Tight Bounds for Vertex Connectivity in Dynamic Streams

Sepehr Assadi \& Vihan Shah

Rutgers University

Vertex Connectivity

- Undirected Graph $G=(V, E)$
- Vertex Connectivity: Minimum number of vertices that need to be deleted to disconnect G

Vertex Connectivity

- Undirected Graph $G=(V, E)$
- Vertex Connectivity: Minimum number of vertices that need to be deleted to

2 disconnect G

Vertex Connectivity

- Undirected Graph $G=(V, E)$
- Vertex Connectivity: Minimum number of vertices that need to be deleted to

1 disconnect G

Classical Setting

- Can find vertex connectivity in polylog m max flow time [LNP+ 21]
- Recent breakthrough for max flow: $m^{1+o(1)}$ time $\left[\mathrm{CKL}^{+} 22\right]$
- Thus, finding vertex connectivity also takes $m^{1+o(1)}$ time

Graph Streaming

- $G=(V, E)$
- Edges of G appear in a stream
- Trivial Solution: Store all edges $\left(\Omega\left(n^{2}\right)\right.$ space $)$
- Goal: Minimize Memory (o($\left.n^{2}\right)$ space)

Streaming Models

Insertion-Only

Streaming Models

Insertion-Only

Streaming Models

Insertion-Only

Streaming Models

Insertion-Only

e_{1}	e_{2}

Streaming Models

Insertion-Only

e_{1}	e_{2}	e_{3}

Streaming Models

Insertion-Only

e_{1}	e_{2}	e_{3}	e_{4}

Streaming Models

Insertion-Only

e_{1}	e_{2}	e_{3}	e_{4}	e_{5}

Streaming Models

Insertion-Only

e_{1}	e_{2}	e_{3}	e_{4}	e_{5}	e_{6}

Streaming Models

Insertion-Only

e_{1}	e_{2}	e_{3}	e_{4}	e_{5}	e_{6}	e_{7}

Streaming Models

Insertion-Only

e_{1}	e_{2}	e_{3}	e_{4}	e_{5}	e_{6}	e_{7}	e_{8}

Streaming Models

Insertion-Only (finite stream)

e_{1}	e_{2}	e_{3}	e_{4}	e_{5}	e_{6}	e_{7}	e_{8}

Streaming Models

Insertion-Only (finite stream)

e_{1}	e_{2}	e_{3}	e_{4}	e_{5}	e_{6}	e_{7}	e_{8}

Dynamic

Streaming Models

Insertion-Only (finite stream)

e_{1}	e_{2}	e_{3}	e_{4}	e_{5}	e_{6}	e_{7}	e_{8}

Dynamic

Streaming Models

Insertion-Only (finite stream)

e_{1}	e_{2}	e_{3}	e_{4}	e_{5}	e_{6}	e_{7}	e_{8}

Dynamic

```
e
```


Streaming Models

Insertion-Only (finite stream)

e_{1}	e_{2}	e_{3}	e_{4}	e_{5}	e_{6}	e_{7}	e_{8}

Dynamic

Streaming Models

Insertion-Only (finite stream)

e_{1}	e_{2}	e_{3}	e_{4}	e_{5}	e_{6}	e_{7}	e_{8}

Dynamic

e_{1}	e_{2}	e_{3}

Streaming Models

Insertion-Only (finite stream)

e_{1}	e_{2}	e_{3}	e_{4}	e_{5}	e_{6}	e_{7}	e_{8}

Dynamic

e_{1}	e_{2}	e_{3}	$\overline{e_{1}}$

Streaming Models

Insertion-Only (finite stream)

e_{1}	e_{2}	e_{3}	e_{4}	e_{5}	e_{6}	e_{7}	e_{8}

Dynamic

e_{1}	e_{2}	e_{3}	$\overline{e_{1}}$	$\overline{e_{3}}$

Streaming Models

Insertion-Only (finite stream)

