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Chapter 1

Intro to Probability

1.1 Definitions
Uncertainty of Randomness

• variability in populations consisting of animate or inanimate objects

• variability in processes or phenomena

Definition of Probability

Definition 1.1.1. Probability

• Classical Definition:
number of ways the event can occur

number of outcomes in S
. All points in the sample space S are

equally likely.

• Relative Frequency: The (limiting) proportion (or fraction) of times the event occurs in a very long
series of repetitions of an experiment or process.

• Subjective Probability: A measure of how sure the person making the statment is that the event will
happen.

Note: All these definitions have serious limitations:

• Classical Definition: hard to define "equally likely"

• Relative Frequency: we can never repeat an experiment indefinitely, or obtain a long series of repe-
titions due to time, cost, or other limitations

• Subjective Probability: it gives no rational basis for people to agree on a right answer

1.1.1 Probability Model
Definition 1.1.2. Probability Model

• a sample space of all possible outcomes of a random experiment is defined

• a set of events, subsets of the sample space to which we can assign probabilities, is defined

7



8 CHAPTER 1. INTRO TO PROBABILITY

• a mechanism of assigning probabilities (numbers between 0 and 1) to events is specified

Definition 1.1.3. Discrete
S is discrete if it consists of a finite or countably infinite set of simple events. A countably infinite sequence
is one that can be put into a one-to-one correspondence with the positive integers.

Definition 1.1.4. Simple event
An event in discrete sample space is a subset A ⊂ S, if the event is indivisible so it contains only one point,
we call it simple event.

Definition 1.1.5. Compound event
An event A made up of two or more simple events such as is called a compound event.

Definition 1.1.6. Probability distribution
Let S = {a1, a2, . . .} be a discrete sample space, assign probabilities P (ai), i = 1, 2, 3, . . . to the ai’s such
that the following two conditions hold:

1. 0 ≤ P (ai) ≤ 1

2.
∑

all ai P (ai) = 1

The set of probabilities {P (ai), i = 1, 2, . . .} is called a probability distribution on S.



Chapter 2

Mathematical Probability Models

2.1 Sample Spaceas and Probability
Definition 2.1.1. Experiment: the phenomenon or process

Definition 2.1.2. Trial: a single repetition of the experiment

2.1.1 Sample Space
Definition 2.1.3. Sample Space: The set of all possible distinct outcomes to a random experiment, with the
property that in a single trial, one and only one of these outcomes occurs.

Experiment is made up of trials. The outcomes of an experiment is the sample space.
Sample space may be discrete (finite or countably infinite set of simple events) or non-discrete. We only
consider discrete sample spaces.

9
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Chapter 3

Probability and Counting Techniques

P (A) =
number of outcomes in A
number of outcomes in S

(3.1)

3.1 Addition and Multiplication Rules
Theorem 3.1.1. Addition Rule
Suppose we can do job 1 in P ways and job 2 in q ways. Then we can do either job 1 OR job 2 (but not
both), in p+ q ways.

Theorem 3.1.2. Multiplication Rule
Suppose we can do job 1 in p ways, for each of these ways, we can do job 2 in q ways. Then we can do both
job 1 AND job 2 in p× q ways.

3.2 Counting Arranegements or Permutations
Example:
Suppose the letters a, b, c, d, e, f are arranged at random to form a six-letter word (an arrangement) – we
must use each letter once only.

We generalize the problem in several ways. In each case, we count the number of arragements by counting
the number of ways we can fill the positions in the arrangement. Suppose we start with n symbols, we have

• n× (n− 1)× · · · × 1 arrangements of length n using each symbol once and only once. This product
is denoted by n!

• n× (n−1)×· · ·× (n−k+1) arragements of length k using each symbol at most once. This product
is denoted by n(k)

• n× n× · · · × n = nk arrangements of length k using each symbol as often as we wish

Theorem 3.2.1. Stirling’s Approximation:
For large n there is an approximation to n! called Stirling’s approximation. Note that the sequence {an} is
asymptotically equivalent to the sequence {bn} if

lim
n→∞

an
bn

= 1

11
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3.3 Counting Subsets or Combinations
Definition 3.3.1. Number of subsets of size k
We use the combinatorial symbol

(
n
k

)
to denote the number of subsets of size k that can be selected from a

set of n objects.

m =

(
n

k

)
=
n(k)

k!

3.3.1 Properties of Combination
You should be able to prove the following for n and k non-negative integers:

1. n(k) = n!
(n−k)!

= n(n− 1)(k−1) for k ≥ 1

2.
(
n
k

)
= n!

k!(n−k)!
= n(k)

k!

3.
(
n
k

)
=
(

n
n−k

)
for all k = 0, 1, . . . , n

4. If we define 0! = 1, then the formulas hold with
(
n
0

)
=
(
n
n

)
= 1

5.
(
n
k

)
=
(
n−1
k−1

)
+
(
n−1
k

)
6. Binomial Theorem: (1 + x)n =

(
n
0

)
+
(
n
1

)
x+

(
n
2

)
x2 + · · ·+

(
n
n

)
xn

3.4 Number of Arragements When Symbols are Repeated
Example:
Suppose the letters of the word STATISTICS are arranged at random. Find the probability of the event G
that the arragement begins and ends with S

Solution. We construct the arragements by filling ten boxes corresponding to the positions in the arragement

We can choose the position for the three S’s in
(

10
3

)
ways. For each of these choices, we can choose the

positions for the three T ’s in
(

7
3

)
ways, then we can place the two I’s in

(
4
2

)
ways, then the C in

(
2
1

)
ways

and finally the A in
(

1
1

)
ways. The number of equally probable outcomes in the sample space is(

10

3

)(
7

3

)(
4

2

)(
2

1

)(
1

1

)
=

10!7!4!2!1!

3!7! · 3!4! · 2!2! · 1!1! · 1!0!
=

10!

3!3!2!1!1!

�



Chapter 4

Probability Rules and Conditional
Probability

4.1 General Methods
Rules:

1. P (S) = 1

2. For any event A, 0 ≤ P (A) ≤ 1

3. If A and B are two events with A ⊆ B, then P (A) ≤ P (B)

Theorem 4.1.1. De Morgan’s Laws

(a) ¯A ∪B = Ā ∩ B̄

(b) ¯A ∩B = Ā ∪ B̄

4.1.1 Rules of Union of Events
Rules:

5. (a) Addition Law of Probability or the Sum Rule

P (A ∪B) = P (A) + P (B)− P (A ∩B)

(b) Probability of the Union of Three Events

P (A ∪B ∪ C) = P (A) + P (B) + P (C)− P (AB)− P (AC)− P (BC) + P (ABC)

(c) Probability of the Union of n Events

P (A1 ∪ A2 ∪ A3 ∪ · · · ∪ An) =
∑
i

P (Ai)−
∑
i<j

P (AiAj) +
∑
i<j<k

P (AiAjAk)

−
∑

i<j<k<l

P (AiAjAkAl) + · · ·

where the subscripts are all distince, for example i < j < k < l

13
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6. (a) Probability of the Union of Two Mutually Exclusive Events
Let A and B be mutually exclusive events. Then

P (A ∪B) = P (A) + P (B)

(b) Probability of the Union of n Mutually Exclusive Events
In general, let A1, A2, . . . , An be mutually exclusive events, then

P (A1 ∪ A2 ∪ · · · ∪ An) =
n∑
i=1

P (Ai)

7. Probability of the Complement of an Event

P (A) = 1− P (Ā)

4.2 Intersections of Events and Independence
Definition 4.2.1. Independent and Dependent Events
Events A and B are independent events iff

P (A ∩B) = P (A)P (B)

If the events are not independent, they are dependent

4.3 Conditional Probability
Definition 4.3.1. P (A|B)
The probability that event A occurs, when we know that B occurs. We call this the conditional probability
of A given B.

P (A|B) =
P (A ∩B)

P (B)
provided P (B) > 0

Theorem 4.3.1. A and B are two events defined on a sample space S s.t. P (A) > 0, P (B) > 0. A and B
are independent events iff

P (A|B) = P (A) or P (B|A) = P (B)

Example 4.3.1. The probability of a randomly selected male is colour-blind is 0.05, whereas the probability
a female is colour-blind is only 0.0025. If the population is 50% male, what is the fraction that is colour-
blind?

