
Tight Bounds for Vertex Connectivity in Dynamic
Streams

Sepehr Assadi & Vihan Shah

Rutgers University

1 / 30



Vertex Connectivity

Undirected Graph G = (V ,E )

Vertex Connectivity: Minimum number
of vertices that need to be deleted to
disconnect G

21

2 / 30



Vertex Connectivity

Undirected Graph G = (V ,E )

Vertex Connectivity: Minimum number
of vertices that need to be deleted to
disconnect G

21

2 / 30



Vertex Connectivity

Undirected Graph G = (V ,E )

Vertex Connectivity: Minimum number
of vertices that need to be deleted to
disconnect G

21

2 / 30



Classical Setting

Can find vertex connectivity in polylogm max flow time [LNP+21]

Recent breakthrough for max flow: m1+o(1) time [CKL+22]

Thus, finding vertex connectivity also takes m1+o(1) time

3 / 30



Graph Streaming

G = (V ,E )

Edges of G appear in a stream

Trivial Solution: Store all edges (Ω(n2) space)

Goal: Minimize Memory (o(n2) space)

4 / 30



Streaming Models

Insertion-Only

(finite stream)

e1 e2 e3 e4 e5 e6 e7 e8

Dynamic (finite stream)

e1 e2 e3 e1 e3 e4 e5 e1

We want to solve the problem after a single pass of the stream

5 / 30



Streaming Models

Insertion-Only

(finite stream)

e1 e2 e3 e4 e5 e6 e7 e8

Dynamic (finite stream)

e1 e2 e3 e1 e3 e4 e5 e1

We want to solve the problem after a single pass of the stream

5 / 30



Streaming Models

Insertion-Only

(finite stream)

e1 e2 e3 e4 e5 e6 e7 e8

Dynamic (finite stream)

e1 e2 e3 e1 e3 e4 e5 e1

We want to solve the problem after a single pass of the stream

5 / 30



Streaming Models

Insertion-Only

(finite stream)

e1 e2 e3 e4 e5 e6 e7 e8

Dynamic (finite stream)

e1 e2 e3 e1 e3 e4 e5 e1

We want to solve the problem after a single pass of the stream

5 / 30



Streaming Models

Insertion-Only

(finite stream)

e1 e2 e3 e4 e5 e6 e7 e8

Dynamic (finite stream)

e1 e2 e3 e1 e3 e4 e5 e1

We want to solve the problem after a single pass of the stream

5 / 30



Streaming Models

Insertion-Only

(finite stream)

e1 e2 e3 e4 e5 e6 e7 e8

Dynamic (finite stream)

e1 e2 e3 e1 e3 e4 e5 e1

We want to solve the problem after a single pass of the stream

5 / 30



Streaming Models

Insertion-Only

(finite stream)

e1 e2 e3 e4 e5 e6 e7 e8

Dynamic (finite stream)

e1 e2 e3 e1 e3 e4 e5 e1

We want to solve the problem after a single pass of the stream

5 / 30



Streaming Models

Insertion-Only

(finite stream)

e1 e2 e3 e4 e5 e6 e7 e8

Dynamic (finite stream)

e1 e2 e3 e1 e3 e4 e5 e1

We want to solve the problem after a single pass of the stream

5 / 30



Streaming Models

Insertion-Only

(finite stream)

e1 e2 e3 e4 e5 e6 e7 e8

Dynamic (finite stream)

e1 e2 e3 e1 e3 e4 e5 e1

We want to solve the problem after a single pass of the stream

5 / 30



Streaming Models

Insertion-Only

(finite stream)

e1 e2 e3 e4 e5 e6 e7 e8

Dynamic (finite stream)

e1 e2 e3 e1 e3 e4 e5 e1

We want to solve the problem after a single pass of the stream

5 / 30



Streaming Models

Insertion-Only (finite stream)

e1 e2 e3 e4 e5 e6 e7 e8

Dynamic (finite stream)

e1 e2 e3 e1 e3 e4 e5 e1

We want to solve the problem after a single pass of the stream

5 / 30



Streaming Models

Insertion-Only (finite stream)

e1 e2 e3 e4 e5 e6 e7 e8

Dynamic

(finite stream)

e1 e2 e3 e1 e3 e4 e5 e1

We want to solve the problem after a single pass of the stream

5 / 30



Streaming Models

Insertion-Only (finite stream)

e1 e2 e3 e4 e5 e6 e7 e8

Dynamic

(finite stream)

e1 e2 e3 e1 e3 e4 e5 e1

We want to solve the problem after a single pass of the stream

5 / 30



Streaming Models

Insertion-Only (finite stream)

