

rmin(e lci−1)

rmin(efci) rmax(efci) . . .Wn

gi ∆i

24

Insert-Delete

You can also define Insert(x) operation.

0 . . . rmin(e lci−1) rmin(efci)

rmin(e lci)

rmin(efci+1) . . .Wn

gi gi+1w(ei) − 1

0 . . . rmin(e lci−1) rmin(efci+1) . . .Wn

gi+1 := gi+1 + gi + w(ei)− 1

25

G -value and Delete

Gi = gi + w(ei)− 1

Delte(ei)

1. Delete ei from QS.

2. Update gi+1 = gi+1 + gi + w(ei)− 1 = gi+1 + Gi .

Note: Gi = gi in the unweighted case

26

Approach

Algorithm Sketch

1. Insertion Step: Insert all arriving elements x in the

chunk using Insert(x).

2. Deletion Step: Delete a few elements from QS,

according to some rule.

The only cleverness of the algorithm is in the deletion step!

27

Recalling the Goal....

1. To be able to answer the quantile queries

2. Minimize the space

Let’s focus on the first...

Quantitatively, what (g ,∆) → allows answering quantile

queries??

28

Invariant: Sufficient Condition

Unweighted: After n insertions, for all elements ei ∈ QS

gi +∆i ≤ εn

then we can answer any ϕ-quantile query with ε-precision.

0 . . . (ϕ− ε)n ϕn (ϕ+ ε)n

rmin(ei) rmax(ei)

. . . n

Weighted:

gi +∆i ≤ εWn

29

Obvious Algorithm

Delete elements as long as (g ,∆) invariant holds....

Allows us to answer quantile queries...✓

Space complexity ×

What is the magical GK deletion rule?

30

Simplified GK for the Unweighted

Case

Bands

Bands ≈ Geometric grouping of elements

• Band α contains ≈ 2α chunks of 1/ε elements

• After n insertions we have, # of bands = O(log(εn)).

14 13 12 11 10 9 8 7 6 5 4 3 2 1Chunk number:

Band number: 1 2 3

31

Segment

Segment

The segment of an element ei in QS, denoted by seg(ei), is

defined as the maximal set of consecutive elements

ej , ej+1, · · · , ei−1

in QS with b-value strictly less than b-value(ei).

32

Segment
B
an

d
-v
al
u
e

Position

seg(e6)

1

2

3

4

5

1 2 3 4 5 6 7 8

seg(e5)

e6

e5

e4

e3

e2

e1

e7

e8

33

Simplified GK Algorithm: O(1
ε
log(εn)) space

Treat the element and its segment as one unit!

Simpler GK Algorithm

For arriving item xk :

1. Insertion Step: Insert arriving element xk using

Insert(xk).

2. Deletion Step: For any ei ∈ QS, delete ei along with

seg(ei) if the following two conditions hold:

b-value(ei) ≤ b-value(ei+1) and g∗
i + gi+1 +∆i+1 ≤ εk

g∗
i = gi +

∑
j∈seg(ei)

gj

34

Analysis

(g +∆) ≤ εn invariant holds after the deletion!

• Only O(1/ε) elements per band:

Total elements = O(log(εn)/ε).

Delete element without segment?

O(1
ε
log2(εn)) space

Greedy!!

35

Non-trivial extension of the GK for

Weighted Inputs

Bands (Weighted)

b-value(x) = b-value(first copy of x)

1 1 1 1 3 3 6 6 6 6 6 10 10 10 10

b-value(1) b-value(3) b-value(6) b-value(10)

Different copies may have different b-values in the corresponding

unweighted stream because of weights!!

bands= O(log εWn)

36

Segment (Weighted)
B
an

d
-v
al
u
e

Position

seg(e6)

1

2

3

4

5

1 2 3 4 5 6 7 8

seg(e5)

e6

e5

e4

e3

e2

e1

e7

e8

37

Weighted Extension of GK Algorithm

Treat the element and its segment as one unit!