Solution. We denote that
C – the person selected is colour-blind
M – the person selected is male
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F = M – the person selected is female.
We need to find P(C). Given that

P (C|M) = 0.05

P (C|F ) = 0.0025

P (M) = 0.5 = P (F )

We need to know what is P(C). From Definition 4.1, we know that

P (M) =
P (C ∩M)

P (C|M)

P (F ) =
P (C ∩ F )

P (C|F )

C = (C ∩M) ∪ (C ∩M)

Therefore, we have

P (C ∩M) = 0.05× 0.5 = 0.025

P (C ∩ F ) = 0.0025× 0.5 = 0.00125

P (C) = 0.025 + 0.00125 = 0.02625

�

4.4 Product Rules, Law of Total Probability, and Bayes’ Theorem
Theorem 4.4.1. Rule 7: Product Rules
Let A, B, C, D... be arbitrary events in a sample space. Assume that P (A) > 0, P (A ∩ B) > 0, and
P (A ∩B ∩ C) > 0, then

P (A|B) = P (A)P (B|A)

P (ABC) = P (A)P (B|A)P (C|AB)

P (ABCD) = P (A)P (B|A)P (C|AB)P (D|ABC)

· · ·

Theorem 4.4.2. Rule 8: Law of Total Probability
Let A1, A2, · · ·Ak be a partition of the sample space S into disjoint events, that is

A1 ∪ A2 ∪ · · · ∪ Ak = S and Ai ∩ Aj = ∅ if i 6= j

Let B be an arbitrary event in S. Then

P (B) = P (BA1) + P (BA2) + · · ·+ P (BAk)

=
k∑
i=1

P (B|Ai)P (Ai)

Example 4.4.1. In an insurance portfolio 10% of the policy holders are in class A1, 40% are in Class A2,
10% are in Class A3. The probability there is a claim on a Class A1 policy in a given year is 0.10; similar
probabilities for Classes A2 and A3 are 0.05 and 0.02. Find the probability that if a claim is made, it is
made on a Class A1 policy.



16 CHAPTER 4. PROBABILITY RULES AND CONDITIONAL PROBABILITY

Solution. We denote
B – policy has a claim
Ai – policy is of Class Ai, i = 1, 2, 3

P (A1) = 0.1 P (B|A1) = 0.10

P (A2) = 0.4 P (B|A2) = 0.05

P (A3) = 0.5 P (B|A3) = 0.02

We need to find P(A_1|B). We know that

P (A1|B) =
P (A1 ∩B)

P (B)

P (B) = P (A1 ∩B) + P (A2 ∩B) + P (A3 ∩B)

= P (B|A1) · P (A1) + P (B|A2) · P (A2) + P (B|A3) · P (A3)

= 0.10× 0.1 + 0.05× 0.4 + 0.02× 0.5 = 0.01 + 0.02 + 0.01 = 0.04

P (A1 ∩B) = P (B|A1) · P (A1) = 0.10× 0.1 = 0.01

=⇒ P (A1|B) =
0.01

0.04
= 0.25

�

Example 4.4.2. Testing for HIV
Tests used to diagnose medical conditions are often imperfect, and give false positive or false negative
results, as described in Problem 2.6 of Chapter 2. A fairly cheap blood test for the Human Immunodeficiency
Virus (HIV) that causes AIDS (Acquired Immune Deficiency Syndrome) has the following characteristics:
the false negative rate is 2% and the false positive rate is 0.5%. It is assumed that around 0.04% of Canadian
males are infected with HIV. Find the probability that if a male tests positive for HIV, he actually has HIV.

Solution. We can define

A = male has HIV
B = blood test is positive

We need to find the value of P (A|B) (when we know that the blood test is positive, it is a male). We know
that

P (A) = 0.0004 P (A) = 0.9996

P (B|A) = 0.98 P (B|A) = 0.05

Since by Theorem 4.2, P (AB) = P (A)P (B|A), we can conclude that

P (AB) = 0.0004× 0.98 ≈ 0.000392

P (AB) = P (A)P (B|A) = 0.9996× 0.05 ≈ 0.004998

P (B) = P (AB) + P (AB) ≈ 0.00539

P (A|B) =
P (AB)

P (B)
≈ 0.0727

�
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Theorem 4.4.3. Bayes’ Theorem
Suppose A and B are events defined on a sample space S with P (B) > 0, we have

P (A|B) =
P (B|A)P (A)

P (B)
=

P (B|A)P (A)

P (AB) + P (AB)

4.5 Useful Series and Sums

4.5.1 Geometric Series
n−1∑
i=0

ti = 1 + t+ t2 + · · ·+ tn−1 =
1− tn

1− t
for t 6= 1

If |t| < 1, then
∞∑
x=0

tx = 1 + t+ t2 + · · · = 1

1− t

Note: other identities can be obtained from this one by differentiation.

4.5.2 Binomial Theorem

(1 + t)n = 1 +

(
n

1

)
t1 +

(
n

2

)
t2 + · · ·+

(
n

n

)
tn =

n∑
x=0

(
n

x

)
tx

n is a positive integer and t is any real number.
If |t| < 1, then

(1 + t)n =
n∑
x=0

(
n

x

)
tx

4.5.3 Multinomial Theorem
A generalization of the Binomial Theorem:

(t1 + t2 + · · ·+ tk)
n =

∑ n!

x1!x2! . . . xk!
tx11 t

x2
2 . . . txkk

where xi are all non-negative integers s.t.
∑k

i=1 x1 = n where n is a positive integer.

4.5.4 Hypergeometric Identity
∞∑
x=0

(
a

x

)(
b

n− x

)
=

(
a+ b

n

)
Note: There will not be an infinite number of terms if a and b are positive integers since the terms become
0 eventually. (

4

5

)
=

4(5)

5!
=

4× 3× 2× 1× 0

5!
= 0
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4.5.5 Exponential Series
Let f(x) = ex, then f (k)(0) = 1 for k = 1, 2, . . . , therefore,

et =
t0

0!
+
t1

1!
+
t2

2!
+ · · · =

∞∑
n=0

tn

n!
∀ t ∈ R

We can use the limit definition of the exponential function:

et = lim
n→∞

(1 +
t

n
)n

4.5.6 Special series involving integers

1 + 2 + · · ·+ n =
n(n+ 1)

2

12 + 22 + · · ·+ n2 =
n(n+ 1)(2n+ 1)

6

13 + 23 + · · ·+ n3 =

[
n(n+ 1)

2

]2

Example 4.5.1. Find

∞∑
x=0

x(x− 1)

(
a

x

)(
b

n− x

)
Solution. Since for x = 0 or x = 1 the term becomes 0, we can start the sumation with x = 2.

∞∑
x=0

x(x− 1)

(
a

x

)(
b

n− x

)
=
∞∑
x=2

x(x− 1)
a!

x(x− 1)(x− 2)!(a− x)!

(
b

n− x

)
=
∞∑
x=2

a!

(x− 2)!(a− x)!

(
b

n− x

)
=
∞∑
x=2

a(a− 1)(a− 2)!

(x− 2)![(a− 2)− (x− 2)]!

(
b

n− x

)
= a(a− 1)

∞∑
x=2

(
a− 2

x− 2

)(
b

(n− 2)− (x− 2)

)
= a(a− 1)

(
a+ b− 2

n− 2

)
(by Hypergeometric Identity)

�



Chapter 5

Discrete Random Variables

5.1 Random Variables and Probability Functions
Introduce numerical-valued variables X, Y, . . . to describe outcomes.

Definition 5.1.1. Range: the set of possible values for the variable.
e.g. the random variable X = number of heads that occur, it has range A = {0, 1, 2, 3}

Definition 5.1.2. Random Variable: a function that assigns a real number to each point in a sample space
S.

We denote random variables by capital letters (X, Y, etc.) and denote the actual numbers taken by random
variables by small letters (x, y, etc.). There’s a difference between functions (f(x) or X(a)) and value of a
function (f(2) or X(a) = 2).

• Discrete random variables take integer values or, more generally, values in a countable set. (finite
number, only has one answer)
Recall: a set is countable if its elements can be placed in a one-one correspondence with a subset of
the positive integers.

• Continuous random variables take values in some interval of real numbers like (0, 1), or (0,∞), or
(-∞, ∞). (infinite number, usually used in measuring. Different person might give a different
answer.)

We want to set up general models to describe how the probability is distributed among the possible values
in the range of a random variable X.