e1 e2 e3 e4 e5 e6 e7 e8

Dynamic

(finite stream)

e1 e2 e3 e1 e3 e4 e5 e1

We want to solve the problem after a single pass of the stream

5 / 30



Streaming Models

Insertion-Only (finite stream)

e1 e2 e3 e4 e5 e6 e7 e8

Dynamic

(finite stream)

e1 e2 e3 e1 e3 e4 e5 e1

We want to solve the problem after a single pass of the stream

5 / 30



Streaming Models

Insertion-Only (finite stream)

e1 e2 e3 e4 e5 e6 e7 e8

Dynamic

(finite stream)

e1 e2 e3 e1 e3 e4 e5 e1

We want to solve the problem after a single pass of the stream

5 / 30



Streaming Models

Insertion-Only (finite stream)

e1 e2 e3 e4 e5 e6 e7 e8

Dynamic

(finite stream)

e1 e2 e3 e1 e3 e4 e5 e1

We want to solve the problem after a single pass of the stream

5 / 30



Streaming Models

Insertion-Only (finite stream)

e1 e2 e3 e4 e5 e6 e7 e8

Dynamic

(finite stream)

e1 e2 e3 e1 e3 e4 e5 e1

We want to solve the problem after a single pass of the stream

5 / 30



Streaming Models

Insertion-Only (finite stream)

e1 e2 e3 e4 e5 e6 e7 e8

Dynamic

(finite stream)

e1 e2 e3 e1 e3 e4 e5 e1

We want to solve the problem after a single pass of the stream

5 / 30



Streaming Models

Insertion-Only (finite stream)

e1 e2 e3 e4 e5 e6 e7 e8

Dynamic

(finite stream)

e1 e2 e3 e1 e3 e4 e5 e1

We want to solve the problem after a single pass of the stream

5 / 30



Streaming Models

Insertion-Only (finite stream)

e1 e2 e3 e4 e5 e6 e7 e8

Dynamic

(finite stream)

e1 e2 e3 e1 e3 e4 e5 e1

We want to solve the problem after a single pass of the stream

5 / 30



Streaming Models

Insertion-Only (finite stream)

e1 e2 e3 e4 e5 e6 e7 e8

Dynamic (finite stream)

e1 e2 e3 e1 e3 e4 e5 e1

We want to solve the problem after a single pass of the stream

5 / 30



Streaming Models

Insertion-Only (finite stream)

e1 e2 e3 e4 e5 e6 e7 e8

Dynamic (finite stream)

e1 e2 e3 e1 e3 e4 e5 e1

We want to solve the problem after a single pass of the stream

5 / 30



Our Problem

Finding exact vertex connectivity needs Ω(n2) space in the worst case
[SW15]

We want to solve the k-vertex connectivity problem in streaming
(is the vertex connectivity of the input graph G < k or ≥ k)

We also want to output a certificate of connectivity
(If G is k-vertex connected, output a subgraph H (certificate) that is
also k-vertex connected)

6 / 30



Our Problem

Finding exact vertex connectivity needs Ω(n2) space in the worst case
[SW15]

We want to solve the k-vertex connectivity problem in streaming
(is the vertex connectivity of the input graph G < k or ≥ k)

We also want to output a certificate of connectivity
(If G is k-vertex connected, output a subgraph H (certificate) that is
also k-vertex connected)

6 / 30



Our Problem

Finding exact vertex connectivity needs Ω(n2) space in the worst case
[SW15]

We want to solve the k-vertex connectivity problem in streaming
(is the vertex connectivity of the input graph G < k or ≥ k)

We also want to output a certificate of connectivity
(If G is k-vertex connected, output a subgraph H (certificate) that is
also k-vertex connected)

6 / 30



Previous Work

Insertion-Only

1 Upper bound: Õ(kn) [FKM+05]

2 Lower bound: Ω(kn) [SW15]

Dynamic

1 Upper bound: Õ(k2n) [GMT15]

2 Lower bound: Ω(kn) [SW15]

7 / 30



Previous Work

Insertion-Only

1 Upper bound: Õ(kn) [FKM+05]

2 Lower bound: Ω(kn) [SW15]

Dynamic

1 Upper bound: Õ(k2n) [GMT15]

2 Lower bound: Ω(kn) [SW15]

7 / 30



Previous Work

Insertion-Only

1 Upper bound: Õ(kn) [FKM+05]

2 Lower bound: Ω(kn) [SW15]

Dynamic

1 Upper bound: Õ(k2n) [GMT15]

2 Lower bound: Ω(kn) [SW15]

The lower bounds hold even when a certificate is not needed

7 / 30



Previous Work

Insertion-Only

1 Upper bound: Õ(kn) [FKM+05]

2 Lower bound: Ω(kn) [SW15]

Dynamic

1 Upper bound: Õ(k2n) [GMT15]

2 Lower bound: Ω(kn) [SW15]

There is a gap of factor k between the best known upper and lower bound
in dynamic streams

