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Preface

This is just a rearranged and edited copy of C&O250 lecture notes. All rights belong to Department of Combinatorics and
Optimization, University of Waterloo.
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Module 1

Formulations

1.1 Overview
What is optimization? Abstractly, we will focus on abstract optimization problem (P):
Given a set A ⊆ Rn and a function f : A→ R

Goal find x ∈ A that minimizes/maximizes f
(the above problem is very hard to solve and may not even be well-defined).
There are three special cases of P in this course:

• Linear Programming (LP): A is implicitly given by linear constraints, and f is a linear function.
• Integer Programming (IP): we want the max or min over the integer points in A.
• Nonlinear Programming (NLP): A is given by non-linear constraints, and f is a non-linear function.

1.1.1 Typical Workflow
Practical problem : text description of practical problem
Mathematical model : we will develop this model for the problem, capturing problem in mathematics. LP, IP, NLP

appears here.
Practical implementation : we feed the model and data into a solver
This process interates.
Example 1.1.1. WaterTech

WaterTech produces 4 products, P = {1, 2, 3, 4}:

Product Machine 1 Machine 2 Skilled Labour Unskilled Labour Unit Sale Price
1 11 4 8 7 300
2 7 6 5 8 260
3 6 5 5 7 220
4 5 4 6 4 180

Some restrictions:
• WaterTech has 700h on machine 1 and 500h on machine 2 available.
• It can purchase 600h of skilled labour at $8 per hour and at most 650h of unskilled labour at $6 per hour.

Question: How much of each product should WaterTech produce in order to maximize profit? We can formulate this as
a mathematical program!

7



1.1. OVERVIEW MODULE 1. FORMULATIONS

1.1.2 Ingredients of a Math Model
Decision Variables : capture unknown information
Constraints : describe which assignments to variables are feasible
Objective function : a function of the variables that we would like to maximize/minimize

WaterTech Model

Variables : It needs to decide how many units of each product to produce =⇒ introduce xi for number of units
of product i to produce. For convenience, we also have ys, yu: number of hours of skilled/unskilled labour
to purchase.

Constraints : What makes an assignment to {xi}i∈P , ys, yu a feasible? - Restricted available time on machine 1
and machine 2,

11x1 + 7x2 + 6x3 + 5x4 ≤ 700

4x1 + 6x2 + 5x3 + 4x4 ≤ 500

and the amount of time skilled or unskilled labour can work.

8x1 + 5x2 + 5x3 + 6x4 ≤ ys

7x1 + 8x2 + 7x3 + 4x4 ≤ yu
and ys ≤ 600, yu ≤ 650.

Objective Function : the revenue from sales:

300x1 + 260x2 + 220x3 + 180x4

the cost of labour:
8ys + 6yu

So we want to maximize the objective function:

300x1 + 260x2 + 220x3 + 180x4 − (8ys + 6yu)

Solution. To find max{300x1 + 260x2 + 220x3 + 180x4 − (8ys + 6yu)} with the above constraints, and using
CPLEX, we find

x = (16 + 2
3 , 50, 0, 33 + 1

3)T

ys = 583 + 1
3

yu = 650

with profit $15433 + 1
3 . �

1.1.3 Correctness of Model
How do we know if our model is correct or not? We have the word description of problem and the formulation, and we
find a solution to the formulation, which is an assignment to all of its variables. This is feasible if all the constraints are
satisfied, and optimal if no better feasible solution exists.
Note: a solution to the word description is an assignment to the unkonwns.
One way of showing correctness: define a mapping between feasible solutions to the word description, and feasible solutions
to the model, and vise versa.
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MODULE 1. FORMULATIONS 1.2. LP MODELS

Feasible solution to WaterTech problem

The solution to the word description is given by
1. Producing 10 units of product 1, 50 units of product 2, 0 units of product 3, and 20 units of product 2, and

by
2. purchasing 600 units of skilled and unskilled labour

which is equivalent to
x1 = 10, x2 = 50, x3 = 0, x4 = 20, ys = yu = 600

and feasible for the mathematical program we wrote.

Your mapping should preserve cost. In the above example, the profit from the solution to the word description should
correspond to the objective value of its image (under map), and vice versa. You need to check this!

1.2 LP Models
In this course, we consider optimization problems of this form:

min{f(x) : gi(x) ≤ bi ∀ 1 ≤ i ≤ m,x ∈ Rn}

where
• n,m ∈ N

• b1, . . . , bm ∈ R

• f, g1, . . . , gn are functions from Rn to R

Problems like the above are very hard to solve in general, so we only focus on the special case - all functions are affine.

1.2.1 Modelling: Linear Problems

Definition 1: Affine function

A function f : Rn → R is affine if f(x) = aTx+ β for a ∈ Rn, β ∈ R. It is linear if, in addition, β = 0.

Example of Affine functions

1. f(x) = 2x1 + 3x2 − x3 + 7 is affine, but not linear
2. f(x) = −3x1 + 5x3 is linear
3. f(x) = 5x− 3 cos(x) +

√
x is not affine nor linear.

Definition 2: Linear Program

The optimization problem
min{f(x) : gi(x) ≤ bi, ∀ 1 ≤ i ≤ m,x ∈ Rn}

is called a linear program if f is affine, and g1, . . . , gm is finite number of linear functions.

Notes:
• Instead of set notation, we often write LPs more verbosely
• Often give non-negativity constraints separately
• May use max instead of min

• Sometimes replace subject to by s.t.
• We often write x ≥ 0 as a short form for all variabels are non-negative

9



1.2. LP MODELS MODULE 1. FORMULATIONS

• This is not an LP:

max − 1/x1 − x3

s.t. 2x1 + x2 < 3
x1 + αx2 = 2 ∀ α ∈ R

for the following reasons:
1. Dividing by variables is not allowed
2. Cannot have strict inequalities
3. Must have finite number of constaints

Example 1.2.1. LP Model

min x1 − 2x2 + x4

s.t. x1 − x3 ≤ 3
x2 + x4 ≥ 2
x1 + x2 = 4
x1, x2, x3, x4 ≥ 0

1.2.2 Multiperiod Methods
A main feature of the WaterTech model is that the decisions about production levels have to be made once and for all.
In practice, we often have to make a series of decisions that influence each other.
One such example is multiperiod models:

• time is split into periods

• we have to make a decision in each period

• all decisions influence the final outcome
Example 1.2.2. KW Oil

KW Oil is the local supplier of heating oil. It needs to decide on how much oil to purchase in order to satisfy demand of
its customers. Years of experience give the following demand forecast for the next 4 months:

Month 1 2 3 4
Demand (l) 5000 8000 9000 6000

The projected price of oil fluctuates from month to month:
Month 1 2 3 4

Price ($/l) 0.75 0.72 0.92 0.90
Question: when should we purchase how much oil when the goal is to minimize overall total cost?
Additional complication: The company has a storage tank that

• has a capacity of 4000 litres of oil
• currently (beginning of month 1) contains 2000 litres of oil

Assumption: Oil is delivered at the beginning of the month, and consumption occurs in the middle of the month.
We first need to decide how many litres of oil to purchase in each month i =⇒ variable pi for i ∈ [1, 4], and how much
oil is stored in the tank at the beginning of month i =⇒ variable ti for i ∈ [1, 4].
Objective function:
Minimize cost of oil procurement

min 0.75p1 + 0.72p2 + 0.92p3 + 0.90p4

Constaints: when do
t1, . . . , t4, p1, . . . , p4

10



MODULE 1. FORMULATIONS 1.2. LP MODELS

corresponds to a feasible purchasing scheme?
By assumption, oil is purchased at the beginning of month, and is consumed afterwards. Therefore, we need

pi + ti ≥ {demand in month i} =⇒ pi + ti = {demand in month i}+ ti+1

We have the following equations:
p1 + 2000 = 5000 + t2

p2 + t2 = 8000 + t3

p3 + t3 = 9000 + t4

p4 + t4 ≥ 6000

The entire LP is
min 0.75p1 + 0.72p2 + 0.92p3 + 0.90p4

s.t.

p1 + 2000 = 5000 + t2

p2 + t2 = 8000 + t3

p3 + t3 = 9000 + t4

p4 + t4 ≥ 6000
t1 = 2000
ti ≤ 4000 ∀ i ∈ [2, 4]

ti, pi ≥ 0 ∀ i ∈ [1, 4]

Solution. We get p = (3000, 12000, 5000, 6000)T and t = (2000, 0, 4000, 0)T . �

We can always add additional add-on features to the example:
• storage comes at a cost, $1.5 per litre/month - add

∑4
i=1 0.15ti to objective

• minimize the maximum # of litres of oil purchased over all months
– we will need a new variable M for maximum # of litres purchased
– we will have to add constaints pi ≤M for all i ∈ [1, 4]

– We need to replace the objective function with min M such that
min M

s.t.
p1 + 2000 = 5000 + t2

p2 + t2 = 8000 + t3

p3 + t3 = 9000 + t4

p4 + t4 ≥ 6000
t1 = 2000
ti ≤ 4000 ∀ i ∈ [2, 4]
pi ≤M ∀ i ∈ [1, 4]
ti, pi ≥ 0 ∀ i ∈ [1, 4]

Correctness:
Why is this a correct model?
Suppose that M,p1, . . . , p4, t1, . . . , t4 is an optimal solution to the LP, clearly M ≥ maxi pi. Since M,p, t is optimal we
must have M = maxi pi. Why?
Otherwise, we could decrease M by a little bit, without violating the feasibility. This would contradict optimality because
we would get a new feasible solution with a smaller objective function.

11



1.3. IP MODELS MODULE 1. FORMULATIONS

1.3 IP Models
Recap the solution to the WaterTech problem. However, fractional solutions are often not desirable! Can we force solutions
to take on only integer values?
Yes! An integer program is a linear program with added integrality constaints for some/all of the variables. We call an
IP mixed if there are integer and fractional variabels, and pure otherwise.
The difference between LPs and IPs is subtle, yet, LPs are easy to solve, IPs do not!

Can we solve IPs?

• Every problem instance has a size which we normally denote by n. Think: n ∼ number of variables/constaints
of IP.

• The running time of an algorithm is then the number of steps that an algorithm takes.
• It is stated as a function of n: f(n) measures the largest number of steps an algorithm takes on an instance

of size n.

An algorithm is efficient if its running time f(n) is a polynomial of n. LPs can be solved efficiently. IPs are very
unlikely to have efficient algorithms!
It is very important to find an efficient algorithm of a problem.

1.3.1 IP Models: Knapsack
Example 1.3.1. KitchTech Shipping

A company wishes to ship crates from Toronto to Kitchener. Each crate type has a weight and a value:
Type 1 2 3 4 5 6

weight (lbs) 30 20 30 90 30 70
value ($) 60 70 40 70 20 90

The total weight of crates shipped must not exceed 10,000 lbs. The goal is to maximizes the total value of shipped
goods.
Variables xi for the number of crates of type i to pack
Constraints total weight of creates picked must not exceed 10,000 lbs

30x1 + 20x2 + 3x3 + 90x4 + 30x5 + 70x6 ≤ 10, 000

Objective function maximize the total value:

max 60x1 + 70x2 + 40x3 + 70x4 + 20x5 + 90x6

We have the IP Model:

max 60x1 + 70x2 + 40x3 + 70x4 + 20x5 + 90x6

s.t. 30x1 + 20x2 + 3x3 + 90x4 + 30x5 + 70x6 ≤ 10, 000
xi ≥ 0 (i ∈ [1, 6])
xi ∈ Z (i ∈ [1, 6])

Example 1.3.2. KitchTech: Additional Conditions

Suppose that we must not send more than 10 crates of the same type, and we can only send crates of type 3, if we send
at least 1 crate of type 4. Note that we can send at least 10 crates of type 3 by the previous constaints!

12



MODULE 1. FORMULATIONS 1.3. IP MODELS

The new IP model becomes:

max 60x1 + 70x2 + 40x3 + 70x4 + 20x5 + 90x6

s.t. 30x1 + 20x2 + 3x3 + 90x4 + 30x5 + 70x6 ≤ 10, 000
x3 ≤ 10x4

0 ≤ xi ≤ 10 (i ∈ [1, 6])
xi ∈ Z (i ∈ [1, 6])

Example 1.3.3. KitchTech: 1 more tricky case

Suppose that we must
• take a total of at least 4 crates of type 1 or 2, or
• take at least 4 crates of type 5 or 6

We will create a new variable y such that
• y = 1 =⇒ x1 + x2 ≥ 4

• y = 0 =⇒ x5 + x6 ≥ 4

and y has to take value 0 or 1.
The new IP model becomes:

max 60x1 + 70x2 + 40x3 + 70x4 + 20x5 + 90x6

s.t. 30x1 + 20x2 + 3x3 + 90x4 + 30x5 + 70x6 ≤ 10, 000
x3 ≤ 10x4

x1 + x2 ≥ 4y
x5 + x6 ≥ 4(1− y)
0 ≤ y ≤ 1
0 ≤ xi ≤ 10 (i ∈ [1, 6])
xi ∈ Z (i ∈ [1, 6])
y ∈ Z

In this example, y is called a binary variable. These are very useful for modeling logical constraints of the form [Condition
(A or B) and C] → D.

1.3.2 IP Models: Scheduling
Example 1.3.4. Coffee Shop

The neighbourhood coffee shop only opens on workdays. The daily demand for workers is
Mon Tues Wed Thurs Fri

3 5 9 2 7
Each worker works for 4 consecutive days and has one day off. The goal is to hire the samllest number of workers so that
the demand can be met!
Variables : What do we need to decide on?

variable xd for every d ∈ {M,T,W, Th, F}, the number of people to hire with starting day d.
Objective function : What do we want to minimize?

the total number of people hired:
min xM + xT + xW + xTh + xF

Constraints : We need to ensure that enough people work on each of the days:

13
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Question: given a solution (xM , xT , xW , xTh, xF ), how many people work on Monday?
All but those start on Tuesdays (because they rest on Monday), i.e. xM + xW + xTh + xF .
The entire LP is

min xM + xT + xW + xTh + xF

s.t. xM + xW + xTh + xF ≥ 3
xM + xT + xTh + xF ≥ 5
xM + xT + xW + xF ≥ 9
xM + xT + xW + xTh ≥ 2
xT + xW + xTh + xF ≥ 7
x ≥ 0

x ∈ Z

Example 1.3.5. Quiz

We are given an integer program with integer values x1, . . . , x6. Let

S := {127, 289, 1310, 2754}

We want to add constaints and/or variables to the IP that enforce that the x1 + · · ·+ x6 ∈ S. How?