Definition 5.1.3. Probability Function
Let X be a discrete random variable with range(X) = A. The probability function (p.f.) of X is

f(x) = P (X = x) defined for all x ∈ A

The set of pairs {(x, f(x)) : x ∈ A} is the probability distribution of X. All probability functions must
have two properties:

1. f(x) ≥ 0 for all x ∈ A

2.
∑

all x∈A f(x) = 1

19
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Definition 5.1.4. Comulative Distribution Function
c.d.f. of X is usually denoted by F(X)

F (X) = P (X ≤ x) defined for all x ∈ R

In general, F(x) can be obtained from f(x) using

F (X) = P (X ≤ x) =
∑
u≤x

f(u)

1. F(x) is a non-decreasing function of x for all x ∈ R

2. 0 ≤ F (X) ≤ 1 for all x ∈ R

3. limx→−∞ F (x) = 0 and limx→∞ F (x) = 1

4. If x ∈ A and x− 1 ∈ A, f(x) = F (x)− F (x− 1) = P (X = x)

Remark: State the domain of the probability function. That is, the possible values of the random variable,
or the values x for which f(x) is defined. This is the essential part of the function’s definition.
In general in a probability histogram, probabilities are depicted by areas.

5.1.1 Model Distributions
Many processes or problems have the same structure.

Example 5.1.1. The following three problems are essentially the same

1. A fair coin is tossed 10 times and the "number of heads obtained" (X) is recorded.

(a) Type of outcome: heads/tails

(b) Repeated times: 10

2. 20 seeds are planted in separate pots and the "number of seeds germinating" (X) is recorded.

(a) Type of outcome: germinate/don’t germinate

(b) Repeated times: 20

3. 12 items are picked at random from a factory’s production line and examined for defects. The number
of items having no defects (X) is recorded.

(a) Type of outcome: no defects/defects

(b) Repeated times: 12

5.1.2 Statistical Computing
Software systems developed for Probability and Statistics, e.g. R.

5.2 Discrete Uniform Distribution
Physical Setup:
Suppose X takes values a, a + 1, a + 2, . . . b with all values being equally likely. Then X has a discrete
Uniform Distribution, on the set {a, a+ 1, a+ 2, . . . , b}.
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Probability Function

There are b− a+ 1 values X can take so the probability at each of these values must be 1
b−a+1

in order that∑b
x=a f(x) = 1. Therefore,

f(x) = P (X = x) =

{
1
6

for x = a, a+ 1, . . . , b

0 otherwise

Example 5.2.1. Suppose a fair die is thrown once and let X be the number on the face. First find the
cumulative distribution function, F (x) or X .

Solution. It’s a discrete Uniform distribution on the set {1, 2, 3, 4, 5, 6} having a = 1, b = 6, and the
probability function,

f(x) = P (X = x) =

{
1
6

for x = 1, 2, . . . , 6

0 otherwise

The cumulative distributtion function is F (x) = P (X ≤ x),

F (X) = P (X ≤ x) =


0 for x < 1
bxc
6

for 1 ≤ x < 6

1 for x ≥ 6

�

5.3 Hypergeometric Distribution
Physical Setup:
We have a collection ofN objects which can be classified into two distinct types. Call one type "success" (S)
and the other type "failure" (F ). There are r sucesses and N − r failures. Pick n objects at random without
replacement. Let X be the number of successes obtained. Then X has a Hypergeometric distribution.

5.3.1 Probability Function
If we don’t consider the order of selection, then there are

(
N
n

)
points in the sample space S. There are

(
r
x

)
ways to choose hte x success objects from the r available and

(
N−r
n−x

)
ways to choose the remaining (n− x)

objects from the (N − r) failures. Hence,

f(x) = P (X = x) =

(
r
x

)(
N−r
n−x

)(
N
n

)
We know that x ≥ 0. If the number n picked exceeds the numberN−r of failures, the difference n−(N−r)
must be successes. So, max(0, n − N + r) ≤ x ≤ min(r, n) since we can’t get more successes than the
number available or the number of objects chosen.

Example 5.3.1. In Lotto 6/49 a player selects a set of six numbers (with no repeats) from the set {1, 2, . . . , 40}.
In the lottery draw six numbers are selected at random. Find the probability function for X , the number
from your set which are drawn.
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Solution. Think of your numbers as S (success) objects and the remainder as F (failure) objects. Then X
has a Hypergeometric distribution with N = 49, r = 6, n = 6, so we have

f(x) = P (X = x) =

(
6
x

)(
43

6−x

)(
49
6

) for x = 0, 1, . . . , 6

�

5.4 Binomial Distribution
Physical Setup:
Suppose an "experiment" has two types of distinct outcomes – "success" (S) and "failure" (F), and let their
probabilities be p (for S) and 1 − p (for F). Repeat the experiment n independent times. Let X be the
number of successes obtained. Then X has a Binomial distribution. We write X ∼ Binomial(n, p) as
a shorthand for "X is distributed according to a Binomial Distribution with n repetitions and probability p
of success". The n individual experiments are often called "trials" or "Bernoulli trials" and the process is
called a "Bernoulli process" or a "Bionomial Process".

5.4.1 Probabiity Function

There are
n!

x!(n− x)!
=
(
n
x

)
different arrangements of x S’s and (n−x) F’s over the n trials. the probability

of each has p multiplied together x times and (1− p) multiplied (n−x) times in some order, since the trials
are independent. Therefore,

f(x) = P (X = x) =

(
n

x

)
px(1− p)n−x for x = 0, 1, 2, . . . , n

5.4.2 Computation
Many software packages and some calculators give Binomial probabilities. In R we use the function
dbinom(x, n, p) to compute f(x) and pbinom(x, n, p) to compute the corresponding cumulative distribution
function F (x) = P (X ≤ x).

5.4.3 Remark – Comparison of Bionomial and Hypergeometric Distribution
These two are similar. The key difference is that the Binomial requires independent repetitions with the
same probability of S, whereas the draws in Hypergeometric are made from a fixed collection of objects
without replacement. The trials (draws) are therefore not independent.

For example, if there are r = 10 S objects and N − r = 10 F objects, then the probability of getting an S
on draw two depends on what was obtained in draw one. If these draws had been made with replacement,
however, they would be independent and we would use the Bionomial rather than Hypergeometric.

IfN is large and the number n being drawn is relatively small in Hypergeometric setup, then we are unlikely
to get the same object more than once even if we do replace it. So it makes little practical difference whether
we draw with or without replacement, meaning that the Binomial and the Hypergeometric models should
produce similar probabilities.
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Example 5.4.1. Suppose we have 15 cans of soup with no labels, but 6 are tomato and 9 are pea soup. We
randomly pick 8 cans and open them. Find the probability three of them are tomato.

Solution. The correct solution uses the Hypergeometric distribution. and is (with X = number of tomato
soup cans picked)

P (X = 3) =

(
6
3

)(
9
5

)(
15
8

) ≈ 0.3916

If we incorrectly used the Binomial distribution, we would obtain(
8

3

)
(

6

15
)3(

9

15
)5 ≈ 0.2787

However, if we had 1500 cans: 600 tomato and 900 pea, we are not likely to get the same can again even
if we did replace each of the 8 cans after opening it. (Put another way, to probability we get a tomato soup
on each pick is very close to 0.4, regardless of what the other picks give). The Hypergeometric probability
gives (

600
3

)(
900
5

)(
1500

8

) ≈ 0.2974

The Binomial probability, (
8

3

)
(

600

1500
)3(

900

1500
)5 ≈ 0.2787

which is a very good approximation. �

5.5 Negative Bionomial Distribution

5.5.1 Physical Setup
It is almost the same as Bionomial: an experiment (trial) has two distinct types of outcome (S and F)
and is repeated independently with the same probability p, of success at each time. Continue doing the
experiment until a specified number, k, of success have been obtained. Let X be the number of failures
obtained before the k’th success. Then X has a negative Binomial Distribution. We can denote it as
X ∼ NegativeBionmial(k, p).

5.5.2 Probability Function
In all there will be x+ k trials (x F ’s and k S’s) and the last trial must be S. In the first x+ k − 1 trials we
then need x failures and (k − 1) successes in any order. There are

(x+ k − 1)!

x!(k − 1)!
=

(
x+ k − 1

x

)
different orders. Each order will have probability pk(1− p)x since there must be x trials which are failures
and k which are successes.

Note: You need to be careful to read how X is defined in a problem rather than mechanically "plugging in"
numbers in the above formula for f(x).
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5.5.3 Comparison btw Bionomial and Negative Bionomial Distributions
• Binomial: We know the number n of trials in advance but we do not know the number of successes

we will obtain until after the experiment.

• Negative Binomial: We know the number k of successes in advance but do not know the number of
trials that will be needed to obtain this number of success until after the experiment.

Example 5.5.1. A specific blood type T is 0.08 (8%). For blood donation purposes it is necessary to find 5
people with type T blood. If randomly selected individuals form the population are tested one after another,
then

1. What is the probability y persons have to be teseted to get 5 type T persons?

Solution. Let a type T person as a success (S) and a non-type T as an F . Let Y = number of persons
who have to be tested and let X = number of non-type T persons in order to get 5 S’s. Then X has a
Negative Binomial distribution with k = 5 and p = 0.8 and

P (X = x) = f(x) =

(
x+ 4

x

)
(0.08)5(0.92)x for x = 0, 1, 2, . . .