7 / 30



Insertion-Only vs Dynamic Streams

Most graph problems studied in insertion-only streams, have similar
guarantees in dynamic streams

Examples: Connectivity [AGM12a], Cut Sparsifiers [AGM12b],
Subgraph Counting [AGM12b], (∆ + 1)-Vertex Coloring [ACK19]

However for Matching and Vertex Cover a 2-approximation in
insertion-only streams takes space Õ(n) but an O(1)-approximation
in dynamic streams needs Ω(n2) space

It was unresolved which category vertex connectivity belonged to

8 / 30



Insertion-Only vs Dynamic Streams

Most graph problems studied in insertion-only streams, have similar
guarantees in dynamic streams

Examples: Connectivity [AGM12a], Cut Sparsifiers [AGM12b],
Subgraph Counting [AGM12b], (∆ + 1)-Vertex Coloring [ACK19]

However for Matching and Vertex Cover a 2-approximation in
insertion-only streams takes space Õ(n) but an O(1)-approximation
in dynamic streams needs Ω(n2) space

It was unresolved which category vertex connectivity belonged to

8 / 30



Insertion-Only vs Dynamic Streams

Most graph problems studied in insertion-only streams, have similar
guarantees in dynamic streams

Examples: Connectivity [AGM12a], Cut Sparsifiers [AGM12b],
Subgraph Counting [AGM12b], (∆ + 1)-Vertex Coloring [ACK19]

However for Matching and Vertex Cover a 2-approximation in
insertion-only streams takes space Õ(n) but an O(1)-approximation
in dynamic streams needs Ω(n2) space

It was unresolved which category vertex connectivity belonged to

8 / 30



Insertion-Only vs Dynamic Streams

Most graph problems studied in insertion-only streams, have similar
guarantees in dynamic streams

Examples: Connectivity [AGM12a], Cut Sparsifiers [AGM12b],
Subgraph Counting [AGM12b], (∆ + 1)-Vertex Coloring [ACK19]

However for Matching and Vertex Cover a 2-approximation in
insertion-only streams takes space Õ(n) but an O(1)-approximation
in dynamic streams needs Ω(n2) space

It was unresolved which category vertex connectivity belonged to

8 / 30



Our Results

We bridge the gap between the upper and lower bound in dynamic streams

Theorem

There exists a randomized dynamic graph streaming algorithm for k-vertex
connectivity that succeeds with high probability and uses Õ(kn) space.

Õ(k2n)
[GMT15]

Õ(kn)

[this work]

Ω(kn)

[SW15]

Note: We also output a certificate of vertex connectivity

9 / 30



Our Results

We bridge the gap between the upper and lower bound in dynamic streams

Theorem

There exists a randomized dynamic graph streaming algorithm for k-vertex
connectivity that succeeds with high probability and uses Õ(kn) space.

Õ(k2n)
[GMT15]

Õ(kn)

[this work]

Ω(kn)

[SW15]

Note: We also output a certificate of vertex connectivity

9 / 30



Our Results

We also extend the lower bound of [SW15] to multiple pass streams:

Theorem

Any randomized p-pass insertion-only streaming algorithm that solves the
k-vertex connectivity problem with probability at least 2/3 needs Ω(kn/p)
bits of space.

Note: This lower bound is for multi-graphs (also the case for [SW15])

The upper bound also works for multi-graphs

10 / 30



Our Results

We also extend the lower bound of [SW15] to multiple pass streams:

Theorem

Any randomized p-pass insertion-only streaming algorithm that solves the
k-vertex connectivity problem with probability at least 2/3 needs Ω(kn/p)
bits of space.

Note: This lower bound is for multi-graphs (also the case for [SW15])

The upper bound also works for multi-graphs

10 / 30



Algorithm of [GMT15]

For i = 1 to r = O(k2 log n):

1 Sample every vertex in Vi independently with probability 1/k

2 Store a spanning forest Hi on G [Vi ]

Output H = ∪iHi as the certificate

G

H1H2H3H4H

11 / 30



Algorithm of [GMT15]

For i = 1 to r = O(k2 log n):

1 Sample every vertex in Vi independently with probability 1/k

2 Store a spanning forest Hi on G [Vi ]

Output H = ∪iHi as the certificate

G H1H2H3H4H

11 / 30



Algorithm of [GMT15]

