Tight Bounds for Vertex Connectivity in Dynamic Streams

Sepehr Assadi & Vihan Shah

Rutgers University

Vertex Connectivity

- Undirected Graph G = (V, E)
- Vertex Connectivity: Minimum number of vertices that need to be deleted to disconnect *G*

Vertex Connectivity

- Undirected Graph G = (V, E)
- Vertex Connectivity: Minimum number of vertices that need to be deleted to disconnect *G*

Vertex Connectivity

- Undirected Graph G = (V, E)
- Vertex Connectivity: Minimum number of vertices that need to be deleted to disconnect *G*

Graph Streaming

- G = (V, E)
- Edges of G appear in a stream
- Trivial Solution: Store all edges ($\Omega(n^2)$ space)
- Goal: Minimize Memory $(o(n^2)$ space)

<i>e</i> ₁	
-----------------------	--

e_1	<i>e</i> ₂
-------	-----------------------

<i>e</i> ₁	<i>e</i> ₂	e ₃	e ₄
-----------------------	-----------------------	----------------	----------------

e ₁	e ₂	e ₃	e ₄	<i>e</i> 5
----------------	----------------	----------------	----------------	------------

<i>e</i> ₁	e ₂	e ₃	e ₄	<i>e</i> 5	<i>e</i> 6
-----------------------	----------------	----------------	----------------	------------	------------

$\begin{array}{ c c c c c c c c c c c c c c c c c c c$	e ₇
--	----------------

$e_1 e_2 e_3 e_4 e_5 e_6 e_7 e_8$	<i>e</i> ₁	e ₂	e ₃	e ₄	<i>e</i> 5	<i>e</i> ₆	e ₇	<i>e</i> 8
---	-----------------------	----------------	----------------	----------------	------------	-----------------------	----------------	------------

Insertion-Only (finite stream)

$\begin{array}{ c c c c c c c c c c c c c c c c c c c$
--

Insertion-Only (finite stream)

<i>e</i> ₂ <i>e</i> ₃ <i>e</i> ₄ <i>e</i> ₅ <i>e</i> ₆ <i>e</i> ₇ <i>e</i> ₈	e_1 e_2 e_3	<i>e</i> ₁	
---	-------------------	-----------------------	--

Insertion-Only (finite stream)

$\begin{array}{ c c c c c c c c c c c c c c c c c c c$
--

Insertion-Only (finite stream)

e_1 e_2 e_3 e_4 e_5 e_6 e_7	<i>e</i> ₈
---	-----------------------

Insertion-Only (finite stream)

e_1 e_2 e_3 e_4 e_5 e_6 e_7	<i>e</i> ₈
---	-----------------------

Insertion-Only (finite stream)

e_1 e_2 e_3 e_4 e_5 e_6 e_7	<i>e</i> ₈
---	-----------------------

Insertion-Only (finite stream)

e_1 e_2 e_3 e_4 e_5 e_6 e_7	e ₈
---	----------------

<i>e</i> 1	e ₂	e ₃	$\overline{e_1}$
------------	----------------	----------------	------------------

Insertion-Only (finite stream)

e_1 e_2 e_3 e_4 e_5 e_6 e_7	e ₈
---	----------------

Insertion-Only (finite stream)

e_1 e_2 e_3 e_4 e_5 e_6 e_7	e ₈
---	----------------

Insertion-Only (finite stream)

e_1 e_2 e_3 e_4 e_5 e_6 e_7	e ₈
---	----------------

Insertion-Only (finite stream)

e_1 e_2 e_3 e_4 e_5 e_6 e_7	e ₈
---	----------------

<i>e</i> ₁	e ₂	ез	$\overline{e_1}$	<u>e</u> 3	е4	<i>e</i> 5	<i>e</i> ₁
-----------------------	----------------	----	------------------	------------	----	------------	-----------------------

Insertion-Only (finite stream)

e_1 e_2 e_3 e_4 e_5 e_6 e_7	e ₈
---	----------------

Dynamic (finite stream)

<i>e</i> ₁	e ₂	e ₃	$\overline{e_1}$	e 3	e4	<i>e</i> 5	e_1

Insertion-Only (finite stream)

<i>e</i> ₁ <i>e</i> ₂ <i>e</i> ₃	e ₄	<i>e</i> 5	e ₆	e ₇	<i>e</i> ₈
---	----------------	------------	----------------	----------------	-----------------------

Dynamic (finite stream)

We want to solve the problem after a single pass of the stream

Our Problem

• Finding exact vertex connectivity needs $\Omega(n^2)$ space in the worst case [SW15]

Our Problem

- Finding exact vertex connectivity needs $\Omega(n^2)$ space in the worst case [SW15]
- We want to solve the k-vertex connectivity problem in streaming (is the vertex connectivity of the input graph G < k or ≥ k)