We are actually asked here about Y = X + 5. Thus,

P (Y = y) = P (X = y − 5)

= f(y − 5)

=

(
y − 1

y − 5

)
(0.08)5(0.92)y−5 for y = 5, 6, 7, . . .

�

2. What is the probability that over 80 people have to be tested?

Solution.

P (Y > 80) = P (X > 75)

= 1− P (X ≤ 75)

= 1−
75∑
x=0

f(x)

= 0.2235

�

5.6 Geometric Distribution

5.6.1 Physical Setup
Consider the Negative Binomial Distribution with k = 1. In this case we repeat independent Bernoulli
trials with two types of outcomes (S and F ) each time, and the same probability, p, of success each time
until we obtain the first success. Let X be the number of failures obtained before the first sucess. We write
X ∼ Geometric(p)
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5.6.2 Probability Function

There is only one arrangement with x failures followed by 1 success. This arrangement has probability

f(x) = P (X = x) = (1− p)xp for x = 0, 1, 2, . . .

Alternatively if we substitute k = 1 in the probability function for the Negative Binomial, we obtain

f(x) =

(
x+ 1− 1

x

)
p1(1− p)x = p(1− p)x for x = 0, 1, 2, . . .

which is the same.

Note:

• The Geometric Distribution involved a Geometric series.

• The Hypergeometric Distribution used the Hypergeometric Identity.

• Both the Binomial and Negative Binomial Distributions used the Bionmial Theorm.

Definition 5.6.1. Bernoulli Trials

the Binomial, Negative Binomial and Geometric models all involve trials (experiments) which:

1. are independent

2. have 2 distinct types of outcome (S and F )

3. have the same probability p of "success" (S) each time.

5.7 Poisson Distribution from Binomial

It has the probability function of the form:

f(x) = P (X = x) = e−µ
µx

x!
for x = 0, 1, 2, . . .

where µ > 0 is a parameter whose value depends on the setting for the model.

5.7.1 Physical Setup

It is as a limiting case of the Binomial distribution as n→∞ and p→ 0. In particular, we keep the product
np fixed at some constant value, µ, while letting n→∞. This automacially makes p→ 0. Let us see what
the limit of the Binomial probability function f(x) in this case.
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5.7.2 Probability Function

Since np = µ, p =
µ

n
and for x

f(x) =

(
n

x

)
px(1− p)n−x =

n(x)

x!
(
µ

n
)x(1− µ

n
)n−x

=
µx

x!

x terms︷ ︸︸ ︷
n(n− 1)(n− 2) · · · (n− x+ 1)

nx
(1− µ

n
)n−x

=
µx

x!
(
n− 1

n
)(
n− 2

n
) · · · (n− x+ 1

n
)(1− µ

n
)n(1− µ

n
)−x

lim
n→∞

f(x) =
µx

x!
(1)(1) · · · (1)︸ ︷︷ ︸

x terms

e−µ(1)−x (since ek = limn→∞(1 + k
n
)n)

=
µxe−µ

x!
for x = 0, 1, 2, . . .

Example 5.7.1. There are 200 people at party. What is the probability that 2 of them were born on January
1?

Solution. Assuming all days of the year are equally likely for a birthday (and ignore February 29) and that
the birthdays are independent (e.g. no twins!) We can use Bionmial distribution with n = 200 and p = 1

365

for X = number born on January 1, giving

f(2) =

(
200

2

)(
1

365

)2(
1− 1

365

)198

= 0.0876767

Since n is large and p is close to 0, we can use the Poisson distribution to approximate this Binomial
probability, with

µ = np =
200

365

giving

f(2) =
(200

365
)2e−

200
365

2!
= 0.086791

�

5.8 Poisson Distribution from Poisson Process
We derive the Poisson distribution as a model for the number of a certain kind of event or occurrence that
occur at points in time or in space. To this end, we use the "order" notation

g(∆t) = o(∆t)

as ∆t→ 0 to mean that the function g approaches 0 faster than ∆t as ∆t approaches 0, or that

g(∆t)

∆t
→ 0 as ∆t→ 0

For example, g(∆t) = (∆t)2 = o(∆t), but (∆t)
1
2 is not o(∆t).
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5.8.1 Physical Setup
Consider a situation in which a certain type of event occurs at random points in time (or space) according
to the following conditions:

1. Independence: the number of occurences in non-overlapping intervals are independent.

2. Individuality: for sufficiently short time periods of length ∆t, the probability of 2 or more events
occuring in the interval is close to zero, i.e. events occur singly not in clusters. More precisely, as
∆t→ 0, the probability of two or more events in the interval of length ∆t must go to zero faster than
∆t→ 0 or

P (2 or more events in (t, t+ ∆t)) = o(∆t) as ∆t→ 0

3. Homogeneity or Uniformity: events occur at a uniform or homogeneous rate λ over time so that the
probability of one occurrence in an interval (t, t + ∆t) is approximately λ∆t for small ∆t for any
value t. More precisely,

P (one event in (t, t+ ∆t)) = λ∆t+ o(∆t)

Theorem 5.8.1. Suppose a process satisfies the three conditions above, then assume events occur t the
average rate of λ per unit time. Let X be the number of times an event occur in a time period of t units,
then X ∼ Poisson(µ = λt)

These three conditions together define a Poisson Process.
Let X be the number of event occurrences in a time period of length t. Then it can be shown that X has a
Poisson distribution with µ = λ · t.

5.8.2 Probability Function
We are interested in time intervals of arbitrary length t, so as a temporary notation, let ft(x) be the proba-
bility of x occurences in a time interval of length t. We can determine what ft(x) is by relating ft(x) and
ft+∆t(x).

To find ft+∆t(x) we note that for ∆t small there are only two ways to get a total of x event occurrences:

1. there are x events by time t and no more from t to t+ ∆t

2. there are x− 1 by time t and 1 more from t to t+ ∆t

ft+∆t(x) ≈ ft(x)(1− λ∆t) + ft(x− 1)(λ∆t) + o(∆t)2

Re-arranging we have:
ft+∆t(x)− ft(x)

∆t
≈ λ[ft(x− 1)− ft(x)] + o(∆t)

Taking the limit as ∆t→ 0 we get

d

dt
ft(x) = λ[ft(x− 1)− ft(x)]

We need to find ft(x). We can approach the problem by using Bionomial approximation. Suppose that the
interval (0, t) is divided into n = t

∆t
small subintervals of length ∆t. The probability that an event falls

into a subinterval is approximately p = λ∆t provided that the length of interval is small. We can ignore
the probability of two or more events fall in the same subinterval since n × o(∆t) → 0 as ∆t → 0. The
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"successes" are independent on the n different subintervals, so the total number of successes recorded as X
is approximately Binomial(n, p).

P (X = x) ≈
(
n

x

)
px(1− p)n−x =

n(x)px

x!
(1− p)n(

1

1− p
)x

We can see that for fixed t, as ∆t→ 0, p = λ∆t→ 0 and n = t
∆t
→ 0, p = λt

n
. Therefore,

lim
∆t→0

(1− p)n = lim
∆t→0

(1− λt

n
)n = e−λt

For fixed x,

n(x)px = n(x)(
λt

n
)x = (λt)x

This yields the approximation:

P (X = x) ≈ (λt)xe−λt

x!

We can then confirm that

ft(x) = f(x) =
(λt)xe−λt

x!
for x = 0, 1, 2, . . .

provides a solutionto the system with required initial conditions. If we let µ = λt, we cna re-write f(x) as

f(x) =
µxe−µ

x!
, which is the Poisson distribution from 5.7.

Interpretation of µ and λ

1. µ refers to the intensity or rate of occurrence parameter for the events.

2. λt = µ represents the average number of occurrences in t units of time.

3. IMPORTANT: the value of λ depends on the units used to measure time.

Example 5.8.1. If phone calls arrive at store at an average rate of 20 per hour, then λ = 20 when time
t = an hour, and the average in 3 hours will be 3× 20 = 60. However, if time is measured in minutes then
λ = 20

60
= 1

3
; the average in 180 minutes is still 1

3
(180) = 60

Example 5.8.2. At a nuclear power station an average of 8 leaks of heavy water are reported per year. Find
the probability of 2 or more leaks in 1 month, if leaks follow a Poisson process.