e_{1}	e_{2}	e_{3}	e_{4}	e_{5}	e_{6}	e_{7}	e_{8}

Dynamic

e_{1}	e_{2}	e_{3}	$\overline{e_{1}}$	$\overline{e_{3}}$	e_{4}

Streaming Models

Insertion-Only (finite stream)

e_{1}	e_{2}	e_{3}	e_{4}	e_{5}	e_{6}	e_{7}	e_{8}

Dynamic

e_{1}	e_{2}	e_{3}	$\overline{e_{1}}$	$\overline{e_{3}}$	e_{4}	e_{5}

Streaming Models

Insertion-Only (finite stream)

e_{1}	e_{2}	e_{3}	e_{4}	e_{5}	e_{6}	e_{7}	e_{8}

Dynamic

e_{1}	e_{2}	e_{3}	$\overline{e_{1}}$	$\overline{e_{3}}$	e_{4}	e_{5}	e_{1}

Streaming Models

Insertion-Only (finite stream)

e_{1}	e_{2}	e_{3}	e_{4}	e_{5}	e_{6}	e_{7}	e_{8}

Dynamic (finite stream)

e_{1}	e_{2}	e_{3}	$\overline{e_{1}}$	$\overline{e_{3}}$	e_{4}	e_{5}	e_{1}

Streaming Models

Insertion-Only (finite stream)

e_{1}	e_{2}	e_{3}	e_{4}	e_{5}	e_{6}	e_{7}	e_{8}

Dynamic (finite stream)

e_{1}	e_{2}	e_{3}	$\overline{e_{1}}$	$\overline{e_{3}}$	e_{4}	e_{5}	e_{1}

We want to solve the problem after a single pass of the stream

Our Problem

- Finding exact vertex connectivity needs $\Omega\left(n^{2}\right)$ space in the worst case [SW15]

Our Problem

- Finding exact vertex connectivity needs $\Omega\left(n^{2}\right)$ space in the worst case [SW15]
- We want to solve the k-vertex connectivity problem in streaming (is the vertex connectivity of the input graph $G<k$ or $\geq k$)

Our Problem

- Finding exact vertex connectivity needs $\Omega\left(n^{2}\right)$ space in the worst case [SW15]
- We want to solve the k-vertex connectivity problem in streaming (is the vertex connectivity of the input graph $G<k$ or $\geq k$)
- We also want to output a certificate of connectivity (If G is k-vertex connected, output a subgraph H (certificate) that is also k-vertex connected)

Previous Work

Insertion-Only

(1) Upper bound: $\widetilde{O}(k n)\left[\mathrm{FKM}^{+} 05\right]$
(2) Lower bound: $\Omega(k n)$ [SW15]

Previous Work

Insertion-Only

- Upper bound: $\widetilde{O}(k n)\left[\mathrm{FKM}^{+} 05\right]$
© Lower bound: $\Omega(k n)$ [SW15]

Dynamic

(1) Upper bound: $\widetilde{O}\left(k^{2} n\right)$ [GMT15]
(2) Lower bound: $\Omega(k n)$ [SW15]

Previous Work

Insertion-Only

(1) Upper bound: $\widetilde{O}(k n)\left[F K M^{+} 05\right]$
(2) Lower bound: $\Omega(k n)$ [SW15]

Dynamic

(1) Upper bound: $\widetilde{O}\left(k^{2} n\right)$ [GMT15]
(2) Lower bound: $\Omega(k n)$ [SW15]

The lower bounds hold even when a certificate is not needed

Previous Work

Insertion-Only

- Upper bound: $\widetilde{O}(k n)\left[\mathrm{FKM}^{+} 05\right]$
(2) Lower bound: $\Omega(k n)$ [SW15]

Dynamic

(1) Upper bound: $\widetilde{O}\left(k^{2} n\right)$ [GMT15]
(c) Lower bound: $\Omega(k n)$ [SW15]

There is a gap of factor k between the best known upper and lower bound in dynamic streams

