# Tight Bounds for Vertex Connectivity in Dynamic Streams

Sepehr Assadi & Vihan Shah

**Rutgers University** 

### Vertex Connectivity

- Undirected Graph G = (V, E)
- Vertex Connectivity: Minimum number of vertices that need to be deleted to disconnect *G*



### Vertex Connectivity

- Undirected Graph G = (V, E)
- Vertex Connectivity: Minimum number of vertices that need to be deleted to disconnect *G*



### Vertex Connectivity

- Undirected Graph G = (V, E)
- Vertex Connectivity: Minimum number of vertices that need to be deleted to disconnect *G*



- Can find vertex connectivity in polylog *m* max flow time [LNP<sup>+</sup>21]
- Recent breakthrough for max flow:  $m^{1+o(1)}$  time [CKL<sup>+</sup>22]
- Thus, finding vertex connectivity also takes  $m^{1+o(1)}$  time

# Graph Streaming

- G = (V, E)
- Edges of G appear in a stream
- Trivial Solution: Store all edges ( $\Omega(n^2)$  space)
- Goal: Minimize Memory  $(o(n^2)$  space)





| <i>e</i> <sub>1</sub> |  |
|-----------------------|--|
|-----------------------|--|



| <i>e</i> <sub>1</sub> | <i>e</i> <sub>2</sub> |
|-----------------------|-----------------------|
|-----------------------|-----------------------|







| <i>e</i> <sub>1</sub> | <i>e</i> <sub>2</sub> | e <sub>3</sub> | e <sub>4</sub> |
|-----------------------|-----------------------|----------------|----------------|
|-----------------------|-----------------------|----------------|----------------|



| e <sub>1</sub> | e <sub>2</sub> | e <sub>3</sub> | e <sub>4</sub> | <i>e</i> 5 |
|----------------|----------------|----------------|----------------|------------|
|----------------|----------------|----------------|----------------|------------|



| <i>e</i> <sub>1</sub> <i>e</i> <sub>2</sub> | e <sub>3</sub> | e <sub>4</sub> | <i>e</i> 5 | e <sub>6</sub> |
|---------------------------------------------|----------------|----------------|------------|----------------|
|---------------------------------------------|----------------|----------------|------------|----------------|



| $\begin{array}{ c c c c c c c c c c c c c c c c c c c$ | e <sub>7</sub> |
|--------------------------------------------------------|----------------|
|--------------------------------------------------------|----------------|



| $e_1   e_2   e_3   e_4   e_5   e_6   e_7   e_8$ | <i>e</i> <sub>1</sub> | e <sub>2</sub> | e <sub>3</sub> | e <sub>4</sub> | <i>e</i> 5 | <i>e</i> <sub>6</sub> | e <sub>7</sub> | <i>e</i> 8 |
|-------------------------------------------------|-----------------------|----------------|----------------|----------------|------------|-----------------------|----------------|------------|
|-------------------------------------------------|-----------------------|----------------|----------------|----------------|------------|-----------------------|----------------|------------|



### Insertion-Only (finite stream)

| $\begin{array}{ c c c c c c c c c c c c c c c c c c c$ |
|--------------------------------------------------------|
|--------------------------------------------------------|



#### Insertion-Only (finite stream)

| <i>e</i> <sub>2</sub> <i>e</i> <sub>3</sub> <i>e</i> <sub>4</sub> <i>e</i> <sub>5</sub> <i>e</i> <sub>6</sub> <i>e</i> <sub>7</sub> <i>e</i> <sub>8</sub> | $e_1$ $e_2$ $e_3$ | <i>e</i> <sub>1</sub> |  |
|-----------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------|-----------------------|--|
|-----------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------|-----------------------|--|



#### Insertion-Only (finite stream)

| $e_2$ $e_3$ $e_4$ $e_5$ $e_6$ $e_7$ $e_8$ |
|-------------------------------------------|
|-------------------------------------------|