For i = 1 to r = O(k2 log n):

1 Sample every vertex in Vi independently with probability 1/k

2 Store a spanning forest Hi on G [Vi ]

Output H = ∪iHi as the certificate

G H1H2H3H4H

11 / 30



Algorithm of [GMT15]

For i = 1 to r = O(k2 log n):

1 Sample every vertex in Vi independently with probability 1/k

2 Store a spanning forest Hi on G [Vi ]

Output H = ∪iHi as the certificate

G H1H2H3H4H

11 / 30



Algorithm of [GMT15]

For i = 1 to r = O(k2 log n):

1 Sample every vertex in Vi independently with probability 1/k

2 Store a spanning forest Hi on G [Vi ]

Output H = ∪iHi as the certificate

G H1H2H3H4H

11 / 30



Algorithm of [GMT15]

For i = 1 to r = O(k2 log n):

1 Sample every vertex in Vi independently with probability 1/k

2 Store a spanning forest Hi on G [Vi ]

Output H = ∪iHi as the certificate

G H1H2H3H4H

11 / 30



Guarantee of [GMT15]

[GMT15] proved the following:

If G is not k-connected then H will not be k-connected

If G is 2k-connected H will be k-connected

So, this was an approximation algorithm for k-vertex connectivity.

We give a better analysis of the same algorithm and show that it works for
exact k-vertex connectivity.

12 / 30



Guarantee of [GMT15]

[GMT15] proved the following:

If G is not k-connected then H will not be k-connected

If G is 2k-connected H will be k-connected

So, this was an approximation algorithm for k-vertex connectivity.

We give a better analysis of the same algorithm and show that it works for
exact k-vertex connectivity.

12 / 30



Guarantee of [GMT15]

[GMT15] proved the following:

If G is not k-connected then H will not be k-connected

If G is 2k-connected H will be k-connected

So, this was an approximation algorithm for k-vertex connectivity.

We give a better analysis of the same algorithm and show that it works for
exact k-vertex connectivity.

12 / 30



Space

Each sample has n/k vertices in expectation

The spanning forest algorithm takes Õ(n/k) space [AGM12a]

Repeating O(k2 log n) times gives a space bound of Õ(kn)

Concentration bounds to get Õ(kn) space whp

13 / 30



Space

Each sample has n/k vertices in expectation

The spanning forest algorithm takes Õ(n/k) space [AGM12a]

Repeating O(k2 log n) times gives a space bound of Õ(kn)

Concentration bounds to get Õ(kn) space whp

13 / 30



Space

Each sample has n/k vertices in expectation

The spanning forest algorithm takes Õ(n/k) space [AGM12a]

Repeating O(k2 log n) times gives a space bound of Õ(kn)

Concentration bounds to get Õ(kn) space whp

13 / 30



Space

Each sample has n/k vertices in expectation

The spanning forest algorithm takes Õ(n/k) space [AGM12a]

Repeating O(k2 log n) times gives a space bound of Õ(kn)

Concentration bounds to get Õ(kn) space whp

13 / 30



Key Properties

We have the following two key properties:

Lemma (Property 1)

Every edge whose endpoints are less than 2k connected in G exists in H
whp.

Lemma (Property 2)

Every pair of vertices that is at least 2k connected in G is at least k
connected in H whp. [GMT15]

14 / 30



Correctness

If G is not k-vertex-connected, H is not k-vertex-connected

Assume G is k-vertex-connected but H is not k-vertex-connected

Deleting X (of size at most k − 1) disconnects H

There is an edge between S and T in G but not in H

S T

ts
X

e ∈ G − H

k − 1

15 / 30



Correctness

If G is not k-vertex-connected, H is not k-vertex-connected

Assume G is k-vertex-connected but H is not k-vertex-connected

Deleting X (of size at most k − 1) disconnects H

There is an edge between S and T in G but not in H

S T

ts
X

e ∈ G − H

k − 1

15 / 30



Correctness

If G is not k-vertex-connected, H is not k-vertex-connected

Assume G is k-vertex-connected but H is not k-vertex-connected

Deleting X (of size at most k − 1) disconnects H

There is an edge between S and T in G but not in H

S T

ts
X

e ∈ G − H

k − 1

15 / 30



Correctness

If G is not k-vertex-connected, H is not k-vertex-connected

Assume G is k-vertex-connected but H is not k-vertex-connected

Deleting X (of size at most k − 1) disconnects H

There is an edge between S and T in G but not in H

S T

ts
X

e ∈ G − H

k − 1

15 / 30



Correctness

Case 1: s and t have < 2k vertex-disjoint paths between them in G

The edge (s, t) must be in H (Property 1)

S T

ts
X

e ∈ G − H

k − 1

15 / 30



Correctness

Case 1: s and t have < 2k vertex-disjoint paths between them in G

The edge (s, t) must be in H (Property 1)

S T

ts
X

e ∈ G − H

k − 1

15 / 30



Correctness

Case 1: s and t have < 2k vertex-disjoint paths between them in G

The edge (s, t) must be in H (Property 1)

S T

ts
X

e ∈ G − H

k − 1

15 / 30

Lemma (Property 1)

Every edge whose endpoints are less than
2k connected in G exists in H whp.