Solution. We can add binary variables yn where n ∈ S. Then exactly 1 of these variables to take the value 1 in a feasible
solution. If yn = 1, for some n ∈ S, then

∑6
i=0 xi = n.

The constraint is: ∑
n∈S

yn = 1

6∑
i=1

xi =
∑
i∈S

iyi

0 ≤ yi ≤ 1
yi ∈ Z (∀ i ∈ S)

�

1.4 Optimization on Graphs
Familiar problem - starting at location s, we wish to travel to t, what is the best (shortest) route?
Goal: Write the problem of finding the shortest route between s and t as an integer program!
Rephrasing the problem in the language of graphy theory helps.
A graph G consists of
Vertices u,w, . . . ∈ V (drawn as filled circles)
Edges uw,wz, . . . ∈ E (drawn as lines connecting circles)
Two vertices u and v are adjacent if uv ∈ E. Vertices u and v are the endpoints of edge uv ∈ E, and edge e ∈ E is
incident to u ∈ V if u is an endpoint of e.
A s, t-path in G = (V,E) is a sequence

v1v2, v2v3, v3v4, . . . , vk−2vk−1, vk−1vk

where

14



MODULE 1. FORMULATIONS 1.4. OPTIMIZATION ON GRAPHS

• vi ∈ V and vivi+1 ∈ E for all i
• v1 = s, vk = t, and vi 6= vj for all i 6= j. Without this, it is called s, t-walk.

Graphs are useful to compactly model amny real-world entities.
Example 1.4.1. Map of Water Town

We can think of the street map as a graph, G.

Figure 1.1: Map of Water Town

Vertices: road intersections
Edges: Road segments connecting adjacent intersections.
Each edge e ∈ E is labelled by its length ce ≥ 0. We are looking for a path connecting s and t of smallest total length.

Solution. The shortest path to the Water Town problem is P = sa, ad, db, bf, fg, gt with

c(P ) = csa + cad + cdb + cbf + cfg + cgt

= 650 + 490 + 250 + 830 + 600 + 700 = 3520

�

The length of a path P = v1v2, . . . , vk−1vk is the sum of the lengths of the edges on P :

c(P ) :=
∑

(ce : e ∈ P )

1.4.1 Matching Problem
Example 1.4.2. WaterTech - Job Assignment

WaterTech has a collection of important jobs: J = {1′, 2′, 3′, 4′} that it needs to handle urgently. It also has 4 employees:
E = {1, 2, 3, 4} that need to handle these jobs. Employees have different skill-sets and may take differnt amounts of time
to execute a job.

Employees Jobs
1’ 2’ 3’ 4’

1 - 5 - 7
2 8 - 2 -
3 - 1 - -
4 8 - 3 -

Note: some workers are not able to handle certain jobs.
Goal: Assign each worker to exactly one task so that the total execution time is smallest!

15



1.4. OPTIMIZATION ON GRAPHS MODULE 1. FORMULATIONS

Solution. We will rephrase this in the language of graphs.

We create a graph with one vertex for each employee and
job.
Add an edge ij for i ∈ Em and j ∈ J if employee i can
handle job J .
Let the cost cij of edge ij be the amount of time needed by
i to complete j.

1

2

3

4 4’

3’

2’

1’

Em J

5
7

8

4 1

8

3

Figure 1.2: WaterTech Job Assignment Graph
�

Definition 3: Matching

A collection M ⊆ E is a matching if no two edges ij, i′j′ ∈M (ij 6= i′j′) share an endpoint; i.e. {i, j}∩{i′, j′} = ∅

The cost of matching M is the sum of costs of its edges:

c(M) =
∑

(ce : e ∈M)

Definition 4: Perfect Matching

A mathcing M is perfect if every vertex v in the graph is incident to an edge in M .

Note: Perfect matchings correspond to feasible assignments of workers to jobs!

Solution. Continued from above, we can see that in Figure 1.1, M = {14′, 21′, 32′, 43′} is a perfect matching, thus one
solution to the problem would be

1→ 4′, 2→ 1′, 3→ 2′, 4→ 3′

whose execution time equals c(M) = 19.
Restatement of original question: find a perfect matching M in our graph of smallest cost. �

Notation: use δ(v) to denote the set of edges incident to v, i.e.

δ(v) = {e ∈ E : e = vu for some u ∈ V }

Theorem 1: Perfect Matching Theorem

Given G = (V,E), M ⊆ E is a perfect matching iff M ∩ δ(v) contains a single edge for all v ∈ V .

The IP will have a binary variable xe for every edge e ∈ E. The idea is

xe = 1↔ e ∈M

Constraints: ∀ v ∈ V , we need ∑
(xe : e ∈ δ(v)) = 1

Objective: ∑
(cexe : e ∈ E)
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An IP for Perfect Matching

We have the graph to the right, and want to
find a perfect matching with minimum cost.

4

1

3

2

3 1

5

4

Solution.

min
∑

(cexe : e ∈ E) min (5, 1, 3, 4)x

s.t.
∑

(xe : e ∈ δ(v)) = 1 (∀ v ∈ V ) =⇒ s.t.


1 1 1 0
1 0 0 1
0 1 0 1
0 0 1 0

x = 1 (1)

x ≥ 0, x ∈ Z x ≥ 0, x ∈ Z

where x = {xe : x ∈ δ(v)} for all v ∈ V . (1) gives the vector of
∑

(xe : e ∈ δ(v)) for any v ∈ V . �

1.5 Shortest Paths
Given : Graph G = (V,E), length ce ≥ 0 for all e ∈ E, s, t ∈ V
Find : Minimum-length s, t-path P
Useful observation: Let C ⊆ E be a set of edges whose removal disconnects s and t → Every s, t-path must have at
least one edge in C.

Definition 5: Cut

For S ⊆ V , we let δ(S) be the set of edges with exactly one endpoint in S.

δ(S) = {uv ∈ E : u ∈ S, v /∈ S}

We call δ(S) an s, t-cut if s ∈ S and t /∈ S.

Remark 1

If P is an s, t-path and δ(S) is an s, t-cut, then P must have an edge from δ(S).

Remark 2

If S ⊆ E contains at least one edge from every s, t-cut, then S contains an s, t-path.

Proof. Suppose S has an edge from every s, t-cut, but S has no s, t-path. Let R be the set of vertices reachable from s
in S:

R = {u ∈ V : S has an s, u-path}
Then by assumption, t /∈ R since S doesn’t contain a s, t-path. However, δ(R) is an s, t-cut since s ∈ R, t /∈ R. Then,
∃ e = (v1, v2) ∈ S such that e ∈ δ(R) where v1 ∈ R, v2 /∈ R. This contradicts our assumption abour R since if v2 is
connected to v1, v2 should be in R as well.
Hence, δ(R) ∩ S = ∅ contradicts our assumption. Therefore, S contains a s, t-path.
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An IP for Shortest Paths

Variables : We have one binary variable xe for each edge e ∈ E. We want

xe =
{

1 e ∈ P
0 otherwise

Constraints : We have one constraint for each s, t-cut δ(U), forcing P to have an edge from δ(S).∑
(xe : e ∈ δ(U)) ≥ 1

for all s, t-cuts δ(U).
Objective : ∑

(cexe : e ∈ E)

.
By Remark 1.5.1 and Remark 1.5.2, the s, t-path P will contain at least one edge from every s, t-cut, i.e. for any
δ(U), P must contain at least one edge from it. This makes the constraint. And to optimize the set, we try to
find the path with least cost.

We have the graph to the right, and want to
find a perfect matching with minimum cost. s

a

b

t
4

3
1

2

2

Solution.

min
∑

(cexe : e ∈ E)

s.t.
∑

(xe : e ∈ δ(U)) ≥ 1 (U ⊆ V, s ∈ U, t /∈ U)

xe ≥ 0, xe ∈ Z (e ∈ E)w�
min (3, 4, 1, 2, 2)x

s.t.


1 1 0 0 0
0 1 1 1 0
1 0 1 0 1
0 0 0 1 1



xsa
xsb
xab
xat
xbt

 ≥ 1

x ≥ 0, x ∈ Z

�

For an optimal solution, xe ≤ 1 for all e ∈ E, since if xe > 1, making xe = 1 would be cheaper and maintains feasibility!
For a binary solution x, define

Sx = {e ∈ E : xe = 1}

Remark 3

If x is an optimal solution for the above IP and ce > 0 for all e ∈ E, then Sx contains the edges of a shortest
s, t-path.
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1.6 Nonlinear Models
A nonlinear program (NLP) is of the form

min f(x)
s.t. g1(x) ≤ 0

g2(x) ≤ 0
· · ·
gm(x) ≤ 0

where
• x ∈ Rn

• f : Rn → R

• gi : Rn → R

Example 1.6.1. Finding Close Points in LP

We are given an LP(P), and an infeasible point x̄. The goal is to find a point x ∈ P that is as close as possible to x̄, i.e.
find a point x ∈ P that minimizes the Euclidean distance to x̄.

‖x− x̄‖2 =

√√√√ n∑
i=1

(xi − x̄i)2

Note that ‖p‖2 is called the L2-norm of p.
We have

min ‖x− x̄‖2
s.t. x ∈ P, P = {x : Ax ≤ b}

Example 1.6.2. Binary IP via NLP

Suppose we are given a binary IP (i.e. an integer program all of those variables are binary). Recall that (binary) IPs are
generally hard to solve. Now, we can write any binary IP as an NLP.
Binary IP:

max cTx

s.t. Ax ≤ b
x ≥ 0

xj ∈ {0, 1} (j ∈ {1, . . . , n})

NLP:

max cTx

s.t. Ax ≤ b
x ≥ 0

xj(1− xj) = 0 (j ∈ [n])

max cTx

s.t. Ax ≤ b
x ≥ 0

sin(πxj) = 0 (j ∈ [n])
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Theorem 2: Fermat’s Last Theorem

There are no integers x, y, z ≥ 1 and n ≥ 3 such that

xn + yn = zn

Example 1.6.3. NLP for Fermat’s Last Theorem

min (xx4
1 + xx4

2 − x
x4
3 )2

+ (sin πx1)2 + (sin πx2)2 + (sin πx3)2 + (sin πx4)2

s.t. xi ≥ 1 (i = 1 · · · 3)
x4 ≥ 3

The NLP is trivially feasible, and the value of any feasible solution is non-negative as its objective is the sum of squares.
In fact, the value of a solution (x1, x2, x3, x4) is 0 iff

• xx4
1 + xx4

2 = xx
4

3

• sin πxi = 0 for all i = 1, . . . , 3

Remark 4

Fermat’s Last Theorem is true iff the NLP has optimal value greater than 0.

Note: It is well known that there is an infinite sequence of feasible solutions whose objective value converges to 0. Proving
Fermat’s Last Theorem suffices to show that the value 0 cannot be attained.
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Module 2

Linear Programs

2.1 Possible Outcomes
When we solve an optimization problem, the input will be a LP/IP/NLP program, and the algorithm (software) outputs
the solution.

Definition 6: Feasible Solution

All assignment of values to each of the variables is a feasible solution if all the constraints are satisfied.

An optimization problem is feasible if it has at least one feasible solution. It is infeasible otherwise.

Definition 7: Optimal Solution

• For a maximization problem, an optimal solution is a feasible solution that maximizes the objective function.
• For a minimization problem, an optimal solution is a feasible solution that minimizes the objective function.

An optimization problem can have several optimal solutions.

Unbounded

• A maximization problem is unbounded if for every value M , there exists an feasible solution with objective
value greater than M .

• A minimization problem is unbounded if for every value M , there exists a feasible solution with objective
value smaller than M .

There are three possible outcomes for an optimization problem:
• It has an optimal solution
• It is infeasible
• It is unbounded

But, there can be other outcomes!
Example 2.1.1. Consider

max x

s.t. x < 1

This is feasible since one solution could be x = 0, and it is not unbounded since 1 is an upper bound. However, this model
has no optimal solution.
This is because the model is not a linear program, it contains strict inequality.
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Theorem 3: Foundamental Theorem of Linear Programming

For any linear prorgam, exactly one of the following holds:
• It has an optimal solution
• It is infeasible
• It is unbounded

What it means by solving a LP:
• It has an optimal solution: return an optimal solution x̄ and proof that x̄ is optimal
• It is infeasible: return a proof that LP is infeasible
• It is unbounded: return a proof that LP is unbounded

2.2 Certificates
How can we prove that a solution is infeasible?

2.2.1 Infeasibilty of LP Model
Example 2.2.1. The following LP is infeasible:

max (3, 4,−1, 2)Tx

s.t.
(

3 −2 −6 7
2 −1 −2 4

)
x =

(
6
2

)
x ≥ 0

Proof. One way of proving is to construct a system of equations and show that the system has no solutions:{
( −3 2 6 −7 )x = 6
( 4 −2 −4 8 )x = 4

After we do −1× (1) + 2× (2), we have
( 1 0 2 1 )x = −2

Suppose there exists x̄ ≥ 0 satisfying (1), (2). Then x̄ satisfies the last equation we produce:

( 1 0 2 1 )x︸ ︷︷ ︸
≥0

= −2︸︷︷︸
<0

leads to a contradiction.
Another way of proving this is using matrix formulations. Suppose for a contradiction there is a solution x̄ to x ≥ 0 and(

3 −2 −6 7
2 −1 −2 4

)
︸ ︷︷ ︸

A

x =
(

6
2

)
︸︷︷︸
b

We construct a new equation:

( −1 2 )︸ ︷︷ ︸
yT

(
3 −2 −6 7
2 −1 −2 4

)
x = ( −1 2 )︸ ︷︷ ︸

yT

(
6
2

)
( 1 0 2 1 )x = −2 (yTAx = yT b)

Since x̄ satisfies the last equation which means that

( 1 0 2 1 )︸ ︷︷ ︸
≥0T

x̄︸︷︷︸
≥0

= −2︸︷︷︸
<0

This is a contradiction.
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Theorem 4: Ferkas’ Lemma

There is no solution to Ax = b, x ≥ 0 if there exists a y where

yTA ≥ 0T yT b < 0

2.2.2 Optimality
We cannot try all possible feasible solutions to find the optimal solution.
Example 2.2.2. We have

max z(x) := ( −1 −4 0 0 )x+ 4

s.t.
(
−1 3 1 0
−2 6 0 1

)
x =

(
4
5

)
x ≥ 0

We claim that x̄ with x̄ = ( 0 0 4 5 ) is feasible solution of value 4 (easy to prove), and 4 is an upper bound.

