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Vertex Connectivity

Undirected Graph G = (V ,E )

Vertex Connectivity: Minimum number
of vertices that need to be deleted to
disconnect G
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Graph Streaming

G = (V ,E )

Edges of G appear in a stream

Trivial Solution: Store all edges (Ω(n2) space)

Goal: Minimize Memory (o(n2) space)
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Streaming Models

Insertion-Only

(finite stream)

e1 e2 e3 e4 e5 e6 e7 e8

Dynamic (finite stream)

e1 e2 e3 e1 e3 e4 e5 e1

We want to solve the problem after a single pass of the stream
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Our Problem

Finding exact vertex connectivity needs Ω(n2) space in the worst case
[SW15]

We want to solve the k-vertex connectivity problem in streaming
(is the vertex connectivity of the input graph G < k or ≥ k)

We also want to output a certificate of connectivity
(If G is k-vertex connected, output a subgraph H (certificate) that is
also k-vertex connected)
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Previous Work

Insertion-Only

1 Upper bound: Õ(kn) [FKM+05]

2 Lower bound: Ω(kn) [SW15]

Dynamic

1 Upper bound: Õ(k2n) [GMT15]

2 Lower bound: Ω(kn) [SW15]
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2 Lower bound: Ω(kn) [SW15]

Dynamic

1 Upper bound: Õ(k2n) [GMT15]

2 Lower bound: Ω(kn) [SW15]

There is a gap of factor k between the best known upper and lower bound
in dynamic streams
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Our Results

We bridge the gap between the upper and lower bound in dynamic streams

Theorem

There exists a randomized dynamic graph streaming algorithm for k-vertex
connectivity that succeeds with high probability and uses Õ(kn) space.

Õ(k2n)
[GMT15]

Õ(kn)

[this work]

Ω(kn)

[SW15]

Note: We also output a certificate of k-vertex connectivity
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Our Results

We also extend the lower bound of [SW15] to multiple pass streams:

Theorem

Any randomized p-pass insertion-only streaming algorithm that solves the
k-vertex connectivity problem with probability at least 2/3 needs Ω(kn/p)
bits of space.

Note: This lower bound is for multi-graphs (also the case for [SW15])

The upper bound also works for multi-graphs
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Algorithm of [GMT15]

For i = 1 to r = O(k2 log n):

1 Sample every vertex in Vi independently with probability 1/k

2 Store a spanning forest Hi on G [Vi ]

Output H = ∪iHi as the certificate

G

H1H2H3H4H
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Open Problems

We have settled the space of the k-vertex connectivity problem only
up to polylog factors. So the question of optimal space bounds (up to
constant factors) is still open.

Our lower bound and those of Sun and Woodruff [SW15] use
duplicate edges. Obtaining lower bounds for simple graphs is an open
problem.

You can visit my poster!

Thank you!
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