Solution. A month is 1
12

of a year. Let X be the number of leaks in one month. Then X has the Poisson
distribution with λ = 8 and t = 1

12
, so µ = λt = 8

12
. Thus,

P (X ≥ 2) = 1− P (X < 2)

= 1− [f(0) + f(1)]

= 1− [
( 8

12
)0e−

8
12

0!
+

( 8
12

)1e−
8
12

1!
]

= 0.1443

�



5.9. COMBINING OTHER MODELS WITH THE POISSON PROCESS 29

5.8.3 Random Occurrence of Events in Space
If X is the number of events in a volume or area in space of size v and if λ is the average number of events
per unit volume (or area), then X has a Poisson distribution with µ = λv.

For this model to be valid, it is assumed that the Poisson process conditions given previously apply here,
with "time" replaced by "volume" or "area". Once again, note that teh value of λ depends on the units used
to measure volume or area.

5.8.4 Distinguishing Poisson from Binomial and Other Distributions
To konw when to use the Poisson distsribution and when not to use it, we need to check the three conditions
of a Poisson process. However, a quick decision can be made by asking ourselves the following questions:

1. Can we specify in advance the maximum value which X can take?
If we can, then the distribution is not Poisson. If there is no fixed upper limit, the distribution might be
Poisson, but is certainly not Binomial or Hypergeometric. e.g. the number of seeds which germinate
out of a package of 25 does not have a Poisson distribution since we know in advance that X ≤ 25.

2. Does it make sense to ask how often the event did not occur?
If it does make sense, then the distribution is not Poisson. If it makes sence, then it might be Poisson.
For instance, it does not make sense to ask how often a person did not hiccup during an hour. So the
number of hiccups in an hour might have a Poisson distribution. It would certainly not be Binomial,
Negative Binomial, or Hypergeometric.

5.9 Combining Other Models with the Poisson Process
Example:

A very large (essentially infinite) number of ladybugs is released in a large orchard. They scatter randomly
so that on average a tree has 6 ladybugs on it.Trees are all the same size:

1. Find the probability a tree has > 3 ladybugs on it.

Since the ladybugs are randomly scattered, we can use the Poisson distirbution to solve this. In this
case, λ = 6 and v = 1 (i.e. any tree has a "volume" of one unit), so µ = 6 and

P (X > 3) = 1− P (X ≤ 3) = 1− [f(0) + f(1) + f(2) + f(3)]

= [
60e−6

0!
+

61e−6

1!
+

62e−6

2!
+

63e−6

3!
]

= 0.8488

2. When 10 trees are picked at random, what is the probability 8 of these trees have > 3 ladybugs on
them?

We can use the Binomial Distribution where "success" means to have > 3 ladybugs on a tree. We
have n = 10, and

f(8) =

(
10

8

)
(0.8488)8(1− 0.8488)10−8 = 0.2772
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3. Trees are checked until 5 wtih > 3 ladybugs are found. Let X be the total number of trees checked.
Find the probability function, f(x)

We can use the Negative Binomial Distribution. We need the number of success, k, to be 5, and the
number of failures to be (x− 5). Then,

f(x) =

(
x− 1

4

)
(0.8488)5(1− 0.8488)x−5 for x = 5, 6, 7, . . .

4. Find the probability a tree with > 3 ladybugs on it has exactly 6.

This is a conditional probability. Let A = {6 ladybugs} and B = {a tree with > 3 ladybugs}. Then

P (A|B) =
P (AB)

P (B)
=

66e−6

6!

0.8488
= 0.1892

5. On 2 trees there are a total of t ladybugs. Find the probability that x of these are on the first of these
2 trees.

This is also a conditional probability. Let A ={x on the first tree}, B ={t− x on second tree}, and C
={2 trees has a total of t ladybugs}. Then we have

P (X = x) = P (A|C) =
P (AC)

P (C)
=
P (AB)

P (C)

=
P (A)P (B)

P (C)

We can use Poisson Distribution at this point to calculate each, with µ = 6×2 = 12in the denominator
since there are 2 trees.

P (A|C) =
(6xe−6

x!
)(6t−xe−6

(t−x)!
)

12te−12

t!

=
t!

x!(t− x)!

(
6

12

)x(
6

12

)t−x
=

(
t

x

)(
1

2

)x(
1− 1

2

)t−x
for x = 0, 1, . . . , t
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5.10 Summary of Probability Functions for Discrete Random Vari-
ables

Name Probability Function

Discrete Uniform f(x) =
1

b− a+ 1
; x = a, a+ 1, a+ 2, . . . , b

Hypergeometric

(
r
x

)(
N−r
n−x

)(
N
n

) ; x = max(0, n− (N − r)), . . . ,min(n, r)

Binomial f(x) =
(
n
x

)
px(1− p)n−x; x = 0, 1, 2, . . . , n

Negative Binomial f(x) =
(
x+k−1
x

)
pk(1− p)x; x = 0, 1, 2, . . .

Geometric f(x) = p(1− p)x; x = 0, 1, 2, . . .

Poisson f(x) =
µxe−µ

x!
; x = 0, 1, 2, . . .
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Chapter 6

Computational Methods and the
Statistical Software R

Not covered material.
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Chapter 7

Expected Value and Variance

7.1 Summarizing Data on Random Variables

"Summary" materials are often more helpful than giving full details of every outcomes.

Definition 7.1.1. Frequency Distribution

X Frequency
1 6
2 8
3 5
4 3
5 2
6 1

Definition 7.1.2. Sample
A set of observed outcomes x1, . . . , xn for a random variable X

Definition 7.1.3. Sample Mean
We refer to the fact that this is the average for a particular sample.

Unless somebody deliberately "cooked" the study, we would not expect to get precisely the sample mean if
we repeated it another time.

Definition 7.1.4. Median
A value such that half the results are below it and half above it, when the results are arranged in numerical
order.

Definition 7.1.5. Mode
The value which occurs most often. There is no guarentee there will only be a single mode.

35
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7.2 Expectation of a Random Variable
Example 7.2.1. Referencing to the data we have for Frequency Distribution, we have

x̄ =
(1× 6) + (2× 8) + (3× 5) + (4× 3) + (5× 2) + (6× 1)

25

= (1)(
6

25
) + (2)(

8

25
) + (3)(

5

25
) + (4)(

3

25
) + (5)(

2

25
) + (6)(

1

25
)

=
6∑

x=1

x× fraction of times x occurs

= 2.60

Now, suppose we know that the probability function of X is given by:

x 1 2 3 4 5 6
f(x) 0.30 0.25 0.20 0.15 0.09 0.01

Using the frequency "definition" of probability, in theory, we would expect the mean to be

(1)(0.30) + (2)(0.25) + (3)(0.20) + (4)(0.15) + (5)(0.09) + (6)(0.01) = 2.51

This "theoratical" mean is usually denoted by µ or E(x)

Definition 7.2.1. Expected Value
Let X be a discrete random variable with range(X) = A and probability function f(x). The expected value
(also called the mean or the expectation) of X is given by

E(X) =
∑
x∈A

xf(x)

Example 7.2.2. If you are playing a casino game in which X represents the amount you win in a single
play, then E(X) represents your average winnings (or losses!) per play.

Theorem 7.2.1. Let X be a discrete random variable with range(X) = A and probability function f(x).
The expected value of some function g(X) of X is given by

E[g(X)] =
∑
x∈A

g(x)f(x)

Proof. To use Definition 7.2.1, we need to determine the expected value of the random variable Y = g(X)
by first finding the probability function of Y , say fY (y) = P (Y = y) and then computing

E[g(X)] = E(Y ) =
∑
y∈B

yfY (y) (7.1)

where range(Y ) = B. Let Dy = {x : g(x) = y} be the set of x values with a given value y for g(x), then

fY (y) = P [g(X) = y] =
∑
x∈Dy

f(x)
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Substituting this in (7.1) we obtain

E[g(X)] =
∑
y∈B

yfY (y)

=
∑
y∈B

y
∑
x∈Dy

f(x)

=
∑
y∈B

∑
x∈Dy

g(x)f(x)

=
∑
x∈A

g(x)f(x)

Notes:

1. You can interpret E[g(X)] as the average value of g(X) in an infinite series of repetitions of the
process where X is defined.

2. E[g(x)] is also known as the "expected value" of g(X). However, this value can be a value g(X)
never takes.

3. When calculating expectations, look at your answer to be sure it makes sence. Suppose for example
that X takes values from 1 to 10. Then since

1 =
10∑
x=1

(1)P (X = x) ≤
10∑
x=1

xP (X = x) = E(X) ≤
10∑
x=1

(10)P (X = x) = 10(1) = 10

you should know you’ve made an arror if you get E(X) > 10 or E(X) < 1. In physical terms, E(X)
is the balance point for the probability histogram of f(x)

7.2.1 Linearity Properties of Expectations
1. For constants a and b,

E[ag(X) + b] = aE[g(x)] + b

Proof.