Proof. Let x’ be an aribitrary feasible solution, then

z(x′) = ( −1 −4 0 0 )︸ ︷︷ ︸
≤0

x′︸︷︷︸
≥0

+4 ≤ 4

2.2.3 Unboundedness
Example 2.2.3. We have

max z := ( −1 0 0 1 )x

s.t.
(
−1 −1 1 0
−2 1 0 1

)
x =

(
2
1

)
x ≥ 0

How can we prove that this problem is unbounded?
The idea is to construct a family of feasible solutions x(t) for all t ≥ 0 and show that as t goes to infinity, the value of
the objective function goes to infinity.

Proof. We solve the matrix equation (
−1 −1 1 0
−2 1 0 1

)
︸ ︷︷ ︸

A

x =
(

2
1

)
︸ ︷︷ ︸

b

and get

x(t) :=


0
0
2
1


︸ ︷︷ ︸

x̄

+t


1
0
1
2


︸ ︷︷ ︸

r

Claim 1: x(t) is feasible for all t ≥ 0.
Since for all t ≥ 0 as x̄, r ≥ 0,

x(t) = x̄+ tr ≥ 0→ Ax(t) = A[x̄+ tr] = Ax̄︸︷︷︸
b

+t Ar︸︷︷︸
0

= b

Claim 2: z →∞ when t→∞.
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Let cT = ( −1 0 0 1 ),
z = cTx(T ) = cT [x̄+ tr] = cT x̄+ t ctr︸︷︷︸

=1>0

Remark 5

The linear program
max{cTx : Ax = b, x ≥ 0}

is unbounded if we can find x̄ and r such that

x̄ ≥ 0, r ≥ 0, Ax̄ = b, Ar = 0, cT r > 0

2.3 Standard Equality Forms

Definition 8: Standard Equality Form (SEF)

A LP is in Standard Equality Form (SEF) if
• it is a maximization problem
• for every variable xj , we have the constraint xj ≥ 0 and
• all other constraints are equality constraints

Remark 6

For the following LP:

max x1 + x2 + 17
s.t. x1 − x2 = 0

x1 ≥ 0

there is no constraint x2 ≥ 0, we say x2 is free. Though x2 ≥ 0 is implied by the constraints, x2 is still free since
x2 ≥ 0 is not given explicitly.

We will develop an algorithm called the Simplex that can solve any LP as long as it is in SEF.
Idea:

1. Find an ”equivalent” LP in SEF
2. Solve the ”equivalent” LP using Simplex
3. Use the solution of ”equivalent” LP to get the solution of the original LP

Definition 9: Equivalent Programs

LP (P) and (Q) are equivalent if
• (P) infeasible =⇒ (Q) infeasible
• (P) unbounded =⇒ (Q) unbounded
• can construct optimal solution of (P) from optimal solution of (Q)
• can construct optimal solution of (Q) from optimal solution of (P)

Remark 7

Every LP is equivalent to an LP in SEF.

How do we change minimum problem to maximum problem?
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Take the oppsite sign of the objective function and find its maximum.
How do we replace an inequality with an equality?

Suppose an LP has the constraint
x1 − x2 + x4 ≤ 7

We can replace it by
x1 − x2 + x4 + s = 7 s ≥ 0

Suppose an LP has the constraint
x1 − x2 + x4 ≥ 7

We can replace it by
x1 − x2 + x4 − s = 7 s ≥ 0

What if we have a free variable?

Example 2.3.1.

max z = (1, 2, 3)(x1, x2, x3)T

s.t.
(

1 5 3
2 −1 2

) x1
x2
x3

 =
(

5
4

)
x1, x2 ≥ 0, x3 is free

The idea is that any number is the difference between two non-negative numbers.

Solution. Set x3 := a− b where a, b ≥ 0.

z = (1, 2, 3)(x1, x2, x3)T

= x1 + 2x2 + 3x3

= x1 + 2x2 + 3(a− b)
= x1 + 2x2 + 3a− 3b
= (1, 2, 3,−3)(x1, x2, a, b)T

and (
1 5 3
2 −1 2

) x1
x2
x3

 =
(

1 5 3 −3
2 −1 2 −2

)
x1
x2
a
b

 =
(

5
4

)

�

2.4 Simplex - A First Attempt
A naive way to solve an LP:
Step 1 Find a feasible solution x
Step 2 If x is optimal, STOP
Step 3 If LP is unbounded, STOP
Step 4 Find a ”better” feasible solution
Some questions we have with this method:

• How do we find a feasible solution?
• How do we find a ”better” solution?
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• Will this ever terminate?
Example 2.4.1. We want to solve

max (4, 3, 0, 0)x+ 7

s.t.
(

3 2 1 0
1 1 0 1

)
x =

(
2
1

)
x1, x2, x3, x4 ≥ 0

We have a feasible solution x = (0, 0, 2, 1)T and the objective function has value 7. Can we find a feasible solution larger
than 7?
The idea is to increase x1 as much as possible, but keep x2 unchanged.

Solution. Let x1 = t, x2 = 0, the equality constraints and the non-negativity constraints need to be satisfied. We get(
x3
x4

)
=
(

2
1

)
− t
(

3
1

)
that equality constraints hold for any choice of t.

x3 = 2− 3t ≥ 0 =⇒ t ≤ 2
3

x4 = 1− t ≥ 0 =⇒ t ≤ 1

The largest possible t is min{1, 2
3} = 2

3 , the new solution is then

x = (t, 0, 2− 3t, 1− t)T =
(

2
3 , 0, 0,

1
3

)T
�

Is this new solution optimal? NO! Can we use the same trick to get a better solution? NO! To make it work, the LP
needs to be in ”canonical” form.
Revised Strategy

Step 1 Find a feasible solution x
Step 2 Rewrite LP so that it is in canonical form
Step 3 If x is optimal, STOP
Step 4 If LP is unbounded, STOP
Step 5 Find a ”better” feasible solution
We need to define canonical and prove that we can always rewrite LP in canonical form.

2.5 Basis
Notation: let B be a subset of column indices, then AB is a column sub-matrix of A indexed by set B. Aj denotes the
column j of A.

Definition 10: Basis

Let B be a subset of column indices, B is a basis if
1. AB is a square matrix
2. AB is non-sigular (columns are independent)

Does every matrix have a basis? NO!
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Remark 8

Max number of independent columns = Max number of independent rows

Remark 9

Let A be a matrix with independent rows, then B is a basis iff B is a maximal set of independent columns of A.

Definition 11: Baisc Solution

x is a basic solution for basis B if
1. Ax = b
2. xj = 0 whenever j /∈ B

Consider Ax = b with independent rows, vector x is a basic solution if it is a basic solution for some basis B.

Example 2.5.1. For the following equation 1 2 −1 1 −1
0 1 0 1 −1
0 0 1 1 −1


︸ ︷︷ ︸

A

x =

 2
1
1


︸ ︷︷ ︸

b

x =


1
1
1
0
0

 is a basic solution for B = {1, 2, 3} since

1. Ax = b

2. x4 = x5 = 0

Find a Basic Solution

How to find basic solution for (
1 0 1 −1
0 1 1 1

)
︸ ︷︷ ︸

A

x =
(

2
2

)
︸ ︷︷ ︸

b

when B = {1, 4}?

Solution. We have (
2
2

)
=
(

1 0 1 −1
0 1 1 1

)
x

= x1

(
1
0

)
+ x2︸︷︷︸

=0

(
1
0

)
+ x3︸︷︷︸

=0

(
1
0

)
+ x4

(
−1
1

)

=
(

1 −1
0 1

)(
x1
x4

)
and solving the equation gives us (

x1
x4

)
=
(

1 −1
0 1

)−1( 2
2

)
=
(

4
2

)
so the basic solution is then (4, 0, 0, 2)T . �
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Remark 10

Consider Ax = b and a basis B of A, there exists a unique basic solution x for B. Columns of AB and elements
of xB are ordered by B!

Proof.

b = Ax =
∑
j

Ajxj

=
∑
j∈B

Ajxj +
∑
j /∈B

Aj xj︸︷︷︸
=0

=
∑
j∈B

Ajxj = ABxB

Since B is a basis, it implies AB is non-singular - A−1
B exists. Hence, xB = A−1

B b.

Example 2.5.2. Consider the following equation:(
3 2 1 4 1
−1 1 0 2 1

)
︸ ︷︷ ︸

A

x =
(

6
3

)
︸ ︷︷ ︸

b

is x = (0, 1, 0, 1, 0)T basic?

Proof. No. By contradiction, suppose x is basic for basis B.
• x2 = 1 6= 0 =⇒ 2 ∈ B

• x4 = 1 6= 0 =⇒ 4 ∈ B

Thus,
A{2,4} =

(
2 4
1 2

)
is a column matrix of AB . But the columns of A{2,4} are dependent, so AB is singular and B is not a basis - contradiction.

Remark 11

A basic solution can be the basic solution for more than one basis.

Consider the problem in SEF:
max{cTx : Ax = b, x ≥ 0} (P)

If the rows of A are dependent, then either
• there is no solution to Ax = b, (P) is infeasible
• a constriant of Ax = b can be removed without changing the solutions

Remark 12

We may assume, when trying to solve (P), that rows of A are independent.

Definition 12: Basic Feasible Solution

A basic solution x of Ax = b is feasible if x ≥ 0, i.e. if it is feasible for (P). A basic solution is feasible if it is
non-negative.
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2.6 Canonical Forms
Consider the problem in SEF:

max{cTx : Ax = b, x ≥ 0} (P)

Definition 13: Canonical Form

Let B be a basis of A, then (P) is in canonical form for B if
P1 AB = I, and
P2 cj = 0 for all j ∈ B.

Idea: for any basis B we can rewrite (P) so that it is in canonical form for a basis B and such that the resulting LP
behaves the same as (P). More foramlly, we will show the following:

Remark 13

For any basis B, there exists (P’) in canonical form of B such that
1. (P) and (P’) have the same feasible region, and
2. feasible solutions have the same objective value for (P) and (P’).

Rewrite LP in Canonical Form

We have the LP model

max (0, 0, 2, 4)︸ ︷︷ ︸
c

x

s.t.
(

1 0 1 −1
0 1 1 2

)
︸ ︷︷ ︸

A

x =
(

1
2

)
︸ ︷︷ ︸

b

x ≥ 0

How do we rewrite (P) in canonical form for basis B = {2, 3}?

Solution. We have the following steps:
P1 Replace Ax = b by A′x = b′ with A′B = I

(
1 0 1 −1
0 1 1 2

)
x =

(
1
2

)
↔
(

0 1
1 1

)−1( 1 0 1 −1
0 1 1 2

)
x =

(
0 1
1 1

)−1( 1
2

)
↔
(
−1 1 0 3
1 0 1 −1

)
x =

(
1
1

)
since

Ax = b↔ A−1
B A︸ ︷︷ ︸
A′

x = A−1
B b︸ ︷︷ ︸
b′

P2 Replace cTx by c̄Tx+ z̄ with c̄B = 0 (z̄ is a constant).
Step 1 construct a new objective function by

• multiplying constraint 1 by y1

• multiplying constraint 2 by y2, and
• adding the result constraints to the objective function
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Step 2 choose y1, y2 to get c̄B = 0

We have

0 = −(y1, y2)
(

1 0 1 −1
0 1 1 2

)
x+ (y1, y2)

(
1
2

)
z = (0, 0, 2, 4)x

=⇒ z =
[
(0, 0, 2, 4)− (y1, y2)

(
1 0 1 −1
0 1 1 2

)]
x+ (y1, y2)

(
1
2

)

Remark 14

For any choice of y1, y2 and any feasible solution x, objective value of x for old objective function = objective
value of x for new objective function.

z =
[
(0, 0, 2, 4)− (y1, y2)

(
1 0 1 −1
0 1 1 2

)]
︸ ︷︷ ︸

c̄T

x+ (y1, y2)
(

1
2

)
︸ ︷︷ ︸

z̄

(0, 0) = c̄TB = (0, 2)− (y1, y2)
(

0 1
1 1

)
↔ (y1, y2)

(
0 1
1 1

)
= (0, 2)

↔
(

0 1
1 1

)−1(
y1
y2

)
=
(

0 1
1 1

)(
y1
y2

)
=
(

0
2

)
↔

(
y1
y2

)
=
(

0 1
1 1

)−1( 0
2

)
=
(

2
0

)
Hence, we choose (y1, y2) = (2, 0) and

z = (−2, 0, 0, 6)x+ 2

In general, we have

0 = −yTAx+ yT b

z = cTx

z = [cT − yTA]x+ yT b

�

Consider
z = [cT − yTA]︸ ︷︷ ︸

c̄T

x+ yT b︸︷︷︸
z̄

How do we choose y such that c̄B = 0 for a basis B?