Weighted extension GK Algorithm

For any arriving item (xk ,w(xk)):

1. Insertion Step: Run Insert(xk).

2. Deletion Step: For any ei ∈ WQS, delete ei along with

seg(ei) if the following two conditions hold:

b-value(ei) ≤ b-value(ei+1) and G ∗
i +gi+1+∆i+1 ≤ εWk

G ∗
i = Gi +

∑
j∈seg(ei)

Gj

(G = g + w − 1)
38

Space Analysis

• Wn = Total weight of n elements

• Using similar counting argument:

Space Complexity = O((1/ε) log(εWn)).

Under assumption weights are poly(n):

Space Complexity = O

(
1

ε
log(εn)

)
.

• This is not just some “smart” implementation of the “trivial”

GK extension!!

39

Difference from Trivial GK

Trivial extension GK Algorithm

For any arriving item (xk ,w(xk)):

1. Insertion Step: Insert w(xk) copies of xk in QS.

2. Deletion step: Run unweighted GK deletion rule on

QS.

3. At the end, collapse multiple copies of the remaining

elements into one element.

May delete a partial number of copies of one element into

the other and then delete remaining copies later.....

40

Runtime

Weighted extension GK Algorithm

For any arriving item (xk ,w(xk)):

1. Insertion Step: Run Insert(xk).

2. Deletion Step: For any ei ∈ WQS, delete ei along with

seg(ei) if the following two conditions hold:

b-value(ei) ≤ b-value(ei+1) and G ∗
i +gi+1+∆i+1 ≤ εWk

Runtime: Already Update time doesn’t depend on maxi∈[n] wi .

Goal Accomplished!

41

Faster Runtime

• We can get O(log |WQS|) = O(log(1/ε) + log log(εn)) runtime.

• Store WQS as a balanced Binary Search Tree (BST).

• Insert and Delete takes O(log |WQS|) time.

• But still, deciding which elements to delete takes time linear

in |WQS|......
• Perform deletion only after |WQS| doubles by delaying deletions

(the space increases only by a constant factor)

• Total time spent over n insertion is

O (n · (log(1/ε) + log log(εn)))

O (log(1/ε) + log log(εn)) amortized update-time

42

Amortized to Worst-Case Conversion

• Standard Techniques of delaying deletions

• Spread the time required for the deletion step which is linear

in |WQS|
• Over the next few insertions.

• Interleave between Insertions and Deletions!!

• More details in the full version: arXiv 2303.06288

Main result

A non-trivial extension of the GK algorithm for weighted
inputs, under mild assumptions:

• O(1ε log(εn)) space.

• O(log(1/ε) + log log(εn)) update time per element.

43

Open Question

• Stream S1 of length n1 and S2 of length n2

• QS1 = A(S1) and QS2 = A(S2) with size f (n1) and f (n2).

Mergeable Summaris

An algorithm A creates mergeable summaries if we can

create

QS = A(S1 ∪ S2)

just using QS1 and QS2. We then have |QS| = f (n1 + n2).

• The MRL summaries are mergeable: O((1/ε) log2(εn)) space.

• Is the GK summary also mergeable?

Any algorithm that uses optimal space, i.e.

f (n) = O(1ε log(εn)) and produce mergeable summaries?

• Important to parallelize the algorithm. 44

Summary

QS : (rmin, rmax, g,∆)

Insert(x) and Delete(x)

Increases g value

WQS : (rmin, rmax, g,∆, G)

Insert(x) and Delete(x)

Increases G := g + w − 1 value

Bands and Segment Bands (of the first copies) and Segment

Delete element+segment

O(1
ε
log(εn)) space

Same strategy O(1
ε
log(εn)) space

O(log(1/ε) + log log(εn)) update time

GK mergeable? Optimal mergeable summaries?
Thank you!

Questions?

45

	Introduction
	Results
	Application
	Basic Setup: Unweighted to Weighted Extension
	Simplified GK for the Unweighted Case
	Non-trivial extension of the GK for Weighted Inputs