E[ag(X) + b] =
∑
all x

[ag(x) + b]f(x)

=
∑
all x

[ag(x)f(x) + bf(x)]

= a
∑
all x

g(x)f(x) + b
∑
all x

f(x)

= aEg(X) + b since
∑
all x

f(x) = 1

2. Similarly for constants a and b and two functions g1 and g2, it is also easy to show

E[ag1(X) + bg2(X)] = aE[g1(X)] + bE[g2(X)]
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7.3 Some Applications of Expectation
Be cautious that the expected value does NOT tell the whole story about a distribution. One investment
could have a higher expected value than another but much much larger probability of large losses.

Example 7.3.1. Expected Winnings in a Lottery
A small lottery sells 1000 tickets numbered 000, 001,. . . ,999; the tickets cost $10 each. When all the tickets
have been sold, the draw takes place. This consists of a single ticket from 000 to 999 being chosen at
random. For ticket holders the prize structure as follows:

• Your ticket is drawn – win $5000

• Your ticket has the same first two numbers as the winning ticket – win $100

• Your ticket has the same first number as the winning ticket – win $10

• All other cases – win nothing.

Let the random variable X be the winnings from a given ticket. Find E(X)

Solution. The possible values for X are 0, 10, 100, 500 (dollars). First, we need to find the probability
function for X . We find (make sure you can do this) that f(x) = P (X = x) has values

f(0) = 0.9, f(10) = 0.09, f(100) = 0.009, f(5000) = 0.001

The expected winnings are thus the expected value of X , or

E(X) =
∑
all x

xf(x) = 10× 0.09 + 100× 0.009 + 5000× 0.001 = $6.80

Thus, the gross expected winnings per ticket are $6.80. However, since a ticket costs $10 your expected net
winings are negative, -$3.20 (that is, an expected loss of $3.20) �

Remark: For any lottery or game of chance the expected net winnings per play is a key value. A fair game
is one for which this value is 0. Needless to say, casino games and lotteries are never fair: the expected net
winnings for a player are always negative.

Example 7.3.2. Diagnostic Medical Tests
Often there are cheaper, less accurate tests for diagnosing the presence of some conditions in a person,
along with more expensive, accurate tests. Suppose we have two cheap tests and one expensive test, with
the following characteristics. All three tests are positive if a person has the condition (there are no "false
negatives"), but the cheap tests give "false positives". Let a person be chosen at random, and let D =
{person has the condition}. For the three tests the probability of a false positive and cost are:

Test P(positive test|D̄) Cost (in dollars)
1 0.05 5
2 0.03 8
3 0 40

We want to check a large number of people for the condition, and have to choose among three testing
strategies:

1. Use Test 1, followed by Test 3 if Test 1 is positive

2. Use Test 2, followed by Test 3 if Test 2 is positive
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3. Use Test 3

Determine the expeceted cost per person under each of strategies 1, 2, and 3. We will then choose the
strategy with the lowest expecetd cost. It is known that about 0.001 of the population have the condition

P (D) = 0.001, P (D̄) = 0.999

Assume that given D or D̄, tests are independent of one another.

Solution. For a person tested chosen at random and tested, define the random variable X as follows:

X = 1 if the initial test is negative
X = 2 if the initial test is positive

Let g(x) be the total cost of testing the person, the expected cost per person is then

E[g(X)] =
2∑

x=1

g(x)f(x)

The probability function f(x) for X and the function g(x) differ for strategies 1, 2, 3. Consider for example
strategy 1. Then

P (X = 2) = P (initial test positive)

= P (D) + P (positive|D̄)P (D̄)

= 0.001 + (0.005)(0.999)

= 0.0510

The rest of the probabilities, associated with the values of g(X) and E[g(X)] are obtained below.

1. Strategy 1

f(2) = 0.0510 obtained above
f(1) = P (X = 1) = 1− f(2) = 1− 0.0510 = 0.949

g(1) = 5 g(2) = 45

E[g(X)] = 5(0.949) + 45(0.0510) = $7.04

2. Strategy 2

f(2) = 0.001 + (0.03)(0.999) = 0.03097

f(1) = 1− f(2) = 0.96903

g(1) = 8 g(2) = 48

E[g(X)] = 8(0.96903) + 48(0.03097) = $9.2388

3. Strategy 3

f(2) = 0.001, f(1) = 0.999

g(2) = g(1) = 40

E[g(X)] = $40.00

Therefore, the cheapest strategy is strategy 1. �
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7.4 Means and Variance of Distributions

7.4.1 Expected value of a Binomial random variable
Let X ∼ Binomial(n, p). Find E(X).

Solution.

µ = E(X) =
n∑
x=0

x

(
n

x

)
px(1− p)n−x

=
n∑
x=0

x
n!

x!(n− x)!
px(1− p)n−x

When x = 0 the value of the expression is 0. We can therefore begin our sum at x = 1. Provided x 6= 0, we
can expand x! as x(x− 1)!. Therefore

µ =
n∑
x=1

n(n− 1)!

(x− 1)![(n− 1)− (x− 1)]!
ppx−1(1− p)(n−1)−(x−1)

= np(1− p)n−1

n∑
x=1

(
n− 1

x− 1

)(
p

1− p

)x−1

Let y = x− 1 in the sum to get

µ = np(1− p)n−1

n−1∑
y=0

(
n− 1

y

)(
p

1− p

)y
= np(1− p)n−1

(
1 +

p

1− p

)n−1

by the Binomial Theorem

= np(1− p)n−1 (1− p+ p)n−1

(1− p)n−1

= np

�

7.4.2 Expected Value of the Poisson random variable
Let X have a Poisson distribution where λ is the average rate of occurance and the time interval is of length
t. Find µ = E(X)

Solution. Since the probability function of X is

f(x) =
(λt)xe−λt

x!
for x = 0, 1, . . .

then

µ = E(X) =
∞∑
x=0

x
(λt)xe−λt

x!
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As in the Binomial example, we can eliminate the term when x = 0 and expand x! to x(x − 1)! for
x = 1, 2, . . . to obtain

µ =
∞∑
x=1

x
(λt)xe−λt

x(x− 1)!

=
∞∑
x=1

(λt)e−λt
(λt)x−1

(x− 1)!

= (λt)e−λt
∞∑
x=1

(λt)x−1

(x− 1)!

= (λt)e−λt
∞∑
y=0

(λt)y

y!
letting y = x− 1 in the sum

= (λt)e−λteλt since ex =
∞∑
y=0

xy

y!

= λt

Note that we used the symbol µ = λt earlier in connection with the Poisson model: this was because we
knew (but couldn’t show until now) that E(X) = µ. �

Note:
In Chapter 9 we will give a simpler method of finding the means of Hypergeometric and Negative Binomial
distributions, in which

E(X) =
nr

N
Hypergeometric

E(X) =
k(1− p)

p
Negative Binomial

7.4.3 Variability

Definition 7.4.1. Variance
The variance of a random variable X , denoted by Var(X) or by σ2, is

σ2 = Var(X) = E
[
(X − µ)2

]
In other words, the variance is the average square of the distance from the mean. This turns out to be a very
useful measure of the variability of X .

The basic definition of variance is often awkward to use for mathematical calculation of Var(X), whereas
the following two results are often useful.

1. Var(X) = E(X2)− [E(X)]2 = E(X2)− µ2

2. Var(X) = E[X(X − 1)] + E(X)− [E(X)]2 = E[X(X − 1)] + µ− µ2
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Proof. 1. Using properties of expected value,

σ2 = Var(X) = E[(X − µ)2]

= E[X2 − 2µX + µ2]

= E(X2)− 2µE(X) + µ2 since µ is constant
= E(X2)− 2µ2 + µ2 since E(X) = µ

= E(X2)− µ2

2. Since X2 = X(X − 1) +X ,

E(X2)− µ2 = E[X(X − 1) +X]− µ2

= E[X(X − 1)] + E(X)− µ2

= E[X(X − 1)] + µ− µ2

Formula (2) is most often used when there is an x! term in the denominator of f(x). Otherwise, formula (1)
is generally easier to use.

Suppose the random variable X is the number of dollars that a person wins if they play a certain game. We
notice that the units of measurement of E(X) will also be dollars but units of measurement for Var(X)
will be (dollars)2. We can regain the original units by taking the square root of Var(X). This is called the
standard deviation of X , and is denoted by σ, or by sd(X).

Definition 7.4.2. Standard Deviation
The standard deviation of a random variable X is

σ = sd(X) =
√

Var(X) =
√
E[(X − µ)2]

Both variance and standard deviation are commonly used to measure variability.