0T = c̄TB = cTB − yTAB
↔ yTAB = cTB

↔ ATBy = cB

↔ y = (ATB)−1cB = A−TB cB

Remark 15

For any non-singular matrix M ,
(MT )−1 = (M−1)T =: M−T

30



MODULE 2. LINEAR PROGRAMS 2.7. FORMALIZING THE SIMPLEX

Procedure 1: Find Canonical Form

Consider A with basis B,
(P)

max cTx

s.t. Ax = b

x ≥ 0

(P’)

max [cT − yTA]︸ ︷︷ ︸
c̄T

x+ yT b︸︷︷︸
z̄

s.t. A−1
B A︸ ︷︷ ︸
A′

x = A−1
B b︸ ︷︷ ︸
b′

x ≥ 0

where y = A−TB cB , then
1. (P’) is in canonical form for basis B, i.e. c̄B = 0 and A′B = I
2. (P) and (P’) have the same feasible region
3. feasible solutions have the same objective value for (P) and (P’).

2.7 Formalizing the Simplex
Example 2.7.1. Consider

max (0, 1, 3, 0)x

s.t.
(

1 1 2 0
0 1 1 1

)
x =

(
2
5

)
x ≥ 0

and B = {1, 4}, then
• AB is square and non-singular → B is a basis
• AB = I and cB = 0 → LP is in canonical form for B
• x̄ = (2, 0, 0, 5)T is a basic solution
• x̄ ≥ 0 → x̄ is feasible, i.e. B is feasible.

How do we find a better solution?
The idea is to pick k /∈ B such that ck > 0, set xk = t ≥ 0 as large as possible and keep all other non-basic variables at 0.
We pick k = 2, set x2 = t ≥ 0, keep x3 = 0. We want to choose basic variables such that Ax = b holds.
We find (

x1
x4

)
︸ ︷︷ ︸

xB

=
(

2
5

)
︸ ︷︷ ︸−t

(
1
1

)
︸ ︷︷ ︸
A2

and choose t as large as possible and basic variables must remain non-negative.

x1 = 2− t ≥ 0 =⇒ t ≤ 2
x4 = 5− t ≥ 0 =⇒ x ≤ 5

Thus, the largest possible t = min{2, 5} = 2, and the new feasible solution is x = (0, 2, 0, 3)T with objective value 2 > 0.
The new feasible solution is a basic solution on basis B = {2, 4}.
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Old {1, 4} is a feasible basis

max (0, 1, 3, 0)x

s.t.
(

1 1 2 0
0 1 1 1

)
x =

(
2
5

)
x ≥ 0

New {2, 4} is a feasible basis

max (−1, 0, 1, 0)x+ 2

s.t.
(

1 1 2 0
−1 0 −1 1

)
x =

(
2
3

)
x ≥ 0

Remark 16

We only need to know how to go from the OLD basis to a NEW basis!

In the above example, 2 entered the basis and 1 left the basis. Why?
We picked k = 2 /∈ B, so that 2 enters the basis. We choose t = 2 instead of 5 makes x1 = 0 and 1 leaves the basis.
If we now pick k = 3 /∈ B and set x3 = t, 3 then enters the basis. We have(

x2
x4

)
=
(

2
3

)
− t
(

2
−1

)
and get t = min{1,−} = 1 thus x2 = 0, making 2 leaving the basis.
The NEW basis is B = {3, 4}, and x = (0, 0, 1, 4)T is a basic solution.

max (−1.5,−0.5, 0, 0)x+ 3

s.t.
(

0.5 0.5 1 0
−0.5 0.5 0 1

)
x =

(
1
4

)
x ≥ 0

Claim: (0, 0, 1, 4)T has value 3, it is optimal since 3 is an upper bound.

Proof. Let x be a feasible solution, then
(−1.5,−0.5, 0, 0)x+ 3 ≤ 3

Example 2.7.2.

max (0,−4, 3, 0, 0)x

s.t.

 1 −2 1 0 0
0 5 −3 1 0
0 4 −2 0 1

x =

 1
1
2


x ≥ 0

with {1, 4, 5} as a feasible basis.

Solution. Pick k = 3 /∈ B and let x3 = t, then x1
x4
x5

 =

 1
1
2

− t
 1
−3
−2


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with t = min{1,−.−} = 1, thus x1 = 0 =⇒ 1 leaves the basis.
The NEW basis is then B = {3, 4, 5}.
We then choose k = 2 /∈ B and set x2 = t, 2 enters the basis, and then x3

x4
x5

 =

 1
4
4

− t
 −2
−1
0


leads to an unbounded solution. �

Claim: the LP is unbounded.

Proof.

x(t) =


0
t

1 + 2t
4 + t

4

 =


0
0
1
4
4


︸ ︷︷ ︸

x̄

+t


0
1
2
1
0


︸ ︷︷ ︸

r

where x̄, r are certificates of unboundedness.
• x(t) is feasible for all t ≥ 0

• z →∞ as t→∞

2.7.1 The Simplex Algorithm
LP model:

max cTx

s.t. Ax = b

x ≥ 0
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Procedure 2: Simplex

Algorithm 1: Simplex
Input : a feasible basis B
Output: an optimal solution OR it detects that LP is unbounded

1 while true do
2 Rewrite in canonical form for the basis B
3 Get x̄ as a basic solution

/* Find a better basis B or get required outcome */
4 if cN ≤ 0 then
5 STOP, the basic solution x̄ is optimal
6 return x̄

7 Pick k /∈ B such that ck > 0 and set xk = t // By Bland’s Rule, pick one with the
smallest index.

8 Pick xB = b− tAk
9 if Ak ≤ 0 then

10 STOP, the LP is unbounded
11 return Unboundedness outcome
12 Choose t = min{ bi

Aik
: for all i such that Aik > 0 } // By Bland’s Rule, pick the

smallest t.
13 Let xr be a basic variable forced to 0
14 The new basis is obtained by having k enter and r leave

Remark 17

Simplex tells the truth
• If it claims that the LP is unbounded, it is unbounded
• If it claims the solution is optimal, it is optimal

Example 2.7.3. We have the following model:

max (5, 0, 0, 0,−3)x + 12

s.t.

−1 1 0 0 1
2 0 1 0 −1
3 0 0 1 −1

x =

4
2
6


x ≥ 0

One feasible solution we find is (1, 5, 0, 3, 0)T with objective function value 17.

Solution. We apply Simplex on our example above:
Transform the LP into canonical form for basis {1, 2, 4}:

max
(

0, 0,−5
2 , 0,−

1
2

)
x + 17

s.t.

1 0 1/2 0 −1/2
0 1 1/2 0 1/2
0 0 −3/2 1 1/2

x =

1
5
3


x ≥ 0

Note that the objective function vector is ≤ 0, so the objective function value is ≤ 17. Since our basic solution achieves
this value, it is optimal. The algorithm then terminates.

�
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Example 2.7.4. We have another LP in SEF:

max (−1, 3, 0, 0, 1)x

s.t.
(
−2 4 1 0 1
3 7 0 1 1

)
x =

(
1
3

)
x ≥ 0

The LP is in canonical form for basis {3, 4} with basic solution (0, 0, 1, 3, 0) and objective function value 0.

Solution. Running Simplex for one iteration, we get bfs (0, 0, 0, 2, 1) for basis {4, 5}. LP in canonical form for {4, 5} is

max (1,−1,−1, 0, 0)x + 1

s.t.
(
−1 3 −1 1 0
−2 4 1 0 1

)
x =

(
2
1

)
x ≥ 0

Only 1st coordinate of objective vector > 0, so set x1 := t, x2, x3 = 0, and find x4, x5. We need to solve

A(t, 0, 0, x4, x5)T = (2, 1)

=⇒
(
−1
−2

)
t+
(
x4
x5

)
=
(

2
1

)
=⇒ x4 = 2 + t, x5 = 1 + 2t

x ≥ 0 =⇒ t ≥ 0, 2 + t ≥ 0, 1 + 2t ≥ 0

These are satisfied ∀ t ≥ 0. So, by taking t as large as we like, we see that the LP has arbitrarily large objective function
value, i.e. the LP is unbounded.

�

Remark 18

Whenever the column Ak of the constraint matrix A is non-positive (Ak ≤ 0), where k is the entering variable,
the LP is unbounded.

Continued from previous example

Solution. The certificate of unboundedness:
We get the feasible solutions

f(t) = (t, 0, 0, 2 + t, 1 + 2t)
= (0, 0, 0, 2, 1)︸ ︷︷ ︸

e

+t (1, 0, 0, 1, 2)︸ ︷︷ ︸
d

We notice that
1. e is feasible (previous bfs).
2. d ≥ 0, Ad = 0, cT d > 0.

(e, d) are a certificate of unboundedness. �

Is the Simplex a correct algorithm? NOT AS STATED! IT MAY NOT TERMINATE.
Potential problem: infinite loop (cycling)

B1 ; B2 ; B3 ; · · ·; Bk−1 ; Bk = B1

When there is an optimal solution, the algorithm may cycle through several bfs with the same objective function value.
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However, with the Bland Rule, the algorithm terminates.

Remark 19

If we use the Bland’s Rule, then the Simplex algorithm always terminates.

Theorem 5: Bland’s Rule

• If we have a choice for the element entering the basis, pick the smallest one
• If we have a choice for the element leaving the basis, pick the smallest one

2.7.2 Finding a Feasible Solution
Example 2.7.5. Finding a feasible solution

We have the following LP:

max (2,−1, 2)x (P1)

s.t.
(
−1 −2 1
1 1 1

)
x =

(
−1
3

)
x ≥ 0

Is this feasible? If so, find a bfs.

Solution. We follow the following steps to find the feasible solution:
b has a negative coordinate. If b has a negative coordinate, multiply the corresponding equations by −1 on both sides:
new constraints: (

1 2 −1
1 1 1

)
x =

(
1
3

)
, x ≥ 0

We have x4, x5 to be the auxilary variable. We form a new LP that is guaranteed to be feasible.(
1 2 −1 1 0
1 1 1 0 1

)
x =

(
1
3

)
, x ≥ 0, x ∈ R5 (P2)

These are feasible! (0, 0, 0, 1, 3) is one, and is basic for {4, 5}. We run the algorithm on

max (0, 0, 0,−1,−1)x (P3)

s.t.
(

1 2 −1 1 0
1 1 1 0 1

)
x =

(
1
3

)
x ≥ 0

Note that max(−x4 − x5) = −min(x4 + x5).
Solving (P3) using Simplex, we get:

• optimal basis = {1, 3}

• cooresponding basic feasible solution = (2, 0, 1, 0, 0)T

• optimum = 0

This gives us a feasible solution for (P2): (2, 0, 1)T basic feasible solution for basis {1, 3}. Now we can run Simplex on
(P2) with this solution. Doing this, we get optimal solution (0, 4, 7)T , corresponding to basis {2, 3} with optimum 10. �

This is called the two-phase simplex method.

Remark 20

If the optimal solution of the derived program does not have an optimal value equal to 0, then the original program
is infeasible and does not have a solution.
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Two-phase Simplex Method

Procedure 3: Two-phase Simplex

Step 1 Check if the equality constaints are feasible. We may do this by std. linear algebra (compute the RREF).
If infeasible, the LP is infeasible, STOP.

Step 2 If Ax = b is feasible (consistent), there may be redundant constriants. Remove those so that A has full
row rank (all rows are linearly independent). This will ensure that we can find a basis (of columns).

Step 3 Use row operations to make b ≥ 0.
Step 3 We will ”bootstrap” to find a feasible solution (≥ 0). We introduce two new auxilary variables (in general,

as many as the number of rows). Augment A with the identity matrix.
Step 4 We use the Simplex algorithm to try to find a feasible solution to the original LP. If the max is 0, we get

a feasible solution. Also, if the LP is feasible, we can augment it with letting all the augmented variables to
be 0, to get a feasible solution for the auxilary problem, with value 0. Since the objective function vector is
≤ 0, the auxilary problem is bounded, and since it is feasible, Simplex terminates with an optimal solution.
This tells us if the original LP is feasible or not: if optimal value < 0 =⇒ (P1) is infeasible, otherwise
(P1) is feasible.

This method gives us:
• Since (P3) is feasible by construction and the optimal value is ≤ 0, Simplex returns an optimal solution.
• If the optimal value is < 0, then (P2) is infeasible.
• If the optimal value = 0, we run Phase 2 of Simplex with the bfs given by Phase 1 on (P3).
• Simplex either tells us (P2) is unbounded, or it tells us it has an optimal solution. It gives us certificates in either

case.
We can derive a certificate of Infeasibilty for (P2) if Phase 1 Simplex has optimal value < 0, by using the certificate of
optimality Simplex gives us.
Recall: Foundamental Theorem of Linear Programming.

Remark 21: Properties of LP

Given
max{cTx : Ax = b, x ≥ 0}

Exactly one of the following holds for the LP:
• it is feasible
• it is unbounded
• it has an optimal solution that is basic.

Remark 22

A finite number of basis implies a finite number of basic solutions.

Example 2.7.6. For the following NLP:

min 1
x

s.t. x ≥ 0

This has an optimal value 0, but no x > 0 has 1
x = 0. No feasible solution achieves the optimal value. This does not

happen for LPs.
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2.8 Halfspaces and Convexity
It’ll be conveient to work with an LP in SIF (Standard Inequality Form)

max cTx
s.t. Ax ≤ b

x ≥ 0

c,x ∈ Rn, b ∈ Rm, A ∈ Rm×n

We can replace Ax = b in SEF by
Ax ≤ b⇐⇒ −Ax ≤ −b

to get an LP in SIF. The constraints are

Ax ≤ b
−Ax ≤ −b

Consider one row of the constriants:
ai
T · x ≤ bi for some i, 1 ≤ i ≤ m

What set of points H satisfy this inequality?

H := {x ∈ Rn : aiTx ≤ bi}

Example 2.8.1. LP in SIF

max (1,−1)x
s.t. − x1 + 4x2 ≤ 12 (1)

2x1 + x2 ≤ 8 (2)
x1 ≤ 3 (3)
x1, x2 ≥ 0 (4, 5)

−1 1 2 3 4 5

2

4
(4,4)

(0,3)

(2,4)

(3,2)

(0,0)

( 20
9 ,

32
9
)

1
2
3

Each constraint defines a half-plane, and the set of feasible solutions, (”feasible regions”) is the intersection of these
half-planes. The situation is similar in higher dimensions.
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Definition 14: Feasible Region

For an optimal problem, the feasible region is the set of all feasible solutions.