#### Insertion-Only (finite stream)

| e1 e2 e3 e4 e5 e6 e7 e8 |
|-------------------------|
|-------------------------|







#### Insertion-Only (finite stream)

| $e_1$ $e_2$ $e_3$ $e_4$ $e_5$ $e_6$ $e_7$ $e_6$ | 8 |
|-------------------------------------------------|---|
|-------------------------------------------------|---|







#### Insertion-Only (finite stream)

| $e_1$ $e_2$ $e_3$ $e_4$ $e_5$ $e_6$ $e_7$ $e_6$ | 38 |
|-------------------------------------------------|----|
|-------------------------------------------------|----|







#### Insertion-Only (finite stream)

| e1 e2 e3 e4 e5 e6 e7 e8 |
|-------------------------|
|-------------------------|



| <i>e</i> 1 | e <sub>2</sub> | e <sub>3</sub> | $\overline{e_1}$ |
|------------|----------------|----------------|------------------|
|------------|----------------|----------------|------------------|



#### Insertion-Only (finite stream)

| $e_1$ $e_2$ $e_3$ $e_4$ $e_5$ $e_6$ $e_7$ $e_6$ | 38 |
|-------------------------------------------------|----|
|-------------------------------------------------|----|







#### Insertion-Only (finite stream)

| $e_1$ $e_2$ $e_3$ $e_4$ $e_5$ $e_6$ $e_7$ $e_6$ | 38 |
|-------------------------------------------------|----|
|-------------------------------------------------|----|







#### Insertion-Only (finite stream)

| $e_1$ $e_2$ $e_3$ $e_4$ $e_5$ $e_6$ $e_7$ | <i>e</i> <sub>8</sub> |
|-------------------------------------------|-----------------------|
|-------------------------------------------|-----------------------|







#### Insertion-Only (finite stream)

| $e_1$ $e_2$ $e_3$ $e_4$ $e_5$ $e_6$ $e_7$ | <i>e</i> <sub>8</sub> |
|-------------------------------------------|-----------------------|
|-------------------------------------------|-----------------------|



| $e_1$ | e <sub>2</sub> | e <sub>3</sub> | $\overline{e_1}$ | <u>e</u> 3 | е4 | <i>e</i> 5 | <i>e</i> 1 |
|-------|----------------|----------------|------------------|------------|----|------------|------------|
|-------|----------------|----------------|------------------|------------|----|------------|------------|



#### Insertion-Only (finite stream)

| $e_1$ $e_2$ $e_3$ $e_4$ $e_5$ $e_6$ $e_7$ | <i>e</i> <sub>8</sub> |
|-------------------------------------------|-----------------------|
|-------------------------------------------|-----------------------|



### **Dynamic** (finite stream)

| <i>e</i> <sub>1</sub> | e <sub>2</sub> | e <sub>3</sub> | $\overline{e_1}$ | <del>e</del> 3 | e4 | <i>e</i> 5 | $e_1$ |
|-----------------------|----------------|----------------|------------------|----------------|----|------------|-------|
|                       |                |                |                  |                |    |            |       |



#### Insertion-Only (finite stream)

| <i>e</i> <sub>1</sub> <i>e</i> <sub>2</sub> <i>e</i> <sub>3</sub> | e <sub>4</sub> | <i>e</i> 5 | e <sub>6</sub> | e <sub>7</sub> | <i>e</i> <sub>8</sub> |
|-------------------------------------------------------------------|----------------|------------|----------------|----------------|-----------------------|
|-------------------------------------------------------------------|----------------|------------|----------------|----------------|-----------------------|



#### **Dynamic** (finite stream)





We want to solve the problem after a single pass of the stream

### Our Problem

• Finding exact vertex connectivity needs  $\Omega(n^2)$  space in the worst case [SW15]

### Our Problem

- Finding exact vertex connectivity needs  $\Omega(n^2)$  space in the worst case [SW15]
- We want to solve the k-vertex connectivity problem in streaming (is the vertex connectivity of the input graph G < k or ≥ k)</li>