Example 7.4.1. Suppose X is a random variable with probability function given by

x 1 2 3 4 5 6 7 8 9 Total
f(x) 0.07 0.10 0.12 0.13 0.16 0.13 0.12 0.10 0.07 1

Find E(X) and Var(X).

Solution.

µ = E(X)

= 1(0.07) + 2(0.10) + 3(0.12) + 4(0.13) + 5(0.16)

+ 6(0.13) + 7(0.12) + 8(0.10) + 9(0.07)

= 5

E(X) = 5 should be obvious by looking at the histogram. If a probability historgram is symmetric about
the line x = µ then E(X) = µ with any calculation.
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Without doing any calculations we also know that Var(X) = σ2 ≤ 16. This is because the possible values
ofX are {1,2,. . . ,9} and so the maximum possible value for (X−µ)2 is (9−5)2 or (1−5)2 = 16. Therefore,

Var(X) = E[(X − 5)2] =
9∑

x=1

(x− 5)2P (X = x)

≤
9∑

x=1

(9− 5)2P (X = x) = 16
9∑

x=1

P (X = x) = 16(1) = 16

An expected value of a funciton, sayE[g(X)] is always somewhere between the minimum and the maximum
value of the function g(x) so in this case 0 ≤ Var(X) ≤ 16. Since

E(X2) = (1)2(0.07) + (2)2(0.10) + (3)2(0.12) + (4)2(0.13) + (5)2(0.16)

+ (6)2(0.13) + (7)2(0.12) + (8)2(0.10) + (9)2(0.07)

= 30.26

Therefore,

σ2 = Var(X) = E(X2)− µ2

= 30.26− (5)2

= 5.26

and

σ =
√

Var(X)

=
√

5.26

= 2.2935

�

Example 7.4.2. Variance of Binomial random variable
Let X ∼ Binomial(n, p). Find Var(X).

Solution. The probability function for X is

f(x) =
n!

x!(n− x)!
px(1− p)n−x for x = 0, 1, . . . , n

so we’ll use formula (2) above,

E[X(X − 1)] =
n∑
x=0

x(x− 1)
n!

x!(n− x)!
px(1− p)n−x

If x = 0 or x = 1 the value of the term is 0, so we can begin summing at x = 2. For x 6= 0 or 1, we can
expand the x! as x(x− 1)(x− 2)! Therefore,

E[X(X − 1)] =
n∑
x=2

n!

(x− 2)!(n− x)!
px(1− p)n−x
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Now re-group to fit the Binomial Theorem, since that was the summation technique used to show
∑
f(x) =

1 and to derive µ = np

E[X(X − 1)] =
n∑
x=2

n(n− 1)(n− 2)!

(x− 2)![(n− 2)− (x− 2)]!
p2px−2(1− p)(n−2)−(x−2)

= n(n− 1)p2(1− p)n−2

n∑
x=2

(
n− 2

x− 2

)(
p

1− p

)x−2

Let y = x− 2 in the sum, giving

E[X(X − 1)] = n(n− 1)p2(1− p)n−2

n−2∑
y=0

(
n− 2

y

)(
p

1− p

)y
= n(n− 1)p2(1− p)n−2

(
1 +

p

1− p

)n−2

= n(n− 1)p2(1− p)n−2 (1− p+ p)n−2

(1− p)n−2

= n(n− 1)p2

Then

σ2 = E[X(X − 1)] + µ− µ2

= n(n− 1)p2 + np− (np)2

= n2p2 − np2 + np− n2p2

= np(1− p)

�

Example 7.4.3. Variance of Poisson random variable
Suppose X has a Poisson(µ) distribution. Find Var(X).

Solution. The probability function for X is

f(x) =
µxe−µ

x!
for x = 0, 1, 2, . . .

from which we obtain

E[X(X − 1)] =
∞∑
x=0

x(x− 1)
µxe−µ

x!

=
∞∑
x=2

x(x− 1)
µxe−µ

x(x− 1)(x− 2)!
setting the lower limit to 2 and expanding x!

= µ2e−µ
∞∑
x=2

µx−2

(x− 2)!
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Let y = x− 2 we get

E[X(X − 1)] = µ2e−µ
∞∑
y=0

µy

y!
= µ2e−µeµ = µ2

σ2 = E[X(X − 1)] + µ− µ2

= µ2 + µ− µ2 = µ

�

For the Poisson distribution, the variance equals the mean

7.4.4 Properties of Mean and Variance
If a and b are constants and Y = aX + b, then

µY = E(Y ) = aE(X) + b = aµX + b

and
σ2
Y = Var(Y ) = a2Var(X) = a2σ2

X

where µX = E(X), σ2
X = Var(X), E(Y ) = µY , Var(Y ) = σ2

Y .

Proof. We already showed that E(Y ) = E(aX + b) = aµX + b = µY . Then

σ2
Y = E

[
(Y − µY )2

]
= E{[(aX + b)− (aµX + b)2]}

= E
[
(aX − aµX)2

]
= E

[
a2(X − µX)2

]
= a2E

[
(X − µX)2

]
= a2σ2

X

Adding a constant, b, to all values of X has no effect on the amount of variability. So it makes sence that
Var(aX + b) doesn’t depend on the value of b. Also since variance is in squared units, multiplication by a
constant results in multiplying the variance by the constant squared.
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Chapter 8

Continuous Random Variables

8.1 General Terminology and Notation
For continuous random variables teh range (set of possible values) is an interval (or a collection of intervals)
on a real line.

8.1.1 Cumulative Distribution Function
Properties of a cumulative distribution function are the same for continuous variables as for discrete vari-
ables.

1. F (x) is defined for all real x.

2. F (x) is a non-decreasing function of x for all real x.

3. limx→−∞ F (x) = 0 and limx→∞ F (x) = 1

4. P (a < X ≤ b) = F (b)− F (a)

Note that, as indicated before, for a continuous random variable, we have

0 = P (X = a) = lim
ε→0

P (a− ε < X ≤ a) = lim
ε→0

F (a)− F (a− ε)

This means that limε→0 F (a− ε) = F (a) or that the distribution function F is a continuous function (in the
sense of continuity in calculus). Also, since the probability is 0 at each point:

P (a < X < b) = P (a ≤ X ≤ b) = P (a ≤ X < b) = P (a < X ≤ b) = F (b)− F (a)

For a discrete random variable, each of these 4 probabilities could be different. For the continuous distri-
butions in this chapter, we do not worry about whether intervals are open, closed, or half-open since the
probability of these intervals are the same.

8.1.2 Probability Density Function
To develop an intuitive picture of which values of x are more likely, and which are less likely, we have the
probability X lies in the interval

P (x ≤ X ≤ x+ ∆x) = F (x+ ∆x)− F (x)

47
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Definition 8.1.1. The probability density function (p.d.f) f(x) for a continuous random variable X is the
derivative

f(x) =
dF (x)

dx
where F (x) is the cumulative distribution function for X

If the derivative of F does not exist at x = a we usually define f(a) = 0 for convenience. Assume f(x) is
a continuous function of x at all points for which 0 < F (x) < 1

Properties of a probability density function

1. P (a ≤ X ≤ b) = F (b)− F (a) =
∫ b
a
f(x)dx (This follows from the definition of f(x))

2. f(x) ≥ 0 (since F (x) is non-decreasing, its derivative is non-negative)

3.
∫∞
−∞ f(x)dx =

∫
all x f(x)dx = 1 (This is because P (−∞ ≤ X ≤ ∞) = 1)

4. F (x) =
∫ x
−∞ f(u)du (This is just property 1 with a = −∞)

To see that f(x) represents the relative likelihood of different outcomes, we note that for ∆x small,

P

(
x− ∆x

2
≤ X ≤ x+

∆x

2

)
= F

(
x+

∆x

2

)
− F

(
x− ∆x

2

)
≈ f(x)∆x

Example 8.1.1. Consider the following spinner example, where

F (x) =


0 x ≤ 0
x
4

0 < x ≤ 4

1 x > 4

Thus, the probability density function is f(x) = F ′(x), or

f(x) =
1

4
if 0 < x < 4

and outside this interval the probability density function is defined to be 0.

Remark: Continuous probability distributions are, like discrete distributions, mathematical models. Thus,
the Uniform distribution assumed for the spinner above is a model, and it sesems likely it would be a good
model for many real spinners.