The set of points H0 = {x ∈ Rn : aiTx = bi} defines a hyperplane, (when it is non-empty/non-trivial). Recap:
aTx = ‖a‖ · ‖x‖ · cos θ

x

a

θ

Consider aiTx = b1, ai 6= 0, x ∈ Rn that satisfy this are

x : aiTx = 0 (hyperplane in Rn)

ai
Tx = bi (translate of hyperplane when bi may not be 0)0

ai

Consider d ∈ H0:

ai
Tx = bi

ai
T d = bi

ai
T (x− d) = 0⇐⇒ x− d ⊥ ai

H = {x : aiTx ≤ bi} is the set of points on one side of H0, a ”half-space”.

x

d ∈ H0

ai
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ai
T (x− d) = ai

Tx︸︷︷︸
≤bi

− aiT d︸︷︷︸= bi ≤ 0

↔‖ai‖︸︷︷︸
>0

· ‖x− d‖︸ ︷︷ ︸
>0

· cos θ ≤ 0

↔ cos θ ≤ 0

↔90◦ ≤ θ ≤ 270◦ (θ ∈ [π2 ,
3π
2 ])

The set of x ∈ Rn that satisfy Ax ≤ b thus equals the intersection of square number of half-spaces. This is called
polyhedron (called polytope if it is bounded).

Definition 15: Polyhedron

P ⊂ Rn is a polyhedron if there exists a matrix A and a vector b such that

P = {x : Ax ≤ b}

So the feasible region of an LP (in SIF) is a polyhedron (which is nice properties).

Definition 16: Geometry of Polyhedron

Let a 6= 0 be a vector and β a real number:
1. {x : aTx = β} is a hyperplane.
2. {x : aTx ≤ β} is a halfspace.

A hyperplane is the set of solutions to a single linear equation, while the halfspace is the set of solutions to a single linear
inequality.

Remark 23

A polyhedron is the intersection of a finite set of halfspaces.

Example 2.8.2. Suppose vector a 6= 0, β = 0, then the hyperplane is H = {x : aTx = β}. The halfspace F = {x :
aTx ≤ β}.

Remark 24

1. H is the set of vectors orthogonal to a.
2. F is the set of vectors on side of H not containing a.

Definition 17: Translate

Let S, S′ ⊆ Rn, then S′ is a translate of S if there exists p ∈ Rn and

S′ = {s+ p : s ∈ S}

Remark 25

Let a 6= 0 be a vector and β a real number, and let

H := {x : aTx = β}, H0 := {x : aTx = 0}

It follows that H is a translate of H0.
Let

F := {x : aTx ≤ β} F0 := {x : aTx ≤ 0}

It follows that F is a translate of F0.
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Theorem 6: Dimension of Hyperplane

The dimension of a hyperplane in Rn is n− 1.

Proof. Let a ∈ Rn, a 6= 0, and let β ∈ R. Define

H = {x : aTx = β}, H0 = {x : aTx = 0}

We define the dimension of H to be the dimension of H0. H0 is a vector space and its dimension can be computed as

dim(H0) = n− rank(a) = n− 1

Note: a polyhedron has no ”dents” and no ”holes”.

Definition 18: Line, Line Segment

Let x(1), x(2) ∈ Rn. The line through x(1) and x(2) is defined as

L = {x = λx(1) + (1− λ)x(2) : λ ∈ R}

The line segment between x(1) and x(2) is

S = {x = λx(1) + (1− λ)x(2) : λ ∈ R, 0 ≤ λ ≤ 1}

Definition 19: Convexity

Given two points x, y ∈ Rn, x 6= y, the line segment joining x and y in the set {λx+ (1− λ)y︸ ︷︷ ︸
convex combination

of x, y

: λ ∈ [0, 1]}, we

say a set S ⊆ Rn is convex if for every pair of points x, y ∈ S, x 6= y, the line segment joining x and y also is
contained in S.

Remark 26

Polyhedra are convex.

Proof. Suppose a polyhedron P is specified by inequalities Ax ≤ b. Suppose a, a′ ∈ P , λ ∈ [0, 1], we have

Aa ≤ b =⇒ λAa ≤ λb
Aa′ ≤ b =⇒ (1− λ)Aa′ ≤ (1− λ)b

}
as λ ≥ 0, 1− λ ≥ 0

A(λa+ (1− λ)a′︸ ︷︷ ︸
λa+(1−λ)a′∈P

) ≤ b

The feasible region of an LP is always a convex set!

2.9 Extreme Points
Definition 20: Properly Contained

Point x ∈ Rn is properly contained in the line segment L if
• x ∈ L and
• x is distinct from the endpoints of L.
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The objective function of an LP is linear:

Let z(x) := cTx, consider two feasible solutions, a, a′, and a convex combination λa+ (1− λ)a︸ ︷︷ ︸
d

, λ ∈ [0, 1].

z(d) = cT (λa+ (1− λ)a) = λ(cTa) + (1− λ)(cTa) ≤ λ(cTa′) + (1− λ)(cTa′) (if cTa′ > cTa)
=⇒ z(d) = max{cTa, cTa′}

So the objective function value is bounded by that at one of the ”extreme endpoints” of the same polyhedron (if the LP
is bounded).

Definition 21: Extreme Point

Given a convex set S, x ∈ S is called an extreme point if it is not a non-trivial convex combination of two distinct
points in S, i.e. x is an extreme point iff there is no λ ∈ (0, 1) and no two points a1, a1 ∈ S, a1 6= a2, such that
x = λa1 + (1− λ)a2.
Another way to state this definition is that x is NOT an extreme point if there exists a line segment L ⊆ S where
L properly contains x.

A convex set may have an infinite number of extreme points.
Example 2.9.1. We have the following examples:

(i). T := {(x, y) ∈ R2 : x2 + y2 ≤ 1, y ≤ |x|}. Is this a convex set?

Solution. T is not convex as
(0, 1

2) = 1
2

(
(−1

2 ,
1
2) + (1

2 ,
1
2)
)

but (0, 1
2 ) /∈ T . �

(ii). Consider C := {x ∈ Rn : |xi| ≤ 1, ∀ i ∈ {1, . . . , n}}. Is C convex? If so, what are its extreme points?
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Solution. Yes C is convex!
Here (1, 1), (1,−1), (−1,−1), (−1, 1) are all the extreme points. �

We claim that the extreme points of C are: {x ∈ Rn : xi ∈ {1,−1}, ∀ i = 1, . . . , n}.
Proof. We will show that x ∈ C is NOT an extreme point iff ∃ i ∈ {1, . . . , n} such that xi ∈ (−1, 1).
⇒ Suppose x ∈ C is not an extreme point. There is a λ ∈ (0, 1), a, b ∈ C, a 6= b, x = λa + (1 − λ)b. Suppose
a, b differ in jth coordinate: aj 6= bj , WLOG, let aj < bj .

xj = λaj + (1− λ)bj =⇒ −1 ≤ aj < xj < bj ≤ 1

Since λ > 0, aj < bj and 1− λ > 0, we have

xj < λbj + (1− λ)bj = bj ≤ 1 =⇒ xj < 1
xj > λaj + (1− λ)aj = aj ≥ −1 =⇒ xj > −1

Thus, xj ∈ (−1, 1). This proves the forward direction.
⇐ Suppose x has a coordinate xj ∈ (−1, 1), that is not an extreme point. We’ll show that x is a non-trivial convex
combination of two points a, b ∈ C, a 6= b.
We find λ:

xi = λ(−1) + (1− λ)(1) = 1− 2λ =⇒ λ = 1− xi
2

Since

xi < 1, λ > 1− 1
2 = 0

−x1 ≥ −1, λ < 1− (−1)
2 = 1 =⇒ λ ∈ (0, 1)

Define a, b ∈ C: aj = bj = xj for all j 6= i, and x = λa + (1 − λ)b. aj = −1, bj = 1 =⇒ a 6= b. So x is not an
extreme point.

Theorem 7: Extreme Points of Feasible Region

Suppose we have an LP in SEF. Then, the extreme points of its feasible region are exactly the basic feasible solution
of the LP.
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Remark 27

The optimum of an LP in SEF, when it exists, is achieved by a basic feasible solution.

The Simplex algorithm iterates through basic feasible solution, i.e. extreme points of the feasible region, improving the
objective function value, until it finds an optimum (or concludes that the LP is unbounded).
We can find extreme points of LPs in SEF by listing all possible bases and finding the corresponding basic feasible solution.
Here is a related method for a general polyhedron:
Suppose P := {x ∈ Rn : Ax ≤ b︸ ︷︷ ︸

if derived
form an LP in SIF

it includes the x ≥ 0 constraints

} is a polyhedron.

Definition 22: Tight constraint

Suppose d ∈ P . We say a constraint aiTx ≤ bi is tight for d, if aiT d = bi. The set of all the tight constraints is
denoted Āx ≤ b̄.

Example 2.9.2. Consider Example 2.8.1,
(i). (3, 0): tight inequalities are x1 ≤ 3, x2 ≥ 0

(ii).
( 20

9 ,
32
9
)
: 2x1 + x2 ≤ 8, −x1 + 4x2 ≤ 12 are not tight.

(iii). (1, 1): there are no tight inequalities.
(iv). (3, 1): x1 ≤ 3 is the only tight constraint.

Theorem 8: Extreme Points in Polyhedron

Let P = {x ∈ Rn, Ax ≤ b} be a polyhedron and let x̄ ∈ P .
1. If rank(Ā) = n, then x̄ is an extreme point.
2. If rank(Ā) < n, then x̄ is NOT an extreme point.

Note: this means, in particular that there are n tight constriants.
We can use the following remark to prove this theorem:

Remark 28

Let a, b, c ∈ R, and 0 < λ < 1, then if

a = λb+ (1− λ)c, b ≤ a, c ≤ a

then a = b = c.

Proof. If we fix c and a 6= b, ie. a > b, then

a = λb+ (1− λ)c < λa+ (1− λ)c ≤ λa+ (1− λ)a = a

contradicts the fact that a = a and a ≮ a. Similarly, if we fix b and a 6= c, a > c, then

a = λb+ (1− λ)c < λb+ (1− λ)a ≤ λa+ (1− λ)a = a

Proof for the first bullet point of previous theorem:

Proof. Suppose x̄ is not an extreme point, then there exists a line segment Ls connecting x1 and x2 such that

x̄ = λx1 + (1− λ)x2 → Āx̄ = b̄ = λĀx1 + (1− λ)Āx2
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with some 0 < λ < 1. Since Āx1 ≤ b̄ and Āx2 ≤ b̄ by assumption, with the previous remark, we have b̄ = Āx1 = Āx2.
If rank(A) = n, then A is non-singular and invertible, implies that there is only one unique solution to Āx̄ = b̄. Hence,
x̄ = x̄1 = x̄2 meaning that x̄ is an extreme point, contradicting the assumption. Then rank(A) 6= n.
By its contrapositive, the original statement is then true.
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Module 3

Duality

3.1 Duality through Examples
3.1.1 Shortest Paths
Given a graph G = (V,E), a non-negative length ce for each edge e ∈ E, and a pair of verticies s and t in V . Our goal
is to compute an s, t-path P of smallest total length.

Finding an Intuitive Lower Bound

We will first consider the cardinality special case of the shortest path problem. We consider shortest path instances where
• each edge e ∈ E has length 1, and
• we are therefore looking for an s, t-path with the smallest number of edges.

Recall:
• If P is an s, t-path and δ(U) is an s, t-cut, then P contains an edge of δ(U).
• If S ⊆ E contains an edge from every s, t-cut, then S contains an s, t-path.

Note that δ(Ui) ∩ δ(Uj) = ∅ if i 6= j and an s, t-path must contain an edge from δ(Ui) for all i. If hi is not in any of the
δ(Ui), then hi is not on any shortest s, t-path, since an s, t-path that contains hi must also contain an edge from each
of the s, t-cuts δ(Ui).
Back to the General Case. In general instances, we assign a non-negative width yU to every s, t-cut δ(U).

Definition 23: Width Assignment

A width assignment {yU : δ(U) s, t-cut} is feasible if, for every edge e ∈ E, the total width of all cuts containing
e is no more than ce.
Using math: y is feasible if for all e ∑

(yU : δ(U) s, t-cut and e ∈ E) ≤ ce

Remark 29

If y is a feasible width assignment, then any s, t-path must have length at least
∑

(yU : δ(U) s, t-cut).
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Proof. Consider an s, t-path P , it follows that

c(P ) =
∑

(ce : e ∈ P )

≥
∑

(
∑

(yu : e ∈ δU) : e ∈ P )

≥
∑

(yU : δU s, t-cut)

where the last inequality follows from the feasibility of y.

3.2 Weak Duality
Example 3.2.1.

min (2, 3)x

s.t.

 2 1
1 1
−1 1

x ≥

20
18
8


x ≥ 0

We want to find a lower-bound on the optimal value (objective value). Suppose x is feasible, then x satisfies

y1 · (2, 1)x ≥ y1 · 20
+ y2 · (1, 1)x ≥ y2 · 18
+ y3 · (−1, 1)x ≥ y3 · 8
= (2y1 + y2 − y3, y1 + y2 + y3)x ≥ 20y1 + 18y2 + 8y3

for y1, y2, y3 ≥ 0. So, if x is feasible for the LP, it also satisfies

(y1, y2, y3)

 2 1
1 1
−1 1

x ≥ (y1, y2, y3)

20
18
8


for any y1, y2, y3 ≥ 0, e.g. for y = (0, 2, 1)T , we obtain (1, 3)x ≥ 44. Therefore,

z(x) = (2, 3)x
≥ (2, 3)x+ 44− (1, 3)x = 44 + (1, 0)x

Since x ≥ 0, it follows that z(x) ≥ 44 for every feasible solution x. The optimal value of the LP is in the interval [44, 49]
since we have one feasible solution x = (5, 13)T with objective value 49.
Can we find a better lower bound on z(x) for feasible x?
From above, we obtain

z(x) ≥ (y1, y2, y3)

20
18
8

+

(2, 3)− (y1, y2, y3)

 2 1
1 1
−1 1

x (3.1)

We want the second term to be non-negative. Since x ≥ 0, this amounts to choose y ≥ 0 such that

(y1, y2, y3)

 2 1
1 1
−1 1

 ≤ (2, 3)

which yields

z(x) ≥ (y1, y2, y3)

20
18
8


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This makes a Linear Program:

max (20, 18, 8)y

s.t.