### Our Problem

- Finding exact vertex connectivity needs  $\Omega(n^2)$  space in the worst case [SW15]
- We want to solve the k-vertex connectivity problem in streaming (is the vertex connectivity of the input graph G < k or ≥ k)</li>
- We also want to output a certificate of connectivity (If G is k-vertex connected, output a subgraph H (certificate) that is also k-vertex connected)

- Upper bound:  $\widetilde{O}(kn)$  [FKM<sup>+</sup>05]
- **2** Lower bound:  $\Omega(kn)$  [SW15]

#### Insertion-Only

- Upper bound:  $\widetilde{O}(kn)$  [FKM<sup>+</sup>05]
- 2 Lower bound:  $\Omega(kn)$  [SW15]

- Upper bound:  $\tilde{O}(k^2 n)$  [GMT15]
- **2** Lower bound:  $\Omega(kn)$  [SW15]

#### Insertion-Only

- Upper bound:  $\widetilde{O}(kn)$  [FKM<sup>+</sup>05]
- **2** Lower bound:  $\Omega(kn)$  [SW15]

### Dynamic

- Upper bound:  $\widetilde{O}(k^2n)$  [GMT15]
- **2** Lower bound:  $\Omega(kn)$  [SW15]

The lower bounds hold even when a certificate is not needed

#### Insertion-Only

- Upper bound:  $\widetilde{O}(kn)$  [FKM<sup>+</sup>05]
- 2 Lower bound:  $\Omega(kn)$  [SW15]

### Dynamic

- Upper bound:  $\widetilde{O}(k^2 n)$  [GMT15]
- 2 Lower bound:  $\Omega(kn)$  [SW15]

There is a gap of factor k between the best known upper and lower bound in dynamic streams
- Most graph problems studied in insertion-only streams, have similar guarantees in dynamic streams
- Examples: Connectivity [AGM12a], Cut Sparsifiers [AGM12b], Subgraph Counting [AGM12b],  $(\Delta + 1)$ -Vertex Coloring [ACK19]

- Most graph problems studied in insertion-only streams, have similar guarantees in dynamic streams
- Examples: Connectivity [AGM12a], Cut Sparsifiers [AGM12b], Subgraph Counting [AGM12b],  $(\Delta + 1)$ -Vertex Coloring [ACK19]
- However for Matching and Vertex Cover a 2-approximation in insertion-only streams takes space  $\tilde{O}(n)$  but an O(1)-approximation in dynamic streams needs  $\Omega(n^2)$  space

- Most graph problems studied in insertion-only streams, have similar guarantees in dynamic streams
- Examples: Connectivity [AGM12a], Cut Sparsifiers [AGM12b], Subgraph Counting [AGM12b],  $(\Delta + 1)$ -Vertex Coloring [ACK19]
- However for Matching and Vertex Cover a 2-approximation in insertion-only streams takes space  $\tilde{O}(n)$  but an O(1)-approximation in dynamic streams needs  $\Omega(n^2)$  space
- It was unresolved which category vertex connectivity belonged to

We bridge the gap between the upper and lower bound in dynamic streams

#### Theorem

There exists a randomized dynamic graph streaming algorithm for k-vertex connectivity that succeeds with high probability and uses  $\tilde{O}(kn)$  space.



We bridge the gap between the upper and lower bound in dynamic streams

#### Theorem

There exists a randomized dynamic graph streaming algorithm for k-vertex connectivity that succeeds with high probability and uses  $\tilde{O}(kn)$  space.



Note: We also output a certificate of vertex connectivity

We also extend the lower bound of [SW15] to multiple pass streams:

#### Theorem

Any randomized *p*-pass insertion-only streaming algorithm that solves the k-vertex connectivity problem with probability at least 2/3 needs  $\Omega(kn/p)$  bits of space.