Insertion-Only vs Dynamic Streams

Insertion-Only vs Dynamic Streams

- Most graph problems studied in insertion-only streams, have similar guarantees in dynamic streams
- Examples: Connectivity [AGM12a], Cut Sparsifiers [AGM12b], Subgraph Counting [AGM12b], $(\Delta+1)$-Vertex Coloring [ACK19]

Insertion-Only vs Dynamic Streams

- Most graph problems studied in insertion-only streams, have similar guarantees in dynamic streams
- Examples: Connectivity [AGM12a], Cut Sparsifiers [AGM12b], Subgraph Counting [AGM12b], $(\Delta+1)$-Vertex Coloring [ACK19]
- However for Matching and Vertex Cover a 2-approximation in insertion-only streams takes space $\widetilde{O}(n)$ but an $O(1)$-approximation in dynamic streams needs $\Omega\left(n^{2}\right)$ space

Insertion-Only vs Dynamic Streams

- Most graph problems studied in insertion-only streams, have similar guarantees in dynamic streams
- Examples: Connectivity [AGM12a], Cut Sparsifiers [AGM12b], Subgraph Counting [AGM12b], $(\Delta+1)$-Vertex Coloring [ACK19]
- However for Matching and Vertex Cover a 2-approximation in insertion-only streams takes space $\widetilde{O}(n)$ but an $O(1)$-approximation in dynamic streams needs $\Omega\left(n^{2}\right)$ space
- It was unresolved which category vertex connectivity belonged to

Our Results

We bridge the gap between the upper and lower bound in dynamic streams

Theorem

There exists a randomized dynamic graph streaming algorithm for k-vertex connectivity that succeeds with high probability and uses $\widetilde{O}(k n)$ space.

Our Results

We bridge the gap between the upper and lower bound in dynamic streams

Theorem

There exists a randomized dynamic graph streaming algorithm for k-vertex connectivity that succeeds with high probability and uses $\widetilde{O}(k n)$ space.

Note: We also output a certificate of vertex connectivity

Our Results

We also extend the lower bound of [SW15] to multiple pass streams:

Theorem

Any randomized p-pass insertion-only streaming algorithm that solves the k-vertex connectivity problem with probability at least $2 / 3$ needs $\Omega(\mathrm{kn} / \mathrm{p})$ bits of space.

Our Results

We also extend the lower bound of [SW15] to multiple pass streams:

Theorem

Any randomized p-pass insertion-only streaming algorithm that solves the k-vertex connectivity problem with probability at least $2 / 3$ needs $\Omega(\mathrm{kn} / \mathrm{p})$ bits of space.

Note: This lower bound is for multi-graphs (also the case for [SW15])
The upper bound also works for multi-graphs

Algorithm of [GMT15]

For $i=1$ to $r=O\left(k^{2} \log n\right)$:
(1) Sample every vertex in V_{i} independently with probability $1 / k$
(2) Store a spanning forest H_{i} on $G\left[V_{i}\right]$

Output $H=\cup_{i} H_{i}$ as the certificate

Algorithm of [GMT15]

For $i=1$ to $r=O\left(k^{2} \log n\right)$:
(1) Sample every vertex in V_{i} independently with probability $1 / k$
(2) Store a spanning forest H_{i} on $G\left[V_{i}\right]$

Output $H=\cup_{i} H_{i}$ as the certificate

G

H_{1}

Algorithm of [GMT15]

For $i=1$ to $r=O\left(k^{2} \log n\right)$:
(1) Sample every vertex in V_{i} independently with probability $1 / k$
(2) Store a spanning forest H_{i} on $G\left[V_{i}\right]$

Output $H=\cup_{i} H_{i}$ as the certificate

G

H_{2}

Algorithm of [GMT15]

For $i=1$ to $r=O\left(k^{2} \log n\right)$:
(1) Sample every vertex in V_{i} independently with probability $1 / k$
(2) Store a spanning forest H_{i} on $G\left[V_{i}\right]$

Output $H=\cup_{i} H_{i}$ as the certificate

G

Algorithm of [GMT15]