 2 1
1 1
−1 1

 y ≤ (2, 3)

y ≥ 0

Solving it gives
ȳ1 = 0, ȳ2 = 5

2 , ȳ3 = 1
2

and the objective value is 49. There is no feasible solution x to the original LP which has objective value smaller than 49.
Suppose now we are given the LP

min cTx

s.t. Ax ≥ b
x ≥ 0

Any feasible solution x must satisfy
yTAx ≥ yT b

for y ≥ 0, and hence also
0 ≥ yT b− yTAx

If we also know that AT y ≤ c then x ≥ 0 implies that z(x) ≥ yT b. The best lower-bound on z(x) can be found by the
following LP:

max bT y

s.t. AT y ≤ c
y ≥ 0

Definition 24: Dual & Primal

The linear program (D) is called the dual of primal LP (P).

max bT y (D) min cTx (P )
s.t. AT y ≤ c s.t. Ax ≥ b

y ≥ 0 x ≥ 0

Theorem 9: Weak Duality

If x̄ is feasible for (P) and ȳ is feasible for (D), then bT ȳ ≤ cT x̄.

Proof.

bT ȳ = ȳT b

≤ ȳT (Ax̄) (as ȳ ≥ 0 and b ≤ Ax̄)
= (AT ȳ)T x̄
≤ cT x̄ (as x̄ ≥ 0 and AT ȳ ≤ c)
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3.2.1 Lowerbounding the Length of s, t-Paths
Given a shortest path instance G = (V,E) with s, t ∈ V, ce ≥ 0 for all e ∈ E, the shortest-path LP is

min
∑

(cexe : e ∈ E)

s.t.
∑

(xe : e ∈ δ(U)) ≥ 1 (U ⊆ V, s ∈ U, t /∈ U)

x ≥ 0, x ∈ Z

Note that the optimal value of the shortest path IP is, at most, the length of a shortest s, t-path.
Also, dropping the integrality restriction cannot increase the optimal value (since IP is the special case of LP). The
resulting LP is called linear programming relaxation of the IP.
See assignment 6 question 2 for linear relaxation.

Remark 30

The dual of (P) has optimal value no larger than that of (P)!

We can rewrite the shortest-path LP as

min cTx (P)
s.t. Ax ≥ 1

x ≥ 0

where
(i) A has a column for every edge and a row for every s, t-cut δ(U).
(ii) A[U, e] = 1 if e ∈ δU and 0 otherwise.

Its dual is of the form:

max 1T y (D)
s.t. AT y ≤ c

y ≥ 0

Note that the dual has a constraint for every edge e ∈ E. The left-hand side of this constraint is
∑

(yU : e ∈ δU) and
the right-hand size is ce.

Remark 31

Feasible solutions to (D) correspond precisely to feasible width assignments. Weak Duality implies that
∑
yU is,

at most, the length of a shortest s, t-path.

3.3 Shortest Path Algorithm
Shortest Path LP

min
∑

(xe : e ∈ E)

s.t.
∑

(xe : e ∈ δ(S)) ≥ 1, (δ(S) is s, t-cut)
x ≥ 0

Shortest Path Dual

max
∑

(yS : δ(S) s, t-cut )

s.t.
∑

(yS : e ∈ δ(S)) ≤ ce (e ∈ E)

y ≥ 0
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So far, we know that edges of a graph G = (V,E) are unordered pairs of vertices. Now, we’ll introduce arcs - ordered
pairs of vertices. We denote an arc from u to v as ~uv, and draw it as an arrow from u to v.

Definition 25: Directed Path

A directed path is then a sequence of arcs

~v1v2, ~v2v3, · · · , ~vk−1vk

where ~vivi+1 is an arc in the given graph, and vi 6= vj for all i 6= j.

Definition 26: Slack

Let y be a feasible dual solution. The slack of an edge e ∈ E is defined as

slacky(e) = ce −
∑

(yU : δ(U) s, t-cut, e ∈ δ(U))

The Shortest Path Algorithm is as follows:
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Shortest Paths: Building Duals Incrementally

We start with the trivial dual y = 0.

The simplest s, t-cut is δ({s}).
−→ Increase y{s} as much as we can while
still maintaining feasibility
−→ y{s} = 1

Note: This decreases the slack of sc to 0!
−→ Replace sc by −→sc

Next we look at all vertices that are
reachable from s via directed paths:

U = {s, c}

and consider increasing yU .

Q: By how much can we increase yU?

2

4
1

s

a

b
c

d
t

3

2 1

2

4

11
U

max
∑

(yS : δ(S) s, t-cut)

s.t.
∑

(yS : e ∈ δ(S)) ≤ ce
(e ∈ E)

y ≥ 0
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Shortest Paths: Building Duals Incrementally

Q: By how much can we increase yU?

The maximum increase possible for y{s,c} is
determined by the slack of edges in
δ({s, c})!

slacky(sa) = 2− 1 = 1

slacky(cb) = 2

slacky(ct) = 4

slacky(cd) = 1

slacky(sd) = 3− 1 = 2

Edges cd and sa minimize slack. If we pick
one arbitrarily, sa for example, we can then
set yU = slacky(sa) = 1 and convert sa
into arc −→sa.

2

4
1

s

a

b
c

d
t

3

2 1

2

4

11
U

max
∑

(yS : δ(S) s, t-cut)

s.t.
∑

(yS : e ∈ δ(S)) ≤ ce
(e ∈ E)

y ≥ 0
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Shortest Paths: Building Duals Incrementally

Q: Which vertices are reachable from s via
directed paths?

U = {s, a, c}

Natural idea: Increase y{s,a,c} by as much
as we can. How much is this?
−→ the slack of cd is 0, and hence

y{s,a,c} = 0

Also: we can change cd into
−→
cd and let

U = {s, a, c, d}

be the reachable vertices from s.

2

4
1

s

a

b
c

d
t

3

2 1

2

4

11
U

1

max
∑

(yS : δ(S) s, t-cut)

s.t.
∑

(yS : e ∈ δ(S)) ≤ ce
(e ∈ E)

y ≥ 0
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Shortest Paths: Building Duals Incrementally

The vertices reachable from s by directed
paths are in

U = {s, a, c, d}

Let us compute the slack of edges in δ(U).

slacky(ab) = 1

slacky(cb) = 2− 1 = 1

slacky(ct) = 4− 1 = 3

slacky(dt) = 2

We let y{s,a,c,d} = 1, add the equality arc
−→
cb, and update the set

U = {s, a, b, c, d}

of vertices reachable from s.

2

4
1

s

a

b
c

d

t

3

2 1

2

4

11
U

1

1

max
∑

(yS : δ(S) s, t-cut)

s.t.
∑

(yS : e ∈ δ(S)) ≤ ce
(e ∈ E)

y ≥ 0
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Shortest Paths: Building Duals Incrementally

The vertices reachable from s by directed
paths are now in

U = {s, a, b, c, d}

Let us compute the slack of edges in δ(U):

slacky(bt) = 4

slacky(ct) = 4− 2 = 2

slacky(dt) = 2− 1 = 1

We let y{s,a,b,c,d} = 1 and add the equality

arc
−→
dt.

2

4
1

s

a

b
c

d

t

3

2 1

2

4

11
U

1

1
1

max
∑

(yS : δ(S) s, t-cut)

s.t.
∑

(yS : e ∈ δ(S)) ≤ ce
(e ∈ E)

y ≥ 0
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Shortest Paths: Building Duals Incrementally

Note: We now have a directed s, t-path in
our graph:

P = −→sc,−→cd,−→dt,

Its length is 4 and its value if 4!

We also have a feasible dual solution:

y{s} = y{s,c} = y{s,a,c,d} = y{s,a,b,c,d} = 1,

and yU = 0 otherwise.

Therefore, we know that path P is a
shortest path!

2

4
1

s

a

b
c

d

t

3

2 1

2

4

11

1

1 1

max
∑

(yS : δ(S) s, t-cut)

s.t.
∑

(yS : e ∈ δ(S)) ≤ ce
(e ∈ E)

y ≥ 0
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Shortest Path Algorithm

To compute the shortest Path for the instance on
the right, we used the following algorithm:

2

4
1

s

a

b
c

d

t

3

2 1

2

4

11

1

1 1
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3.4 Correctness
Recall that the slack of an edge uv ∈ E for a feasible dual solution y is

cuv −
∑

(yU : uv ∈ δ(U))

We call an edge uv ∈ E an equality edge if its slack is 0. We also call a cut δ(U) active for a dual solution y if yU > 0.

Theorem 10: Shortest Path

Let y be a feasible dual solution, and P is an s, t-path. P is a shortest path if
• all edges on P are equality edges, and
• every active cut δ(U) has exactly one edge of P .

To show that the shortest-path algorithm is correct, it suffices to show that

Theorem 11: Shortest Path Algorithm Correctness

The Shortest Path Algorithm maintains throughout its execution if
1. y is a feasible dual
2. arcs are equality arcs (i.e. have 0 slack)
3. no active cut δ(U) has an entering arc: an arc wu with w /∈ U and u ∈ U .
4. for every u ∈ U there is directed s, t-path, and
5. arcs have both ends in U .

Suppose the invariants hold when the algorithm terminates, then
• t ∈ U and (4) implies that there is a directed s, t-path.
• y is feasible by (1),
• arcs on P are equality arcs by (2).

We want to show that δ(U) is active → P has exactly one edge in δ(U).
For contradiction, suppose δ(U) active and P has more than one edge in δ(U). Let e and e′ be the first two edges on
P that leave δ(U). Then, there must also be an arc f on P that enters U - since e and e′ are both arc leaving U . This
contradicts (3).
We now want to prove Theorem 14.

Proof. It is trivial that (1) to (5) holds after Step 1 (initialization). Suppose (1) - (5) hold before Step 3 (find the smallest
slak in δ(U)), we will show that they also hold after Step 6 (change edge ab to ~ab).
Note that only yU for the current U changes in step 3-6. yU arises only on the left-hand sides of constraints for edges in
δ(U). The smallest slack - cuv −

∑
(yU : uv ∈ δ(U)) - of any of these constraints is precisely the increase in yU .

cuv =
∑

(yU : uv ∈ δ(U)) + slack(uv) =
∑

(y′U : uv ∈ δ(U))︸ ︷︷ ︸
increased width assignment

Therefore, y remains feasible! (1) holds.
Also, the constraint of the newly created arc holds with equality after the increase→ (2) continues to hold and constraints
for arcs have slack 0.
The only new active cut created is δ(U), and then all old arcs have both ends in U . One new arc has tail in U and head
outside U → (3) holds after Step 6.
The only new arc added is ab and b is added to U at the end of the loop, both (4) and (5) hold.

We have already seen that the shortest path algorithm
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1. always produces an s, t-path P , and
2. produces a feasible dual solution y

Moreover, the length of P equals the objective value of y, and hence, P must be a shortest s, t-path. Implicitly, we
therefore conclude that the shortest path LP always has an optimal integer solution.
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Module 4

Duality Theory

Recall the shortest path dual:

min{cTx : Ax ≥ b, x ≥ 0} (P )
max{bT y : AT y ≤ c, y ≥ 0} (D)

If (P) is a shortest path LP, then we can rewrite (D) as

max
∑

(yU : s ∈ U, t /∈ U)

s.t.
∑

(yU : e ∈ δ(U)) ≤ ce, e ∈ E

y ≥ 0

Using the Weak Duality Theorem, it is equivalent that y is feasible widths and P is an s, t-path → 1T y ≤ c(P ).

4.1 Weak Duality
In the primal-dual pair

min{cTx : Ax ≥ b, x ≥ 0} (P )
max{bT y : AT y ≤ c, y ≥ 0} (D)

• each non-negative variable xe in (P) corresponds to an ≤-constraint in (D)
• each ≥-constraint in (P) corresponds to a non-negative variable yU in (D).

How can we find the dual LP for every primal LP?
As before,

primal variables ≡ dual constraints
primal constraints ≡ dual variables

The following table shows how constraints and variables in primal and dual LPs correspond:

61
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Example 4.1.1.

max (1, 0, 2)x (P)

s.t.
(

3 −1 0
1 0 1

)
x
≤
=

(
3
4

)
x1, x2 ≥ 0, x3 free

has its dual LP

min (3, 4)y (D)

s.t.

 3 1
−1 0
0 1

 y
≥
≥
=

1
0
2


y1 ≥ 0, y2 free

Example 4.1.2.

min dT y (P)
s.t. WT y ≥ e

y ≥ 0

has its dual LP

max eTx (D)
s.t. Wx ≤ d

x ≥ 0

Example 4.1.3.

max (12, 26, 20)x (P)

s.t.

1 2 1
4 6 5
2 −1 −3

x
≥
≤
=

−2
2
13


x1 ≥ 0, x2 free , x3 ≥ 0

has its dual LP

min (−2, 2, 13)y (D)

s.t.