We also extend the lower bound of [SW15] to multiple pass streams:

#### Theorem

Any randomized *p*-pass insertion-only streaming algorithm that solves the k-vertex connectivity problem with probability at least 2/3 needs  $\Omega(kn/p)$  bits of space.

Note: This lower bound is for multi-graphs (also the case for [SW15])

The upper bound also works for multi-graphs

For i = 1 to  $r = O(k^2 \log n)$ :

**(**) Sample every vertex in  $V_i$  independently with probability 1/k

2 Store a spanning forest  $H_i$  on  $G[V_i]$ 



For i = 1 to  $r = O(k^2 \log n)$ :

**(**) Sample every vertex in  $V_i$  independently with probability 1/k

**2** Store a spanning forest  $H_i$  on  $G[V_i]$ 



For i = 1 to  $r = O(k^2 \log n)$ :

**(**) Sample every vertex in  $V_i$  independently with probability 1/k

Store a spanning forest  $H_i$  on  $G[V_i]$ 



For i = 1 to  $r = O(k^2 \log n)$ :

**(**) Sample every vertex in  $V_i$  independently with probability 1/k

Store a spanning forest  $H_i$  on  $G[V_i]$ 



For i = 1 to  $r = O(k^2 \log n)$ :

**(**) Sample every vertex in  $V_i$  independently with probability 1/k

Store a spanning forest  $H_i$  on  $G[V_i]$ 



For i = 1 to  $r = O(k^2 \log n)$ :

**(**) Sample every vertex in  $V_i$  independently with probability 1/k

**2** Store a spanning forest  $H_i$  on  $G[V_i]$ 



# Guarantee of [GMT15]

[GMT15] proved the following:

- If G is not k-connected then H will not be k-connected
- If G is 2k-connected H will be k-connected

# Guarantee of [GMT15]

[GMT15] proved the following:

- If G is not k-connected then H will not be k-connected
- If G is 2k-connected H will be k-connected

So, this was an approximation algorithm for k-vertex connectivity.

# Guarantee of [GMT15]

[GMT15] proved the following:

- If G is not k-connected then H will not be k-connected
- If G is 2k-connected H will be k-connected

So, this was an approximation algorithm for k-vertex connectivity.

We give a better analysis of the same algorithm and show that it works for exact *k*-vertex connectivity.



• Each sample has n/k vertices in expectation



- Each sample has n/k vertices in expectation
- The spanning forest algorithm takes  $\tilde{O}(n/k)$  space [AGM12a]



- Each sample has n/k vertices in expectation
- The spanning forest algorithm takes  $\tilde{O}(n/k)$  space [AGM12a]
- Repeating  $O(k^2 \log n)$  times gives a space bound of  $\widetilde{O}(kn)$



- Each sample has n/k vertices in expectation
- The spanning forest algorithm takes  $\tilde{O}(n/k)$  space [AGM12a]
- Repeating  $O(k^2 \log n)$  times gives a space bound of  $\widetilde{O}(kn)$
- Concentration bounds to get  $\widetilde{O}(kn)$  space whp

# Key Properties

We have the following two key properties:

Lemma (Property 1)

Every edge whose endpoints are less than 2k connected in G exists in H whp.

#### Lemma (Property 2)

Every pair of vertices that is at least 2k connected in G is at least k connected in H whp. [GMT15]

• If G is not k-vertex-connected, H is not k-vertex-connected

- If G is not k-vertex-connected, H is not k-vertex-connected
- Assume G is k-vertex-connected but H is not k-vertex-connected

- If G is not k-vertex-connected, H is not k-vertex-connected
- Assume G is k-vertex-connected but H is not k-vertex-connected
- Deleting X (of size at most k-1) disconnects H



- If G is not k-vertex-connected, H is not k-vertex-connected
- Assume G is k-vertex-connected but H is not k-vertex-connected
- Deleting X (of size at most k 1) disconnects H
- There is an edge between S and T in G but not in H