For $i=1$ to $r=O\left(k^{2} \log n\right)$:
(1) Sample every vertex in V_{i} independently with probability $1 / k$
(2) Store a spanning forest H_{i} on $G\left[V_{i}\right]$

Output $H=\cup_{i} H_{i}$ as the certificate

G

Algorithm of [GMT15]

For $i=1$ to $r=O\left(k^{2} \log n\right)$:
(1) Sample every vertex in V_{i} independently with probability $1 / k$
(2) Store a spanning forest H_{i} on $G\left[V_{i}\right]$

Output $H=\cup_{i} H_{i}$ as the certificate

G

Guarantee of [GMT15]

[GMT15] proved the following:

- If G is not k-connected then H will not be k-connected
- If G is $2 k$-connected H will be k-connected

Guarantee of [GMT15]

[GMT15] proved the following:

- If G is not k-connected then H will not be k-connected
- If G is $2 k$-connected H will be k-connected

So, this was an approximation algorithm for k-vertex connectivity.

Guarantee of [GMT15]

[GMT15] proved the following:

- If G is not k-connected then H will not be k-connected
- If G is $2 k$-connected H will be k-connected

So, this was an approximation algorithm for k-vertex connectivity.

We give a better analysis of the same algorithm and show that it works for exact k-vertex connectivity.

Space

- Each sample has n / k vertices in expectation

Space

- Each sample has n / k vertices in expectation
- The spanning forest algorithm takes $\widetilde{O}(n / k)$ space [AGM12a]

Space

- Each sample has n / k vertices in expectation
- The spanning forest algorithm takes $\widetilde{O}(n / k)$ space [AGM12a]
- Repeating $O\left(k^{2} \log n\right)$ times gives a space bound of $\widetilde{O}(k n)$

Space

- Each sample has n / k vertices in expectation
- The spanning forest algorithm takes $\widetilde{O}(n / k)$ space [AGM12a]
- Repeating $O\left(k^{2} \log n\right)$ times gives a space bound of $\widetilde{O}(k n)$
- Concentration bounds to get $\widetilde{O}(k n)$ space whp

Key Properties

We have the following two key properties:

Lemma (Property 1)

Every edge whose endpoints are less than $2 k$ connected in G exists in H whp.

Lemma (Property 2)

Every pair of vertices that is at least $2 k$ connected in G is at least k connected in H whp. [GMT15]

Correctness

- If G is not k-vertex-connected, H is not k-vertex-connected

Correctness

- If G is not k-vertex-connected, H is not k-vertex-connected
- Assume G is k-vertex-connected but H is not k-vertex-connected

Correctness

- If G is not k-vertex-connected, H is not k-vertex-connected
- Assume G is k-vertex-connected but H is not k-vertex-connected
- Deleting X (of size at most $k-1$) disconnects H

Correctness

- If G is not k-vertex-connected, H is not k-vertex-connected
- Assume G is k-vertex-connected but H is not k-vertex-connected
- Deleting X (of size at most $k-1$) disconnects H
- There is an edge between S and T in G but not in H

Correctness

- Case 1: s and t have $<2 k$ vertex-disjoint paths between them in G

Correctness

- Case 1: s and t have $<2 k$ vertex-disjoint paths between them in G
- The edge (s, t) must be in H (Property 1$)$

Correctness

- Case 1: s and t have $<2 k$ vertex-disjoint paths between them in G
- The edge (s, t) must be in H (Property 1$)$

Every edge whose endpoints are less than $2 k$ connected in G exists in H whp.

Correctness

- Case 1: s and t have $<2 k$ vertex-disjoint paths between them in G
- The edge (s, t) must be in H (Property 1$)$

Correctness

- Case 2: s, t have $\geq 2 k$ vertex-disjoint paths between them in G

Correctness

- Case 2: s, t have $\geq 2 k$ vertex-disjoint paths between them in G
- This means s, t have $\geq k$ vertex-disjoint paths between them in H

Correctness

- Case 2: s, t have $\geq 2 k$ vertex-disjoint paths between them in G
- This means s, t have $\geq k$ vertex-disjoint paths between them in H

Every pair of vertices that is at least $2 k$ connected in G is at least k connected in H whp.