1 4 2
2 6 −1
1 5 −3

 y
≥
=
≥

12
26
20


y1 ≤ 0, y2 ≥ 0, y3 free

Theorem 12: Weak Duality Theorem

Let (Pmax) and (Pmin) represent the above. If x̄ and ȳ are feasible for the two LPs, then

cT x̄ ≤ bT Ȳ

If cT x̄ = bT Ȳ , then x̄ is optimal for (Pmax) and ȳ is optimal for (Pmin).
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We can rewrite the general primal LP and the dual using slack variables.

max cTx min bT y

s.t. Ax+ x = b s.t. AT y + w = c

si ≥ 0 (i ∈ R1) wj ≤ 0 (j ∈ C1)
si ≤ 0 (i ∈ R2) wj ≥ 0 (j ∈ C2)
si = 0 (i ∈ R3) wj = 0 (j ∈ C3)
xj ≥ 0 (j ∈ C1) yi ≥ 0 (i ∈ R1)
xj ≤ 0 (j ∈ C2) yi ≤ 0 (i ∈ R2)
xj free (j ∈ C3) yi free (i ∈ R3)

Suppose x̄ and ȳ are feasible for the original primal and dual LPs, let s̄ = b−Ax̄ and w̄ = c−AT ȳ. It follows that

ȳT b = ȳT (Ax̄+ s̄) = (ȳTA)x̄+ ȳT s̄ = (c− w̄)T x̄+ ȳT s̄ = cT x̄− w̄T x̄+ ȳT s̄

We can show that w̄T x̄ ≤ 0 and ȳT s̄ ≥ 0⇒ ȳT b ≥ cT x̄.
Since for all j ∈ C1, wj ≤ 0 and xj ≥ 0, for all j ∈ C2, wj ≥ 0 and xj ≤ 0, and for all j ∈ C3, wj = 0,

w̄T x̄ =
∑
j∈C1

w̄j x̄j︸ ︷︷ ︸
≤0

+
∑
j∈C2

w̄j x̄j︸ ︷︷ ︸
≤0

+
∑
j∈C3

w̄j x̄j︸ ︷︷ ︸
=0

≤ 0

Similarly, for all i ∈ R1, si ≥ 0 and yi ≥ 0, for all i ∈ R2, si ≤ 0 and yi ≤ 0, and for all i ∈ R3, si = 0,

ȳT s̄ =
∑
i∈R1

s̄iȳi︸ ︷︷ ︸
≥0

+
∑
i∈R2

s̄iȳi︸ ︷︷ ︸
≥0

+
∑
i∈R3

s̄iȳi︸ ︷︷ ︸
=0

≥ 0

The formal proof of Theorem 15:

Proof. There are three cases:
1. (Pmax) is unbounded → (Pmin) is infeasible.

Suppose, for its contrapositive, that ȳ is feasible for (Pmin). By Weak Duality, cT x̄ ≤ bT ȳ for all x̄ feasible for (
Pmax), and hence the latter is bounded.

2. (Pmin) is unbounded → (Pmax) is infeasible.
Similar to 1.

3. (Pmax) and (Pmin) are feasible → both must have optimal solutions.
By Weak duality, both are bounded, and by Foundamental Theorem of LP, both must have optimal solution!

4.2 Strong Duality
Can we always find feasible solutions x̄ and ȳ to a primal-dual pair, such that cT x̄ = bT ȳ?

Theorem 13: Strong Duality Theorem

If (Pmax) has an optimal solution x̄, then (Pmin) has an optimal solution ȳ such that cT x̄ = bT ȳ.

We can prove Strong Duality Theorem in the special case when (P)=(Pmax) is in SEF.

max cTx (P ) min bT y (D)
s.t. Ax = b s.t. AT y ≥ c

x ≥ 0
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Assume (P) has an optimal solution, 2-Phase Simplex terminates with an optimal basis B.
We can rewrite (P) for basis B:

max z = ȳT b+ c̄Tx (P’)
s.t. xB +A−1

B ANxN = A−1
B b

x ≥ 0

where ȳ = A−TB cB and c̄T = cT − ȳTA. Thus, x̄N = 0 and x̄B = A−1
B b. Recall that P and P’ are equivalent, x̄ has the

same objective value in P and P’.

cT x̄ = ȳT b+ c̄T x̄

= ȳT b+ c̄TN x̄N

= bT ȳ

and we can show that ȳ is dual feasible.
B is an optimal basis → c̄ ≤ 0, cT − ȳTA ≤ 0. Equivalently, AT ȳ ≥ c, meaning ȳ is dual feasible.
Note: (P) is feasible and (D) is feasible =⇒ (P) cannot be unbounded. By Foundamental Theorem of LP, (P) has an
optimal solution.
Subtly different version via previous results:

Theorem 14: Strong Duality Theorem - Feasibility Version

Let (P) and (D) be primal-dual pair of LPs, if both are feasible, then both have optimal solutions of the same
objective value.

(D)\ (P) optimal solution unbounded infeasible
optimal solution possible (1) impossible (2) impossible (3)
unbounded impossible (4) impossible (5) possible (6)
infeasible impossible (7) possible (8) possible (9)

• (1), (6), (8) many examples exists
• (2) follows directly from Weak Duality as follows:

Suppose, for contradiction, that (D) has an optimal solution ȳ, cT x̄ ≤ bT ȳ for all feasible primal solutions x̄ by
Weak Duality, then (P) is bounded. Similar arguments apply to (4) and (5).

• (3), (7) follow directly from Strong Duality.

4.3 Geometric Optimality
We know that the feasible region of an LP is a polyhedron, and basic soltions corresponds to the extreme points of this
polyhedron. When is an extreme point optimal?
We can rewrite (P) using slack variables s:

max cTx (P’)
s.t. Ax+ s = b

s ≥ 0

Note that (x, s) is feasible for (P’) → x is feasible for (P). x is feasible for (P) → (x, b−Ax) is feasible for (P’).
Suppose x̄ is feasible for (P), and ȳ is feasible for (D). Then (x, b−Ax︸ ︷︷ ︸

s

) is feasible for (P’). Recall the Weak Duality proof:

yT b = yT (Ax+ s) = (yTA)x+ yT s = cTx+ yT s
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and Strong Duality tells us that

x, y both optimal ⇔ cTx = yT b

⇔ yT s = 0 (*)

By feasibility, x ≥ 0 and s ≥ 0, hence (*) holds if and only if yi = 0 or si = 0 for every 1 ≤ i ≤ m.

Theorem 15: Complementary Slackness - Special Case

Let x and y be feasible for (P) and (D),

max cTx (P ) min bT y (D)
s.t. Ax ≤ b s.t. AT y = c

y ≥ 0

Then x and y are optimal if and only if
• yi = 0, or
• the ith constraint of (P) is tight for x

for every row index i.

Theorem 16: Complementary Slackness

Feasible solutions x and y for (P) and (D) are optimal if and only if yi = 0 or the ith primal constraint is tight for
x for all row indices i.

Example 4.3.1. Consider the following LP:

max (5, 3, 5)x (P)

s.t.

 1 2 −1
3 1 2
−1 1 1

x ≤

 2
4
−1



Its dual is

min (2, 4,−1)y (D)

s.t.

 1 3 −1
2 1 1
−1 2 1

 y =

5
3
5


y ≥ 0

We have x = (1,−1, 1)T and y = (0, 2, 1)T . It is easy to check if x and y are feasible.
• y1 = 0 or (1, 2,−1)x = 2

• y2 = 0 or (3, 1, 2)x = 4

• y3 = 0 or (−1, 1, 1)x = −1

⇒ x and y are optimal!

x and y satisfy the complementary slackness conditions if

for all variables xj of (Pmax):
• x̄j = 0 or
• jth constraint of (Pmin) is satisfied with equality

for ȳ

for all variables yi of (Pmin):
• ȳi = 0 or
• ith constraint of (Pmax) is satisfied with equality

for x̄
The two or’s above are inclusive!
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Theorem 17: Complementary Slackness Theorem

Let (P) and (D) be an arbitrary primal-dual pair of LPs, and let x̄ and ȳ be feasible solutions. Then these solutions
are optimal if and only if CS conditions hold.

4.3.1 Cones of Vectors
Definition 27: Cone of Vectors

Let a(1), . . . , a(k) be vectors in Rn. The cone generated by these vectors is given by

C = {λ1a
(1) + λ2a

(2) + · · ·+ λka
(k) : λ ≥ 0}

Cone of tight constraints is the cone generated by rows of tight constraints.

Theorem 18: Cone of Tight Constraint Theorem

Let x̄ be a feasible solution to
max{cTx : Ax ≤ b}

Then x̄ is optimal if and only if c is in the cone of tight constraints for x̄.

Example 4.3.2. Consider the LP
max

{(
3
2 ,

1
2

)
x : x ∈ P

}
(*)

where

P =

x ∈ R2 :

1 0
1 1
0 1

x ≤

2
3
2


Tight constriants at x̄ = (2, 1)T :

(1, 0)x̄ = 2 (1)
(1, 1)x̄ = 3 (2)

Note that c = (3/2, 1/2)T is in the cone of tight constraints as(
3/2
1/2

)
= 1 ·

(
1
0

)
+ 1/2 ·

(
1
1

)

Proving the if direction of the above theorem amouns to
• finding a feasible solution ȳ to the dual of (*) and
• showing that x̄ and ȳ satisfy the CS conditions

Proof. Suppose x̄ is a solution to (P), and let J(x̄) be the indicies of tight constraints for x̄, ie.

Rowi(A)x̄ = bi

for i ∈ J(x̄) and
Rowi(A)x̄ < bi

for i /∈ J(x̄).
Suppose c is in the cone of tight constraints at x̄, and thus

c =
∑
i∈J(x̄)

λiRowi(A)T = AT ȳ
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for some λ ≥ 0, where we define

ȳi =
{
λi i ∈ J(x̄)
0 otherwise

Also note that ȳi > 0 only if Rowi(A)x̄ = bi ⇒ CS conditions (*) hold!
Hence, by CS theorem, (x̄, ȳ) is then optimal.
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Module 5

Integer Programs

5.1 IP vs. LP (Convex Hulls)
LINEAR PROGRAMMING INTEGER PROGRAMMING

Can solve very large instances Some small instances cannot be solved
Algorithms exist that are guaranteed to be fast No fast algorithm exists

Short certificate of infeasibility (Farka’s Lemma) Does not always exist
Short certificate of optimality (Strong Duality) Does not always exist

The only possible outcomes are infeasible, unbounded, or optimal Can have other outcomes
Example 5.1.1. Consider the following IP:

max x1 −
√

2x2

s.t. x1 ≤
√

2x2

x1, x2 ≥ 1
x1, x2 ∈ Z

It is feasible, bounded, and has no optimal solution.

Proof. Suppose, for a contradiction, there exists optimal x1, x2, let

x′1 = 2x1 + x2 x′2 = x1 + 2x2

Claim: x′1, x′2 are feasible. Since x′1 = 2x1 + 2x1 ≥ 1 and x′2 = x1 + 2x2 ≥ 1,

x′1
?
≤
√

2x′2

⇔ 2x1 + 2x2
?
≤
√

2(x1 + 2x2) =
√
x1 + 2

√
2x2

⇔ x1(2−
√

2)
?
≤ (2
√

2− 2)x2

⇔ x1
?
≤ 2
√

2− 2
2−
√

2
x2 = 2

√
2x2

Claim: x′1 −
√

2x′2 > x1 −
√

2x2

(2x1 + 2x2)−
√

2(x1 + 2x2)
?
> x1 −

√
2x2

Simplifying, we obtain
√

2x2
?
> x1

• ≥ since x1, x2 are feasible for (P)
• > otherwise

√
2 = x1

x2
but
√

2 is not rational number
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Remark 32

There will NOT be a practical procedure to solve IPs, but it will suggest a strategy.

Definition 28: Convex Hull

Let C be a subset of Rn, the convex hull of C is the smallest convex set that constains C.

Given C ⊂ Rn, there is a unique smallest convex set containing C.

Theorem 19: Meyer’s Theorem

Consider P = {x : Ax ≤ b} where A, b are rational. Then, the convex hull of all integer points in P is a polyhedron.

Remark 33

The condition that all entries of A and b are rational numbers cannot be excluded from the hypothesis.

Let A, b be rational,
max{cTx : Ax ≤ b, x ∈ Z} (IP)

The convex hull of all feasible solutions of (IP) is a polyhedron {x : A′x ≤ b}:

max{cTx : A′x ≤ b′, x ∈ Z} (LP)

Remark 34

• (IP) is infeasible if and only if (LP) is infeasible
• (IP) is unbounded if and only if (LP) is unbounded
• an optimal solution to (IP) is an optimal solution to (LP)
• an extreme optimal solution to (LP) is an optimal solution to (IP)

Conceptual way of solving (IP):

Step 1 Compute A′, b′

Step 2 Use Simplex to find an extreme optimal solution to (LP)
Note that this is NOT a practical way to solve an LP, since we do not know how to compute A′, b′, and A′, b′ can be
MUCH MORE complicated than A, b.

5.2 Cutting Planes

Definition 29: Cutting Plane

Suppose a constraint αTx ≤ β that
• is satisfied for all feasible solutions to the IP, and
• is not satisfied for x̄

We will call this constriant a cutting plane for x̄.

Example 5.2.1. Consider the IP:

max (2, 5)x

s.t.
(

1 4
1 1

)
x ≤

(
8
4

)
x ≥ 0, x ∈ Z
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Using Simplex, we can find that x̄ =
( 8

3 ,
4
3
)

is optimal, but they are not integers.
A cutting plane for this IP is

x1 + 3x2 ≤ 6 (*)
After adding (*) to our relaxation, we get

max (2, 5)x

s.t.

1 4
1 1
1 3

x ≤

8
4
6


x ≥ 0, x ∈ Z

Using Simplex, we get x′ = (3, 1)T is optimal, and this is the optimal solution for IP.

Algorithm 2: Cutting Plane Scheme
Input : (IP)=max{cTx : Ax ≤ b, x ∈ Z}

1 repeat
2 Let (P) denote max{cTx : Ax ≤ b} (integer program relaxation)
3 if (P) is infeasible then
4 return (IP) is also infeasible
5 x̄← optimal solution to (P)
6 if x̄ is integral then
7 return x̄ is also optimal for (IP)
8 Finding a cutting plane aTx ≤ β for x̄
9 Add a constraint aTx ≤ β to the system Ax ≤ b

10 until

We use Simplex to find the cutting plane.
Solve the relaxation and get the LP in a canonical form for B:

max c̄Tx+ z̄

s.t. xB +ANxN = b

x ≥ 0

where

N = {j : j /∈ B}
x̄ basic (x̄N = 0, x̄B = b)

r(i) index of ith basic variable

Suppose x̄ is not integer, then bi is fractional for some value i. We know that every feasible solution to the LP relaxation
satisfies

xr(i) +
∑
j∈N

Aijxj = bi ⇒ xr(i) +
∑
j∈N
bAijcxj︸ ︷︷ ︸

integer for all x integer

≤ bi

Hence, every feasible solution to IP satisfies

xr(i) +
∑
j∈N
bAijcxj ≤ bbic (*)

However, x̄ does not satisfy this as
xr(i)︸︷︷︸
bi

+
∑
j∈N
bAijc xj︸︷︷︸

=0

= bi > bbic

and by definition, (*) is a cutting plane for x̄.
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Module 6

Nonlinear Programs

6.1 Convexity

Definition 30: Non-linear Program

A nonlinear program (NLP) is a problem of the form

min f(x) (P)
s.t. gi(x) ≤ 0 i = (1, . . . , k)

where
f Rn → R, and
gi Rn → R for i = 1, . . . , k

Remark 35

There aren’t any restrictions regarding the type of functions.