• Case 1: s and t have < 2k vertex-disjoint paths between them in G



- Case 1: s and t have < 2k vertex-disjoint paths between them in G
- The edge (s, t) must be in H (Property 1)



- Case 1: s and t have < 2k vertex-disjoint paths between them in G
- The edge (s, t) must be in H (Property 1)



- Case 1: s and t have < 2k vertex-disjoint paths between them in G
- The edge (s, t) must be in H (Property 1)



• Case 2: s, t have  $\geq 2k$  vertex-disjoint paths between them in G



- Case 2: s, t have  $\geq 2k$  vertex-disjoint paths between them in G
- This means s, t have  $\geq k$  vertex-disjoint paths between them in H



- Case 2: s, t have  $\geq 2k$  vertex-disjoint paths between them in G
- This means s, t have  $\geq k$  vertex-disjoint paths between them in H



- Case 2: s, t have  $\geq 2k$  vertex-disjoint paths between them in G
- This means s, t have  $\geq k$  vertex-disjoint paths between them in H



- Case 2: s, t have  $\geq 2k$  vertex-disjoint paths between them in G
- This means s, t have  $\geq k$  vertex-disjoint paths between them in H
- Thus, deleting k 1 vertices (X) should not disconnect s and t in H



# Property 1

#### Lemma

Every edge whose endpoints are less than 2k connected in G exists in H whp.
- Consider an edge (*s*, *t*) whose endpoints are less than 2*k* connected
- If s, t are sampled and X is not then edge (s, t) is in H
- Every spanning forest will contain the edge (s, t)



•  $\Pr(s \text{ and } t \text{ sampled}) = 1/k^2$ 



•  $\Pr(s \text{ and } t \text{ sampled}) = 1/k^2$ 

• 
$$\Pr(X \text{ not sampled}) = (1 - 1/k)^{2k-2}$$
  
=  $\Theta(1)$ 



•  $\Pr(s \text{ and } t \text{ sampled}) = 1/k^2$ 

• 
$$\Pr(X \text{ not sampled}) = (1 - 1/k)^{2k-2}$$
  
=  $\Theta(1)$ 

• Iterations =  $O(k^2 \log n)$ 



•  $\Pr(s \text{ and } t \text{ sampled}) = 1/k^2$ 

• 
$$\Pr(X \text{ not sampled}) = (1 - 1/k)^{2k-2}$$
  
=  $\Theta(1)$ 

• Iterations =  $O(k^2 \log n)$ 

• 
$$\Pr(\text{failure}) = (1 - \Theta(1/k^2))^{O(k^2 \log n)} \le 1/\text{poly}(n)$$



• Thus, whp in some iteration *s*, *t* are sampled and *X* is not



- Thus, whp in some iteration *s*, *t* are sampled and *X* is not
- The spanning tree in this iteration contains the edge (s, t)



- Thus, whp in some iteration *s*, *t* are sampled and *X* is not
- The spanning tree in this iteration contains the edge (s, t)
- Thus, the certificate *H* contains the edge (*s*, *t*)



- Thus, whp in some iteration *s*, *t* are sampled and *X* is not
- The spanning tree in this iteration contains the edge (s, t)
- Thus, the certificate H contains the edge (s, t)
- Union bound over all such pairs



• Property 1 holds whp

#### Lemma

Every pair of vertices that is at least 2k connected in G is at least k connected in H whp [GMT15].

• Consider pair s, t that is at least 2k connected



- Consider pair s, t that is at least 2k connected
- Consider an arbitrary set X of size k 1 (not containing s, t)



- Consider pair s, t that is at least 2k connected
- Consider an arbitrary set X of size k 1 (not containing s, t)
- We will show that with very high probability *s*, *t* are connected in the certificate *H* even when *X* is deleted



• We only focus on paths  $P_1$  to  $P_k$ 



• We only focus on paths  $P_1$  to  $P_k$ 

•  $\Pr(X \text{ not sampled}) = (1 - 1/k)^{k-1} = \Theta(1)$ 



- We only focus on paths  $P_1$  to  $P_k$
- $\Pr(X \text{ not sampled}) = (1 1/k)^{k-1} = \Theta(1)$
- Consider only iterations where X is not sampled (const fraction)