Correctness

- Case 2: s, t have $\geq 2 k$ vertex-disjoint paths between them in G
- This means s, t have $\geq k$ vertex-disjoint paths between them in H

Correctness

- Case 2: s, t have $\geq 2 k$ vertex-disjoint paths between them in G
- This means s, t have $\geq k$ vertex-disjoint paths between them in H
- Thus, deleting $k-1$ vertices (X) should not disconnect s and t in H

Property 1

Lemma

Every edge whose endpoints are less than $2 k$ connected in G exists in H whp.

Property 1

- Consider an edge (s, t) whose endpoints are less than $2 k$ connected
- If s, t are sampled and X is not then edge (s, t) is in H
- Every spanning forest will contain the edge (s, t)

Property 1

- $\operatorname{Pr}(s$ and t sampled $)=1 / k^{2}$

Property 1

- $\operatorname{Pr}(s$ and t sampled $)=1 / k^{2}$
- $\operatorname{Pr}(X$ not sampled $)=(1-1 / k)^{2 k-2}$

$$
=\Theta(1)
$$

Property 1

- $\operatorname{Pr}(s$ and t sampled $)=1 / k^{2}$
- $\operatorname{Pr}(X$ not sampled $)=(1-1 / k)^{2 k-2}$

$$
=\Theta(1)
$$

- Iterations $=O\left(k^{2} \log n\right)$

Property 1

- $\operatorname{Pr}(s$ and t sampled $)=1 / k^{2}$
- $\operatorname{Pr}(X$ not sampled $)=(1-1 / k)^{2 k-2}$

$$
=\Theta(1)
$$

- Iterations $=O\left(k^{2} \log n\right)$
- $\operatorname{Pr}($ failure $)=\left(1-\Theta\left(1 / k^{2}\right)\right)^{O\left(k^{2} \log n\right)}$

$$
\leq 1 / \operatorname{poly}(n)
$$

Property 1

- Thus, whp in some iteration s, t are sampled and X is not

Property 1

- Thus, whp in some iteration s, t are sampled and X is not
- The spanning tree in this iteration contains the edge (s, t)

$2 k-2$

Property 1

- Thus, whp in some iteration s, t are sampled and X is not
- The spanning tree in this iteration contains the edge (s, t)
- Thus, the certificate H contains the edge (s, t)

$2 k-2$

Property 1

- Thus, whp in some iteration s, t are sampled and X is not
- The spanning tree in this iteration contains the edge (s, t)
- Thus, the certificate H contains the edge (s, t)
- Union bound over all such pairs

- Property 1 holds whp

Property 2

Lemma

Every pair of vertices that is at least $2 k$ connected in G is at least k connected in H whp [GMT15].

Property 2

- Consider pair s, t that is at least $2 k$ connected

Property 2

- Consider pair s, t that is at least $2 k$ connected
- Consider an arbitrary set X of size $k-1$ (not containing s, t)

Property 2

- Consider pair s, t that is at least $2 k$ connected
- Consider an arbitrary set X of size $k-1$ (not containing s, t)
- We will show that with very high probability s, t are connected in the certificate H even when X is deleted

Property 2

- We only focus on paths P_{1} to P_{k}

Property 2

- We only focus on paths P_{1} to P_{k}
- $\operatorname{Pr}(X$ not sampled $)=(1-1 / k)^{k-1}=\Theta(1)$

Property 2

- We only focus on paths P_{1} to P_{k}
- $\operatorname{Pr}(X$ not sampled $)=(1-1 / k)^{k-1}=\Theta(1)$
- Consider only iterations where X is not sampled (const fraction)

Spanning Forest

- Need to sample at least one entire path

Spanning Forest

- Need to sample at least one entire path
- Sample each edge in some iteration (i.e. sampling both endpoints)