Our Problem

- Finding exact vertex connectivity needs $\Omega(n^2)$ space in the worst case [SW15]
- We want to solve the k-vertex connectivity problem in streaming (is the vertex connectivity of the input graph G < k or ≥ k)
- We also want to output a certificate of connectivity (If G is k-vertex connected, output a subgraph H (certificate) that is also k-vertex connected)

Previous Work

- Upper bound: $\widetilde{O}(kn)$ [FKM⁺05]
- **2** Lower bound: $\Omega(kn)$ [SW15]

Previous Work

Insertion-Only

- Upper bound: $\widetilde{O}(kn)$ [FKM⁺05]
- 2 Lower bound: $\Omega(kn)$ [SW15]

- Upper bound: $\tilde{O}(k^2 n)$ [GMT15]
- **2** Lower bound: $\Omega(kn)$ [SW15]

Previous Work

Insertion-Only

- Upper bound: $\widetilde{O}(kn)$ [FKM⁺05]
- 2 Lower bound: $\Omega(kn)$ [SW15]

Dynamic

- Upper bound: $\widetilde{O}(k^2 n)$ [GMT15]
- 2 Lower bound: $\Omega(kn)$ [SW15]

There is a gap of factor k between the best known upper and lower bound in dynamic streams

We bridge the gap between the upper and lower bound in dynamic streams

Theorem

There exists a randomized dynamic graph streaming algorithm for k-vertex connectivity that succeeds with high probability and uses $\tilde{O}(kn)$ space.

We bridge the gap between the upper and lower bound in dynamic streams

Theorem

There exists a randomized dynamic graph streaming algorithm for k-vertex connectivity that succeeds with high probability and uses $\tilde{O}(kn)$ space.

Note: We also output a certificate of k-vertex connectivity

We also extend the lower bound of [SW15] to multiple pass streams:

Theorem

Any randomized *p*-pass insertion-only streaming algorithm that solves the k-vertex connectivity problem with probability at least 2/3 needs $\Omega(kn/p)$ bits of space.

We also extend the lower bound of [SW15] to multiple pass streams:

Theorem

Any randomized *p*-pass insertion-only streaming algorithm that solves the k-vertex connectivity problem with probability at least 2/3 needs $\Omega(kn/p)$ bits of space.

Note: This lower bound is for multi-graphs (also the case for [SW15])

The upper bound also works for multi-graphs

For i = 1 to $r = O(k^2 \log n)$:

() Sample every vertex in V_i independently with probability 1/k

2 Store a spanning forest H_i on $G[V_i]$

For i = 1 to $r = O(k^2 \log n)$:

() Sample every vertex in V_i independently with probability 1/k

Store a spanning forest H_i on $G[V_i]$

For i = 1 to $r = O(k^2 \log n)$:

() Sample every vertex in V_i independently with probability 1/k

Store a spanning forest H_i on $G[V_i]$

For i = 1 to $r = O(k^2 \log n)$:

() Sample every vertex in V_i independently with probability 1/k

Store a spanning forest H_i on $G[V_i]$

For i = 1 to $r = O(k^2 \log n)$:

() Sample every vertex in V_i independently with probability 1/k

Store a spanning forest H_i on $G[V_i]$

For i = 1 to $r = O(k^2 \log n)$:

() Sample every vertex in V_i independently with probability 1/k

Store a spanning forest H_i on $G[V_i]$

Open Problems

- We have settled the space of the *k*-vertex connectivity problem only up to polylog factors. So the question of optimal space bounds (up to constant factors) is still open.
- Our lower bound and those of Sun and Woodruff [SW15] use duplicate edges. Obtaining lower bounds for simple graphs is an open problem.

Open Problems

- We have settled the space of the *k*-vertex connectivity problem only up to polylog factors. So the question of optimal space bounds (up to constant factors) is still open.
- Our lower bound and those of Sun and Woodruff [SW15] use duplicate edges. Obtaining lower bounds for simple graphs is an open problem.

You can visit my poster!

Thank you!

References I

- Joan Feigenbaum, Sampath Kannan, Andrew McGregor, Siddharth Suri, and Jian Zhang, *On graph problems in a semi-streaming model*, Theor. Comput. Sci. **348** (2005), no. 2-3, 207–216.
- Sudipto Guha, Andrew McGregor, and David Tench, *Vertex and hyperedge connectivity in dynamic graph streams*, Proceedings of the 34th ACM Symposium on Principles of Database Systems, PODS 2015, Melbourne, Victoria, Australia, May 31 June 4, 2015, 2015, pp. 241–247.
 - Xiaoming Sun and David P Woodruff, *Tight bounds for graph problems in insertion streams*, Approximation, Randomization, and Combinatorial Optimization. Algorithms and Techniques (APPROX/RANDOM 2015), Schloss Dagstuhl-Leibniz-Zentrum fuer Informatik, 2015.