## Spanning Forest

• Need to sample at least one entire path



## Spanning Forest

- Need to sample at least one entire path
- Sample each edge in some iteration (i.e. sampling both endpoints)



## Spanning Forest

- Need to sample at least one entire path
- Sample each edge in some iteration (i.e. sampling both endpoints)
- Spanning forest in each iteration will ensure that the endpoints are connected in the certificate *H*



• Consider an edge *e* on path *P<sub>i</sub>* 

- Consider an edge *e* on path *P<sub>i</sub>*
- $Pr(edge \ e \ sampled) = 1/k^2$

• Consider an edge *e* on path *P<sub>i</sub>* 

•  $Pr(edge e sampled) = 1/k^2$ 

• Pr(edge e not sampled in any iteration) =  $(1 - 1/k^2)^{O(k^2 \log n)} \le 1/\text{poly}(n)$ 

• Consider an edge *e* on path *P<sub>i</sub>* 

•  $Pr(edge e sampled) = 1/k^2$ 

• Pr(edge e not sampled in any iteration) =  $(1 - 1/k^2)^{O(k^2 \log n)} \le 1/\text{poly}(n)$ 

- Union bound over all edges in P<sub>i</sub>
- An entire  $P_i$  is sampled whp









• 
$$\Pr(\geq k/4 P_i$$
's not sampled)  $\leq \binom{k}{k/4} \left(\frac{1}{poly(n)}\right)^{k/4}$   
 $\leq 2^k \cdot \left(\frac{1}{poly(n)}\right)^{k/4}$   
 $\leq \left(\frac{1}{poly(n)}\right)^k$ 

• An entire  $P_i$  is sampled whp

• 
$$\Pr(\geq k/4 \ P_i$$
's not sampled)  $\leq \binom{k}{k/4} \left(\frac{1}{poly(n)}\right)^{k/4}$   
 $\leq 2^k \cdot \left(\frac{1}{poly(n)}\right)^{k/4}$   
 $\leq \left(\frac{1}{poly(n)}\right)^k$ 

• Thus at least one entire path is sampled with very high probability



• At least one entire path is sampled with very high probability



- At least one entire path is sampled with very high probability
- s and t are connected in the certificate H with very high probability  $(1 1/\text{poly}(n^k))$



- At least one entire path is sampled with very high probability
- s and t are connected in the certificate H with very high probability  $(1 1/\text{poly}(n^k))$
- Union bound over all pairs s, t and sets  $X: n^2 \cdot n^k$  choices

- At least one entire path is sampled with very high probability
- s and t are connected in the certificate H with very high probability  $(1 1/\text{poly}(n^k))$
- Union bound over all pairs s, t and sets  $X: n^2 \cdot n^k$  choices
- Property 2 holds whp

# Summary

We have two key properties:

Lemma (Property 1)

Every edge whose endpoints are less than 2k connected in G exists in H whp.

Lemma (Property 2)

Every pair of vertices that is at least 2k connected in G is at least k connected in H whp. [GMT15]

# Summary

• There is a dynamic streaming algorithm that whp outputs whether the input graph G is k-vertex connected or not using  $\tilde{O}(kn)$  space.