This is a very general model, but NLP can be very hard to solve.

Remark 36

We may assume f(x) is a linear function, ie. f(x) = cTx

We can rewrite (P) as

min λ (Q)
s.t. λ ≥ f(x)

gi(x) ≤ 0 (i = 1, . . . , k)

The optimal solution to (Q) will have λ = f(x).
Example 6.1.1.

max x1 + x2 min − x1 − x2

s.t. 2x1 − x2 ≥ 3 s.t. − 2x1 + x2 + 3 ≤ 0
x1 − x2 = 4 x1 − x2 − 4 ≤ 0
x1, x2 ≥ 0 − x1 + x2 + 4 ≤ 0

− x1 ≤ 0
− x2 ≤ 0
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Nonlinear programs an also generalize integer programs.
Example 6.1.2. We have the 0, 1 IP:

max cTx

s.t. Ax ≤ b
xj ∈ {0, 1} (j = 1, . . . , n)

The idea is
xj ∈ {0, 1} ⇔ xj(1− xj) = 0

and we have the quadratic NLP:

min − cTx
s.t. Ax ≤ b

xj(1− xj) ≤ 0 (j = 1, . . . , n)
− xj(1− xj) ≤ 0 (j = 1, . . . , n)

Note that 0, 1 IPs are hard to solve, thus, quadratic NLP are also hard to solve.
Example 6.1.3. We have the pure IP:

max cTx

s.t. Ax ≤ b
xj ∈ Z (j = 1, . . . , n)

The idea is
xj ∈ Z⇔ sin(πx) = 0

and we have the NLP:

min − cTx
s.t. Ax ≤ b

sin(πx) = 0 (j = 1, . . . , n)

IPs are hard to solve, so NLPs are hard to solve.

Definition 31: Local Optimum

Consider
min{f(x) : x ∈ S} (P)

x ∈ S is a local optimum if there exists δ > 0 such that

∀ x′ ∈ S, ‖x′ − x‖ ≤ δ

and we have f(x) ≤ f(x′).

Remark 37

Consider
min{cTx : x ∈ S} (P)

If S is a convex and x is a local optimum, then x is optimal.

Proof. Suppose ∃ x′ ∈ S with cTx′ < cTx, let y = λx′ + (1 − λ)x for λ > 0 small. Since S is a convex, y ∈ S, as λ
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small ‖y − x‖ ≤ δ,

cT y = cT (λx′ + (1− λ)x)
= λ︸︷︷︸
≥0

cTx′︸︷︷︸
<cT x

+ (1− λ)︸ ︷︷ ︸
≥0

cTx

< λcTx+ (1− λ)cTx
= cTx

This is a contradiction.

We want to study the cases where feasible region of (P) is convex.

Definition 32: Covex

Function f : Rn → R is convex if for all a, b ∈ Rn,

f(λa+ (1− λ)b) ≤ λf(a) + (1− λ)f(b)

for all 0 ≤ λ ≤ 1.

Example 6.1.4. We claim that f(x) = x2 is convex. Pick a, b ∈ R and pick λ where 0 ≤ λ ≤ 1.
We check that

λ(1− λ)2ab− [λ(1− λ)(a2 + b2)] = −λ(1− λ)(a− b)2 < 0

since λ, (1− λ) > 0 and (a− b)2 ≥ 0. Hence,

[λa+ (1− λ)b]2 ≤ λa2 + (1− λ)b2

Definition 33: Convex Set

Let g : Rn → R be a convex function and β ∈ R, it follows that S = {x ∈ Rn : g(x) ≤ β} is a convex set.

Proof. Pick a, b ∈ S, and λ where 0 ≤ λ ≤ 1. Let x = λa+ (1− λ)b, our goal si to show that x ∈ S, that g(x) ≤ β.

g(x) = g(λa+ (1− λ)b)
≤ λ︸︷︷︸
≥0

g(a)︸︷︷︸
≤β

+ (1− λ)︸ ︷︷ ︸
≥0

g(b)︸︷︷︸
≤β

(since a, b ∈ S)

≤ λβ + (1− λ)β
= β

Remark 38

Suppose

min cTx (P)
s.t. gi(x) ≤ 0 (i = 1, . . . , k)

If all functions gi are convex, then the feasible region of (P) is convex.

Proof. Let Si = {x : gi(x) ≤ 0}, by the previous result, Si is convex. The feasible region of (P) is
⋂k
i=1 Si. Since the

intersection of convex sets is convex, the result follows.
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Definition 34: Epigraph

Let f : Rn → R be a function. The epigraph of f is then given by

epi(f) =
{(

y

x

)
: y ≥ f(x), x ∈ Rn

}
⊆ Rn+1

Remark 39

Let f : Rn → R be a function, it follows that
• f is convex ⇒ epi(f) is convex.
• epi(f) is convex ⇒ f is convex.

6.2 The KKT Theorem
How can we prove a feasible solution x̄ is optimal to the NLP?
Step 1 Find a relaxation of the NLP.
Step 2 Prove x̄ is optimal for the relaxation.
Step 3 Deduce that x̄ is optimal for the NLP.
Example 6.2.1. Claim: x̄ = (1, 1)T is an optimal solution to

min − x1 − x2

s.t. − x2 + x2
1 ≤ 0 (1)

− x1 + x2
2 ≤ 0 (2)

− x1 + 1
2 ≤ 0 (3)

Proof. Tight constraints for x̄ are (a) and (b). Goal: show that the objective function is in the cone of tight constraints.(
1
1

)
?
∈ cone

{(
2
−1

)
,

(
−1
2

)}
⇐
(

1
1

)
= 1×

(
2
−1

)
+ 1×

(
−1
2

)
Original NLP:

min − x1 − x2

s.t. − x2 + x2
1 ≤ 0 (1)

− x1 + x2
2 ≤ 0 (2)

− x2 + 1
2 ≤ 0 (3)

Relaxation (we’ll show why this is the relaxation later):

min − x1 − x2

s.t. 2x2 − x2 ≤ 1 (a)
− x1 + 2x2 ≤ 1 (b)

It is clear that x̄ = (1, 1)T is an optimal solution to the relaxation. =⇒ x̄ is an optimal solution to the original NLP.

We use subgradients in general to solve this kind of problem.

Definition 35: Subgradient

Let f : Rn → R be a convex function and x̄ ∈ Rn. Then, s ∈ Rn is a subgradient of f at x̄ if

h(x) := f(x̄) + sT (x− x̄) ≤ f(x) ∀ x ∈ Rn

Example 6.2.2. Consider the NLP in 6.2.1, f : R2 → R where f(x) = −x1 + x2
2 and x̄ = (1, 1)T . We claim that

(−1, 2)T is a subgradient of f at x̄.

h(x) = f(x̄) + sT (x− x̄) = 0 + (−1, 2)(x− (1, 1)T ) = −(x1 − 1) + 2(x2 − 1) = −x1 + 2x2 − 1
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Check: h(x) ≤ f(x) for all x ∈ Rn.

−x1 + 2x2 − 1
?
≤ −x1 + x2

2 ⇔ x2
2 − 2x2 + 1

?
≥ 0

which is the case as x2
2 − 2x2 + 1 = (x2 − 1)2 ≥ 0.

Definition 36: Supporting Set

Let C ∈ Rn be a convex set and let x̄ ∈ C. The halfspace F = {x : sTx ≤ β} is supporting C at x̄ if
1. C ⊆ F and
2. sT x̄ = β. That is, x̄ is on the boundary of F .

Remark 40

let g : Rn → R be convex and let x̄ where g(x̄) = 0. Let s be a subgradient of g at x̄. Let C = {x : g(x) ≤ 0},
F = {x : h(x) := g(x̄) + sT (x− x̄) ≤ 0}. Then, F is a supporting halfspace of C at x̄.

• C is convex, as g is a convex function.
• F is a halfspace, as h(x) is a affine function, and
• h(x̄) = g(x̄) = 0; thus, x̄ is on the boundary of F .

Proof. Claim: C ⊆ F . Let x ∈ C and thus g(x) ≤ 0. By definition of a subgradient, we know that h(x) ≤ g(x). It
follows that h(x) ≤ g(x) ≤ 0. Hence, x ∈ F .
Claim: h(x̄) = 0. h(x̄) = g(x̄) = 0.

Example 6.2.3. Continue from 6.2.2. Let g(x) = x2
2 − x1, x̄ = (1, 1)T , and s = (−1, 2)T is a subgradient at x̄.

h(x) = 0 + (−1, 2)
[(
x1

x2

)
−
(

1
1

)]
= −x1 + 2x2 − 1

F = {x : −x1 + 2x2 ≤ 1}

We can use this to construct relaxations of NLPs. Given constriant gi(x) ≤ 0, if we replace the nonlinear contraint by the
linear constraint h(x) = gi(x̄) + sT (x− x̄) ≤ 0, we get a relaxation.

Theorem 20: KKT Theorem - Subgradient

min cTx

s.t. gi(x) ≤ 0 (i = 1, . . . , k)

• g1, . . . , gk are all convex
• x̄ is a feasible solution
• ∀ i ∈ I, gi(x̄) = 0
• ∀ i ∈ I, s(i) is a subgradient for gi at x̄.

If −c ∈ cone{s(i) : i ∈ I}, then x̄ is optimal.

Proof.

min cTx

s.t. gi(x) ≤ 0 (i ∈ I)

We proved that the set of solutions to gi(x) ≤ 0 is contained in the set of solutions to gi(x̄) + s(i)(x− x̄) ≤ 0, which can
be rewritten as s(i)x ≤ s(i)x̄− gi(x̄).
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We then have a relaxation

max − cTx
s.t. s(i)x ≤ s(i)x̄− gi(x̄) (i ∈ I)

Then, x̄ is optimal for the relaxation if −c ∈ cone{s(i) : i ∈ I}. This means that x̄ is also optimal for the NLP.

Example 6.2.4. Consider the NLP in 6.2.1, we know that x̄ = (1, 1)T is feasible, I = {1, 2} (where gi(x̄) = 0). (2,−1)T
is subgradient for gi at x̄. (−1, 2)T is subgradient for g2 at x̄.

−
(
−1
−1

)
∈ cone

{(
2
−1

)
,

(
−1
2

)}
⇒ x̄ is optimal.

Remark 41

Let f : Rn → R be a convex function and let x̄ ∈ Rn. If the gradient ∇f(x̄) of f exists at x̄, then it is a
subgradient.

If the partial derivative ∂f(x)
∂xj

exists for f at x̄ for all j = 1, . . . , n, then the gradient ∇f(x̄) is obtained by evaluating
for x̄, (

∂f(x)
∂x1

, · · · , ∂f(x)
∂xn

)T

Example 6.2.5. Computing the gradient of the convex function f(x) = −x2 + x2
1 at x̄ = (−1,−1)T , we have(

∂f(x)
∂x1

,
∂f(x)
∂x2

)T
= (2x1,−1)T

For x̄ we get ∇f(x̄) = (2,−1)T . Since (2,−1)T is the gradient of f at x̄, it is a subgradient as well.

Definition 37: Slater Point

A feasible solution to x̄ is a Slater point of

min cTx

s.t. gi(x) ≤ 0 (i = 1, . . . , k)

if gi(x̄) < 0 for all i = 1, . . . , k.

In 6.2.1, x̄ =
(

3
4 ,

3
4

)T
is a slater point.

Theorem 21: The Karush-Kuhn-Tucker (KKT) Theorem

Consider the following NLP:

min cTx

s.t. gi(x) ≤ 0 (i = 1, . . . , k)

Suppose that
1. g1, . . . , gk are all convex
2. there exists a slater point
3. x̄ is a feasible solution
4. I is the set of indicies i for which gi(x̄) = 0, and
5. ∀ i ∈ I, there exists a gradient ∇gi(x̄) of gi at x̄.

Then x̄ is optimal ⇔ −c ∈ cone{∇gi(x̄) : i ∈ I}.
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Directed Path 51
Dual & Primal 49

Epigraph 76
Equivalent Programs 24
Extreme Point 42
Extreme Points in Polyhedron 44
Extreme Points of Feasible Region 43

Feasible Region 39
Feasible Solution 21
Ferkas’ Lemma 23
Fermat’s Last Theorem 20
Find Canonical Form 31
Foundamental Theorem of Linear Programming 22, 37

Geometry of Polyhedron 40

KKT Theorem - Subgradient 77

Line, Line Segment 41
Linear Program 9
Local Optimum 74

Matching 16
Meyer’s Theorem 70

Non-linear Program 73

Optimal Solution 21

Perfect Matching 16
Perfect Matching Theorem 16
Polyhedron 40
Properly Contained 41
Properties of LP 37

Shortest Path 59
Shortest Path Algorithm 51
Shortest Path Algorithm Correctness 59
Simplex 34
Slack 51
Slater Point 78
Standard Equality Form (SEF) 24
Strong Duality Theorem 63
Strong Duality Theorem - Feasibility Version 64
Subgradient 76
Supporting Set 77

The Karush-Kuhn-Tucker (KKT) Theorem 78
Tight constraint 44
Translate 40
Two-phase Simplex 37

Weak Duality 49
Weak Duality Theorem 62
Width Assignment 47
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