Correctness

Case 1: s and t have < 2k vertex-disjoint paths between them in G

The edge (s, t) must be in H (Property 1)

S T

ts
X

e ∈ G − H

k − 1

15 / 30



Correctness

Case 2: s, t have ≥ 2k vertex-disjoint paths between them in G

This means s, t have ≥ k vertex-disjoint paths between them in H

Thus, deleting k − 1 vertices (X ) should not disconnect s and t in H

S T

ts
X

e ∈ G − H

k − 1

15 / 30



Correctness

Case 2: s, t have ≥ 2k vertex-disjoint paths between them in G

This means s, t have ≥ k vertex-disjoint paths between them in H

Thus, deleting k − 1 vertices (X ) should not disconnect s and t in H

S T

ts
X

e ∈ G − H

k − 1

15 / 30



Correctness

Case 2: s, t have ≥ 2k vertex-disjoint paths between them in G

This means s, t have ≥ k vertex-disjoint paths between them in H

Thus, deleting k − 1 vertices (X ) should not disconnect s and t in H

S T

ts
X

e ∈ G − H

k − 1

15 / 30

Lemma (Property 2)

Every pair of vertices that is at least 2k connected in
G is at least k connected in H whp.



Correctness

Case 2: s, t have ≥ 2k vertex-disjoint paths between them in G

This means s, t have ≥ k vertex-disjoint paths between them in H

Thus, deleting k − 1 vertices (X ) should not disconnect s and t in H

S T

ts
X

e ∈ G − H

k − 1

15 / 30



Correctness

Case 2: s, t have ≥ 2k vertex-disjoint paths between them in G

This means s, t have ≥ k vertex-disjoint paths between them in H

Thus, deleting k − 1 vertices (X ) should not disconnect s and t in H

S T

ts
X

e ∈ G − H

k − 1

15 / 30



Property 1

Lemma

Every edge whose endpoints are less than 2k connected in G exists in H
whp.

16 / 30



Property 1

Consider an edge (s, t) whose endpoints
are less than 2k connected

If s, t are sampled and X is not then
edge (s, t) is in H

Every spanning forest will contain the
edge (s, t)

ts X

e

...

2k − 2

17 / 30



Property 1

Pr (s and t sampled) = 1/k2

Pr (X not sampled) = (1− 1/k)2k−2

= Θ(1)

Iterations = O(k2 log n)

Pr (failure) = (1−Θ(1/k2))O(k2 log n)

≤ 1/poly(n)

ts X

e

...

2k − 2

17 / 30



Property 1

Pr (s and t sampled) = 1/k2

Pr (X not sampled) = (1− 1/k)2k−2

= Θ(1)

Iterations = O(k2 log n)

Pr (failure) = (1−Θ(1/k2))O(k2 log n)

≤ 1/poly(n)

ts X

e

...

2k − 2

17 / 30



Property 1

Pr (s and t sampled) = 1/k2

Pr (X not sampled) = (1− 1/k)2k−2

= Θ(1)

Iterations = O(k2 log n)

Pr (failure) = (1−Θ(1/k2))O(k2 log n)

≤ 1/poly(n)

ts X

e

...

2k − 2

17 / 30



Property 1

Pr (s and t sampled) = 1/k2

Pr (X not sampled) = (1− 1/k)2k−2

= Θ(1)

Iterations = O(k2 log n)

Pr (failure) = (1−Θ(1/k2))O(k2 log n)

≤ 1/poly(n)

ts X

e

...

2k − 2

17 / 30



Property 1

Thus, whp in some iteration s, t are
sampled and X is not

The spanning tree in this iteration
contains the edge (s, t)

Thus, the certificate H contains the
edge (s, t)

Union bound over all such pairs

Property 1 holds whp

ts X

e

...

2k − 2

17 / 30



Property 1

Thus, whp in some iteration s, t are
sampled and X is not

The spanning tree in this iteration
contains the edge (s, t)

Thus, the certificate H contains the
edge (s, t)

Union bound over all such pairs

Property 1 holds whp

ts X

e

...