Spanning Forest

- Need to sample at least one entire path
- Sample each edge in some iteration (i.e. sampling both endpoints)
- Spanning forest in each iteration will ensure that the endpoints are connected in the certificate H

Property 2

- Consider an edge e on path P_{i}

Property 2

- Consider an edge e on path P_{i}
- $\operatorname{Pr}($ edge e sampled $)=1 / k^{2}$

Property 2

- Consider an edge e on path P_{i}
- $\operatorname{Pr}($ edge e sampled $)=1 / k^{2}$
- $\operatorname{Pr}($ edge e not sampled in any iteration $)=\left(1-1 / k^{2}\right)^{O\left(k^{2} \log n\right)}$

$$
\leq 1 / \operatorname{poly}(n)
$$

Property 2

- Consider an edge e on path P_{i}
- $\operatorname{Pr}($ edge e sampled $)=1 / k^{2}$
- $\operatorname{Pr}($ edge e not sampled in any iteration $)=\left(1-1 / k^{2}\right)^{O\left(k^{2} \log n\right)}$

$$
\leq 1 / \operatorname{poly}(n)
$$

- Union bound over all edges in P_{i}
- An entire P_{i} is sampled whp

Property 2

- An entire P_{i} is sampled whp

Property 2

- An entire P_{i} is sampled whp

Property 2

- An entire P_{i} is sampled whp

Property 2

- An entire P_{i} is sampled whp

Property 2

- An entire P_{i} is sampled whp
- $\operatorname{Pr}\left(\geq k / 4 P_{i}\right.$'s not sampled $) \leq\binom{ k}{k / 4}\left(\frac{1}{\operatorname{poly}(n)}\right)^{k / 4}$
$\leq 2^{k} \cdot\left(\frac{1}{\text { poly }(n)}\right)^{k / 4}$
$\leq\left(\frac{1}{\operatorname{poly}(n)}\right)^{k}$

Property 2

- An entire P_{i} is sampled whp
- $\operatorname{Pr}\left(\geq k / 4 P_{i}\right.$'s not sampled $) \leq\binom{ k}{k / 4}\left(\frac{1}{\operatorname{poly}(n)}\right)^{k / 4}$

- Thus at least one entire path is sampled with very high probability

Property 2

- At least one entire path is sampled with very high probability

Property 2

- At least one entire path is sampled with very high probability
- s and t are connected in the certificate H with very high probability $\left(1-1 / \operatorname{poly}\left(n^{k}\right)\right)$

Property 2

- At least one entire path is sampled with very high probability
- s and t are connected in the certificate H with very high probability $\left(1-1 / \operatorname{poly}\left(n^{k}\right)\right)$
- Union bound over all pairs s, t and sets $X: n^{2} \cdot n^{k}$ choices

Property 2

- At least one entire path is sampled with very high probability
- s and t are connected in the certificate H with very high probability $\left(1-1 / \operatorname{poly}\left(n^{k}\right)\right)$
- Union bound over all pairs s, t and sets $X: n^{2} \cdot n^{k}$ choices
- Property 2 holds whp

Summary

We have two key properties:

Lemma (Property 1)

Every edge whose endpoints are less than $2 k$ connected in G exists in H whp.

Lemma (Property 2)

Every pair of vertices that is at least $2 k$ connected in G is at least k connected in H whp. [GMT15]

Summary

- There is a dynamic streaming algorithm that whp outputs whether the input graph G is k-vertex connected or not using $\widetilde{O}(k n)$ space.

Summary

- There is a dynamic streaming algorithm that whp outputs whether the input graph G is k-vertex connected or not using $\widetilde{O}(k n)$ space.
- It does so by outputting a certificate of k-vertex connectivity.