# Summary

- There is a dynamic streaming algorithm that whp outputs whether the input graph G is k-vertex connected or not using  $\tilde{O}(kn)$  space.
- It does so by outputting a certificate of k-vertex connectivity.
# Summary

- There is a dynamic streaming algorithm that whp outputs whether the input graph G is k-vertex connected or not using O(kn) space.
- It does so by outputting a certificate of k-vertex connectivity.
- The lower bound of [SW15] is  $\Omega(kn)$ , making our algorithm optimal (up to polylog factors)

# Summary

- There is a dynamic streaming algorithm that whp outputs whether the input graph G is k-vertex connected or not using  $\tilde{O}(kn)$  space.
- It does so by outputting a certificate of k-vertex connectivity.
- The lower bound of [SW15] is  $\Omega(kn)$ , making our algorithm optimal (up to polylog factors)
- The lower bound also holds when outputting a certificate is not required

# Summary

- There is a dynamic streaming algorithm that whp outputs whether the input graph G is k-vertex connected or not using O(kn) space.
- It does so by outputting a certificate of k-vertex connectivity.
- The lower bound of [SW15] is  $\Omega(kn)$ , making our algorithm optimal (up to polylog factors)
- The lower bound also holds when outputting a certificate is not required
- We extend this lower bound to multiple passes and give a lower bound of Ω(kn/p) for p-pass insertion-only streaming algorithms.

### **Open Problems**

- We have settled the space of the *k*-vertex connectivity problem only up to polylog factors. So the question of optimal space bounds (up to constant factors) is still open.
- Our lower bound and those of Sun and Woodruff [SW15] use duplicate edges. Obtaining lower bounds for simple graphs is an open problem.

### **Open Problems**

- We have settled the space of the *k*-vertex connectivity problem only up to polylog factors. So the question of optimal space bounds (up to constant factors) is still open.
- Our lower bound and those of Sun and Woodruff [SW15] use duplicate edges. Obtaining lower bounds for simple graphs is an open problem.

Thank you!

#### References I

- Sepehr Assadi, Yu Chen, and Sanjeev Khanna, Sublinear algorithms for (Δ + 1) vertex coloring, Proceedings of the Thirtieth Annual ACM-SIAM Symposium on Discrete Algorithms, SODA 2019, San Diego, California, USA, January 6-9, 2019, 2019, pp. 767–786.
- Kook Jin Ahn, Sudipto Guha, and Andrew McGregor, Analyzing graph structure via linear measurements, Proceedings of the Twenty-Third Annual ACM-SIAM Symposium on Discrete Algorithms, SODA 2012, Kyoto, Japan, January 17-19, 2012, 2012, pp. 459–467.

, Graph sketches: sparsification, spanners, and subgraphs, Proceedings of the 31st ACM SIGMOD-SIGACT-SIGART Symposium on Principles of Database Systems, PODS 2012, Scottsdale, AZ, USA, May 20-24, 2012, 2012, pp. 5–14.

#### References II

- Li Chen, Rasmus Kyng, Yang P Liu, Richard Peng, Maximilian Probst Gutenberg, and Sushant Sachdeva, *Maximum flow and minimum-cost flow in almost-linear time*, arXiv preprint arXiv:2203.00671. To appear in FOCS 2022. (2022).
- Joan Feigenbaum, Sampath Kannan, Andrew McGregor, Siddharth Suri, and Jian Zhang, *On graph problems in a semi-streaming model*, Theor. Comput. Sci. **348** (2005), no. 2-3, 207–216.
- Sudipto Guha, Andrew McGregor, and David Tench, *Vertex and hyperedge connectivity in dynamic graph streams*, Proceedings of the 34th ACM Symposium on Principles of Database Systems, PODS 2015, Melbourne, Victoria, Australia, May 31 June 4, 2015, 2015, pp. 241–247.

### References III

- Jason Li, Danupon Nanongkai, Debmalya Panigrahi, Thatchaphol Saranurak, and Sorrachai Yingchareonthawornchai, *Vertex connectivity in poly-logarithmic max-flows*, Proceedings of the 53rd Annual ACM SIGACT Symposium on Theory of Computing, 2021, pp. 317–329.
- Xiaoming Sun and David P Woodruff, Tight bounds for graph problems in insertion streams, Approximation, Randomization, and Combinatorial Optimization. Algorithms and Techniques (APPROX/RANDOM 2015), Schloss Dagstuhl-Leibniz-Zentrum fuer Informatik, 2015.