2k − 2

17 / 30



Property 1

Thus, whp in some iteration s, t are
sampled and X is not

The spanning tree in this iteration
contains the edge (s, t)

Thus, the certificate H contains the
edge (s, t)

Union bound over all such pairs

Property 1 holds whp

ts X

e

...

2k − 2

17 / 30



Property 1

Thus, whp in some iteration s, t are
sampled and X is not

The spanning tree in this iteration
contains the edge (s, t)

Thus, the certificate H contains the
edge (s, t)

Union bound over all such pairs

Property 1 holds whp

ts X

e

...

2k − 2

17 / 30



Property 2

Lemma

Every pair of vertices that is at least 2k connected in G is at least k
connected in H whp [GMT15].

18 / 30



Property 2

Consider pair s, t that is at least 2k connected

Consider an arbitrary set X of size k − 1 (not containing s, t)

We will show that with very high probability s, t are connected in the
certificate H even when X is deleted

s t
P2

...

P1

Pk

...

P2k

X

19 / 30



Property 2

Consider pair s, t that is at least 2k connected

Consider an arbitrary set X of size k − 1 (not containing s, t)

We will show that with very high probability s, t are connected in the
certificate H even when X is deleted

s t
P2

...

P1

Pk

...

P2k

X
19 / 30



Property 2

Consider pair s, t that is at least 2k connected

Consider an arbitrary set X of size k − 1 (not containing s, t)

We will show that with very high probability s, t are connected in the
certificate H even when X is deleted

s t
P2

...

P1

Pk

...

P2k

X
19 / 30



Property 2

We only focus on paths P1 to Pk

Pr (X not sampled) = (1− 1/k)k−1 = Θ(1)

Consider only iterations where X is not sampled (const fraction)

s t
P2

...

P1

Pk

20 / 30



Property 2

We only focus on paths P1 to Pk

Pr (X not sampled) = (1− 1/k)k−1 = Θ(1)

Consider only iterations where X is not sampled (const fraction)

s t
P2

...

P1

Pk

20 / 30



Property 2

We only focus on paths P1 to Pk

Pr (X not sampled) = (1− 1/k)k−1 = Θ(1)

Consider only iterations where X is not sampled (const fraction)

s t
P2

...

P1

Pk

20 / 30



Spanning Forest

Need to sample at least one entire path

Sample each edge in some iteration (i.e. sampling both endpoints)

Spanning forest in each iteration will ensure that the endpoints are
connected in the certificate H

s t
a2 B2

...

c2

a1

B1

c1

ak

Bk

ck

21 / 30



Spanning Forest

Need to sample at least one entire path

Sample each edge in some iteration (i.e. sampling both endpoints)

Spanning forest in each iteration will ensure that the endpoints are
connected in the certificate H

s

t

21 / 30



Spanning Forest

Need to sample at least one entire path

Sample each edge in some iteration (i.e. sampling both endpoints)

Spanning forest in each iteration will ensure that the endpoints are
connected in the certificate H

s

t

21 / 30



Property 2

Consider an edge e on path Pi

Pr (edge e sampled) = 1/k2

Pr (edge e not sampled in any iteration) = (1− 1/k2)O(k2 log n)

≤ 1/poly(n)

Union bound over all edges in Pi

An entire Pi is sampled whp

22 / 30



Property 2

Consider an edge e on path Pi

Pr (edge e sampled) = 1/k2

Pr (edge e not sampled in any iteration) = (1− 1/k2)O(k2 log n)

≤ 1/poly(n)

Union bound over all edges in Pi

An entire Pi is sampled whp

22 / 30



Property 2

Consider an edge e on path Pi

Pr (edge e sampled) = 1/k2

Pr (edge e not sampled in any iteration) = (1− 1/k2)O(k2 log n)

≤ 1/poly(n)

Union bound over all edges in Pi

An entire Pi is sampled whp

22 / 30



Property 2

Consider an edge e on path Pi

Pr (edge e sampled) = 1/k2

Pr (edge e not sampled in any iteration) = (1− 1/k2)O(k2 log n)

≤ 1/poly(n)

Union bound over all edges in Pi

An entire Pi is sampled whp

22 / 30



Property 2

An entire Pi is sampled whp

Pr (≥ k/4 Pi ’s not sampled) ≤
(

k

k/4

)(
1

poly(n)

)k/4

≤ 2k ·
(

1

poly(n)

)k/4

≤
(

1

poly(n)

)k

Thus at least one entire path is sampled with very high probability

23 / 30

s t
Pk/4

...

P2

...

Pk

P1

Pk/4

P2

...

Pk

P1

Pk/4

P2

...