Summary

- There is a dynamic streaming algorithm that whp outputs whether the input graph G is k-vertex connected or not using $\widetilde{O}(k n)$ space.
- It does so by outputting a certificate of k-vertex connectivity.
- The lower bound of [SW15] is $\Omega(k n)$, making our algorithm optimal (up to polylog factors)

Summary

- There is a dynamic streaming algorithm that whp outputs whether the input graph G is k-vertex connected or not using $\widetilde{O}(k n)$ space.
- It does so by outputting a certificate of k-vertex connectivity.
- The lower bound of [SW15] is $\Omega(k n)$, making our algorithm optimal (up to polylog factors)
- The lower bound also holds when outputting a certificate is not required

Summary

- There is a dynamic streaming algorithm that whp outputs whether the input graph G is k-vertex connected or not using $\widetilde{O}(k n)$ space.
- It does so by outputting a certificate of k-vertex connectivity.
- The lower bound of [SW15] is $\Omega(k n)$, making our algorithm optimal (up to polylog factors)
- The lower bound also holds when outputting a certificate is not required
- We extend this lower bound to multiple passes and give a lower bound of $\Omega(k n / p)$ for p-pass insertion-only streaming algorithms.

Open Problems

- We have settled the space of the k-vertex connectivity problem only up to polylog factors. So the question of optimal space bounds (up to constant factors) is still open.
- Our lower bound and those of Sun and Woodruff [SW15] use duplicate edges. Obtaining lower bounds for simple graphs is an open problem.

Open Problems

- We have settled the space of the k-vertex connectivity problem only up to polylog factors. So the question of optimal space bounds (up to constant factors) is still open.
- Our lower bound and those of Sun and Woodruff [SW15] use duplicate edges. Obtaining lower bounds for simple graphs is an open problem.

Thank you!

References I

嗇 Sepehr Assadi, Yu Chen, and Sanjeev Khanna, Sublinear algorithms for $(\Delta+1)$ vertex coloring, Proceedings of the Thirtieth Annual ACM-SIAM Symposium on Discrete Algorithms, SODA 2019, San Diego, California, USA, January 6-9, 2019, 2019, pp. 767-786.

- Kook Jin Ahn, Sudipto Guha, and Andrew McGregor, Analyzing graph structure via linear measurements, Proceedings of the Twenty-Third Annual ACM-SIAM Symposium on Discrete Algorithms, SODA 2012, Kyoto, Japan, January 17-19, 2012, 2012, pp. 459-467.
R , Graph sketches: sparsification, spanners, and subgraphs, Proceedings of the 31st ACM SIGMOD-SIGACT-SIGART Symposium on Principles of Database Systems, PODS 2012, Scottsdale, AZ, USA, May 20-24, 2012, 2012, pp. 5-14.

References II

Ri Chen, Rasmus Kyng, Yang P Liu, Richard Peng, Maximilian Probst Gutenberg, and Sushant Sachdeva, Maximum flow and minimum-cost flow in almost-linear time, arXiv preprint arXiv:2203.00671. To appear in FOCS 2022. (2022).
Joan Feigenbaum, Sampath Kannan, Andrew McGregor, Siddharth Suri, and Jian Zhang, On graph problems in a semi-streaming model, Theor. Comput. Sci. 348 (2005), no. 2-3, 207-216.
囯 Sudipto Guha, Andrew McGregor, and David Tench, Vertex and hyperedge connectivity in dynamic graph streams, Proceedings of the 34th ACM Symposium on Principles of Database Systems, PODS 2015, Melbourne, Victoria, Australia, May 31 - June 4, 2015, 2015, pp. 241-247.

References III

國 Jason Li, Danupon Nanongkai, Debmalya Panigrahi, Thatchaphol Saranurak, and Sorrachai Yingchareonthawornchai, Vertex connectivity in poly-logarithmic max-flows, Proceedings of the 53rd Annual ACM SIGACT Symposium on Theory of Computing, 2021, pp. 317-329.
目 Xiaoming Sun and David P Woodruff, Tight bounds for graph problems in insertion streams, Approximation, Randomization, and Combinatorial Optimization. Algorithms and Techniques (APPROX/RANDOM 2015), Schloss Dagstuhl-Leibniz-Zentrum fuer Informatik, 2015.