P1P1



Property 2

An entire Pi is sampled whp

Pr (≥ k/4 Pi ’s not sampled) ≤
(

k

k/4

)(
1

poly(n)

)k/4

≤ 2k ·
(

1

poly(n)

)k/4

≤
(

1

poly(n)

)k

Thus at least one entire path is sampled with very high probability

23 / 30

s t
Pk/4

...

P2

...

Pk

P1

Pk/4

P2

...

Pk

P1

Pk/4

P2

...

P1P1



Property 2

An entire Pi is sampled whp

Pr (≥ k/4 Pi ’s not sampled) ≤
(

k

k/4

)(
1

poly(n)

)k/4

≤ 2k ·
(

1

poly(n)

)k/4

≤
(

1

poly(n)

)k

Thus at least one entire path is sampled with very high probability

23 / 30

s t
Pk/4

...

P2

...

Pk

P1

Pk/4

P2

...

Pk

P1

Pk/4

P2

...

P1P1



Property 2

An entire Pi is sampled whp

Pr (≥ k/4 Pi ’s not sampled) ≤
(

k

k/4

)(
1

poly(n)

)k/4

≤ 2k ·
(

1

poly(n)

)k/4

≤
(

1

poly(n)

)k

Thus at least one entire path is sampled with very high probability

23 / 30

s t
Pk/4

...

P2

...

Pk

P1

Pk/4

P2

...

Pk

P1

Pk/4

P2

...

P1P1



Property 2

An entire Pi is sampled whp

Pr (≥ k/4 Pi ’s not sampled) ≤
(

k

k/4

)(
1

poly(n)

)k/4

≤ 2k ·
(

1

poly(n)

)k/4

≤
(

1

poly(n)

)k

Thus at least one entire path is sampled with very high probability

23 / 30

s t
Pk/4

...

P2

...

Pk

P1

Pk/4

P2

...

Pk

P1

Pk/4

P2

...

P1P1



Property 2

An entire Pi is sampled whp

Pr (≥ k/4 Pi ’s not sampled) ≤
(

k

k/4

)(
1

poly(n)

)k/4

≤ 2k ·
(

1

poly(n)

)k/4

≤
(

1

poly(n)

)k

Thus at least one entire path is sampled with very high probability

23 / 30

s t
Pk/4

...

P2

...

Pk

P1

Pk/4

P2

...

Pk

P1

Pk/4

P2

...

P1P1



Property 2

At least one entire path is sampled with very high probability

s and t are connected in the certificate H with very high probability
(1− 1/poly(nk))

Union bound over all pairs s, t and sets X : n2 · nk choices

Property 2 holds whp

24 / 30

s

t



Property 2

At least one entire path is sampled with very high probability

s and t are connected in the certificate H with very high probability
(1− 1/poly(nk))

Union bound over all pairs s, t and sets X : n2 · nk choices

Property 2 holds whp

24 / 30

s

t



Property 2

At least one entire path is sampled with very high probability

s and t are connected in the certificate H with very high probability
(1− 1/poly(nk))

Union bound over all pairs s, t and sets X : n2 · nk choices

Property 2 holds whp

24 / 30



Property 2

At least one entire path is sampled with very high probability

s and t are connected in the certificate H with very high probability
(1− 1/poly(nk))

Union bound over all pairs s, t and sets X : n2 · nk choices

Property 2 holds whp

24 / 30



Summary

We have two key properties:

Lemma (Property 1)

Every edge whose endpoints are less than 2k connected in G exists in H
whp.

Lemma (Property 2)

Every pair of vertices that is at least 2k connected in G is at least k
connected in H whp. [GMT15]

25 / 30



Summary

There is a dynamic streaming algorithm that whp outputs whether
the input graph G is k-vertex connected or not using Õ(kn) space.

It does so by outputting a certificate of k-vertex connectivity.

The lower bound of [SW15] is Ω(kn), making our algorithm optimal
(up to polylog factors)

The lower bound also holds when outputting a certificate is not
required

We extend this lower bound to multiple passes and give a lower
bound of Ω(kn/p) for p-pass insertion-only streaming algorithms.

26 / 30



Summary

There is a dynamic streaming algorithm that whp outputs whether
the input graph G is k-vertex connected or not using Õ(kn) space.

It does so by outputting a certificate of k-vertex connectivity.

The lower bound of [SW15] is Ω(kn), making our algorithm optimal
(up to polylog factors)

The lower bound also holds when outputting a certificate is not
required

We extend this lower bound to multiple passes and give a lower
bound of Ω(kn/p) for p-pass insertion-only streaming algorithms.

26 / 30



Summary

There is a dynamic streaming algorithm that whp outputs whether
the input graph G is k-vertex connected or not using Õ(kn) space.

It does so by outputting a certificate of k-vertex connectivity.

The lower bound of [SW15] is Ω(kn), making our algorithm optimal
(up to polylog factors)

The lower bound also holds when outputting a certificate is not
required

We extend this lower bound to multiple passes and give a lower
bound of Ω(kn/p) for p-pass insertion-only streaming algorithms.

26 / 30



Summary

There is a dynamic streaming algorithm that whp outputs whether
the input graph G is k-vertex connected or not using Õ(kn) space.

It does so by outputting a certificate of k-vertex connectivity.

The lower bound of [SW15] is Ω(kn), making our algorithm optimal
(up to polylog factors)

The lower bound also holds when outputting a certificate is not
required

We extend this lower bound to multiple passes and give a lower
bound of Ω(kn/p) for p-pass insertion-only streaming algorithms.

26 / 30



Summary

There is a dynamic streaming algorithm that whp outputs whether
the input graph G is k-vertex connected or not using Õ(kn) space.

It does so by outputting a certificate of k-vertex connectivity.

The lower bound of [SW15] is Ω(kn), making our algorithm optimal
(up to polylog factors)

The lower bound also holds when outputting a certificate is not
required

We extend this lower bound to multiple passes and give a lower
bound of Ω(kn/p) for p-pass insertion-only streaming algorithms.

26 / 30



Open Problems

We have settled the space of the k-vertex connectivity problem only
up to polylog factors. So the question of optimal space bounds (up to
constant factors) is still open.

Our lower bound and those of Sun and Woodruff [SW15] use
duplicate edges. Obtaining lower bounds for simple graphs is an open
problem.

Thank you!

27 / 30



Open Problems

We have settled the space of the k-vertex connectivity problem only
up to polylog factors. So the question of optimal space bounds (up to
constant factors) is still open.

Our lower bound and those of Sun and Woodruff [SW15] use
duplicate edges. Obtaining lower bounds for simple graphs is an open
problem.

Thank you!

27 / 30



References I

Sepehr Assadi, Yu Chen, and Sanjeev Khanna, Sublinear algorithms
for (∆ + 1) vertex coloring, Proceedings of the Thirtieth Annual
ACM-SIAM Symposium on Discrete Algorithms, SODA 2019, San
Diego, California, USA, January 6-9, 2019, 2019, pp. 767–786.

Kook Jin Ahn, Sudipto Guha, and Andrew McGregor, Analyzing graph
structure via linear measurements, Proceedings of the Twenty-Third
Annual ACM-SIAM Symposium on Discrete Algorithms, SODA 2012,
Kyoto, Japan, January 17-19, 2012, 2012, pp. 459–467.

, Graph sketches: sparsification, spanners, and subgraphs,
Proceedings of the 31st ACM SIGMOD-SIGACT-SIGART Symposium
on Principles of Database Systems, PODS 2012, Scottsdale, AZ, USA,
May 20-24, 2012, 2012, pp. 5–14.

28 / 30



References II

Li Chen, Rasmus Kyng, Yang P Liu, Richard Peng, Maximilian Probst
Gutenberg, and Sushant Sachdeva, Maximum flow and minimum-cost
flow in almost-linear time, arXiv preprint arXiv:2203.00671. To appear
in FOCS 2022. (2022).

Joan Feigenbaum, Sampath Kannan, Andrew McGregor, Siddharth
Suri, and Jian Zhang, On graph problems in a semi-streaming model,
Theor. Comput. Sci. 348 (2005), no. 2-3, 207–216.

Sudipto Guha, Andrew McGregor, and David Tench, Vertex and
hyperedge connectivity in dynamic graph streams, Proceedings of the
34th ACM Symposium on Principles of Database Systems, PODS
2015, Melbourne, Victoria, Australia, May 31 - June 4, 2015, 2015,
pp. 241–247.

29 / 30



References III

Jason Li, Danupon Nanongkai, Debmalya Panigrahi, Thatchaphol
Saranurak, and Sorrachai Yingchareonthawornchai, Vertex connectivity
in poly-logarithmic max-flows, Proceedings of the 53rd Annual ACM
SIGACT Symposium on Theory of Computing, 2021, pp. 317–329.

Xiaoming Sun and David P Woodruff, Tight bounds for graph
problems in insertion streams, Approximation, Randomization, and
Combinatorial Optimization. Algorithms and Techniques
(APPROX/RANDOM 2015), Schloss Dagstuhl-Leibniz-Zentrum fuer
Informatik, 2015.

30 / 30


	Overview