Remakr: It may seem paradoxical that P (X = x) = 0 for a continuous random variable and yet we record
the outcomes X = x in real "experiments" with continuous variables. The catch is that all measurements
have finite precision. They are in effect discrete. In measurements we are actually observing something like

P (x− 0.5∆x ≤ X ≤ x+ 0.5∆x)

where ∆x may be very small, but not zero. The probability of this outcome is NOT zero, it is (approxi-
mately) f(x)∆

Example 8.1.2. Let X be a continuous random variable with probability density function

f(x) =


kx2 0 < x ≤ 1

k(2− x) 1 < x < 2

0 otherwise

Find:
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1. the constant k

2. the cumulative distribution function F (x) = P (X ≤ x)

3. P (0.5 < X < 1.5)

Solution. 1. When finding teh area of region bounded by different functions we split the integral into
pieces.

1 =

∫ ∞
−∞

f(x)dx

=

∫ 0

−∞
0dx+

∫ 1

0

kx2dx+

∫ 2

1

k(2− x)dx+

∫ ∞
2

0dx

= 0 + k

∫ 1

0

x2dx+ k

∫ 2

1

(2− x)dx+ 0

= k
x3

3
|10 + k

(
2x− x2

2
|21
)

=
5k

6
and therefore k =

6

5

2. let us start with the easy pieces (which are unfortunately often left out) first:

F (x) = P (X ≤ x) = 0 if x ≤ 0

F (x) = P (X ≤ x) = 1 if x ≥ 2 since the probability density function equals 0 for all x ≥ 2

F (x) = P (X ≤ x) =

∫ x

−∞
f(z)dz = 0 +

∫ x

−∞

6

5
z2dz =

6

5

x3

3
|x0 =

2x3

5
if 0 < x < 1

F (x) = P (X ≤ x) = 0 +

∫ 1

0

6

5
z2dz +

∫ x

1

6

5
(2− z)dz =

6

5

x3

3
|10 +

6

5
(2x− x2

2
)|x1

=
12x− 3x2 − 7

5
if 1 < x < 2

Therefore,

F (x) = P (X ≤ x) =


0 x ≤ 0
2x3

5
0 < x ≤ 1

12x−3x2−7
5

1 < x < 2

1 x ≥ 2

As a rough check, F (x) should have the same value as we approach each boudary point from above
and from below.
For example,

as x→ 0+,
2x3

5
→ 0

as x→ 1−,
2x3

5
→ 2

5

as x→ 1+,
12x− 3x2 − 7

5
→ 2

5

as x→ 2−,
12x− 3x2 − 7

5
→ 1
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This quick check won’t prove your answer is right, but will detect many careless errors.

3.

P (0.5 < X < 1.5) =

∫ 1.5

0.5

f(x)dx = F (1.5)− F (0.5)

=
12(1.5)− 3(1.5)2 − 7

5
− 2(0.53)

5
= 0.8

�

Definition 8.1.2. Quantiles and Percentiles
Suppose X is a continuous random variable with cumulative distribution fucntion F (x). The pth quantile
of X (or the pth quantile of the distribution) is the value q(p), such that

P [X ≤ q(p)] = p

or
F (q(p)) = p

. The value q(p) is also called the 100th percentile of the distribution. If p = 0.5 then m = q(0.5) is called
the median of X or the median of the distribution.

Example 8.1.3. For the exmaple above, find

1. the 0.4 quantile (40th percentile) of the distribution

2. the median of the distribution

Solution. 1. Since F (1) = 0.4, the 0.4 quantile is equal to 1.

2. The median is the solution to

F (x) =
12x− 3x2 − 7

5
= 0.5

or
24x− 6x2 − 19 = 0

which has two solutions. Since F (1) = 0.4 we know that the mexian lie betwene 1 and 2 and we
choose the solution x ≈ 1.087. The median is approximately equal to 1.087.

�

8.1.3 Defined Variables or Change of Variable
Sometimes we want to find the probability density function or comulative distribution function for some
other random variable Y which is a function of X . It is based on the fact that the cumulative distribution
function FY (y) for Y equals P (Y ≤ y), and this can be rewritten in terms of X since Y is a function of X .
Thus:

1. Write the comulative distribution function of Y as a function of X

2. Use FX(x) to find FY (y). Then if you want the probability density function fY (y), you can differen-
tiate the expression for FY (y).

3. Find the range of values of y.
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Example 8.1.4. In the earlier spinner example,

f(x) =

{
1
4

0 < x ≤ 4

0 otherwise

and

F (x) =


0 x ≤ 0
x
4

0 < x < 4

1 x ≥ 4

Find the probability density function of Y = X−1

Solution. Step 1 from above becomes:

FY (y) = P (Y ≤ y) = P (X−1 ≤ y)

= P (X ≥ y−1) = 1− P (X < y−1)

= 1− FX(y−1)

For step (2), we can substitute 1
y

in place of x in FX(x)) giving:

FY (y) = 1− y−1

4
= 1− 1

4y

and then differentiate to obtain the probability density function

fY (y) =
d

dy
FY (y) =

1

4y2
for y ≥ 1

4

(Note that as x goes from 0 to 4, y = 1
x

goes between∞ and 1
4
).

Alternatively, and a little more generally, we can use the chain rule:

fY (y) =
d

dy
FY (y) =

d

dy
[1− FX(y−1)]

= −fX(y−1)
d

dy
(y−1) since

d

dx
FX(x) = fX(x)

= −fX(y−1)(−y−2) =
1

4
(−y−2)

=
1

4y2
for y ≥ 1

4

�

8.1.4 Expectation, Mean, and Variance for Continuous Random Variables
Definition 8.1.3. When X is a continuous random variable we define

E[g(X)] =

∫ ∞
−∞

g(x)f(x)dx
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Example 8.1.5. For the earlier spinner exmaple,

f(x) =

{
1
4

0 < x ≤ 4

0 otherwise

Therefore,

µ = E(X) =

∫ ∞
−∞

xf(x)dx = 0 +

∫ 4

0

x
1

4
dx+ 0 =

1

4

(
x2

2

)
|40 = 2

E(X2) =

∫ ∞
−∞

x2f(x)dx = 0 +

∫ 4

0

x2 1

4
dx+ 0 =

1

4

(
x3

3

)
|40 =

16

3

σ2 = Var(X) = E(X2)− µ2 =
16

3
− (2)2 =

4

3

Example 8.1.6. Let X have probability density funciton

f(x) =


6x2

5
0 < x ≤ 1

6
5
(2− x) 1 < x < 2

0 otherwise

Then,

µ = E(X) =

∫ ∞
−∞

xf(x)dx = 0 +

∫ 1

0

x
6

5
x2dx+

∫ 2

1

x
6

5
(2− x)dx+ 0

=
6

5

[
x4

4
|10 +

(
x2 − x3

3
|21
)]

=
11

10
= 1.1

E(X2) =

∫ ∞
−∞

x2f(x)dx = 0 +

∫ 1

0

x2 6

5
x2dx+

∫ 2

1

x2 6

5
(2− x)dx+ 0

=
6

5

[
x5

5
|10 + 2

(
x3

3

)
|21 −

x4

4
|21
]

=
67

50

σ2 = Var(X) = E(X2)− µ2 =
67

50
−
(

11

10

)2

=
13

100
= 0.13

8.2 Continuous Uniform Distribution
Physical Setup:

Supopse X takes values in some interval [a, b] (it doesn’t actually matter whether interval is open or closed)
with all subintervals of a fixed length being equally likely. ThenX has a continuous Uniform distribution,
and we denote X ∼ U(a, b)

Illustrations:

(1) In the spinner example X ∼ U(0, 4)

(2) Computers can generate a random numberX which appears as though it is drawn from the distribution
U(0, 1). This is the starting point for many computer simulations for random processors
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8.2.1 P.D.F and C.D.F
Since all points are equally likely, the probability density function must be a constant f(x) = k for all
a ≤ x ≤ b for some constant k. To make

∫ b
a
f(x)dx = 1, we require k = 1

b−a . Therefore, the probability
density function is

f(x) =

{
1
b−a a ≤ x ≤ b

0 otherwise

It is easy to varify that
∫∞
−∞ f(x)dx = 1 since (b− a)( 1

b−a) = 1

The comulative distribution function is

F (x) =


0 x < a∫ x
a

1
b−adx = x−a

b−a a ≤ x ≤ b

1 x > b

8.2.2 Mean and Variance
The mean can easily be determined since the graph of the pdf is symmetric about the line x = a+b

2
. Since

the integral
∫ b
a
xdx exists therefore E(X) exists and by symmetry E(X) = a+b

2

E(X2) =

∫ ∞
−∞

x2f(x)dx =

∫ b

a

x2 1

b− a
dx =

1

b− a
(
x3

3
|ba) =

b3 − a3

3(b− a)

=
(b− a)(b2 + ab+ a2)

3(b− a)
=
b2 + ab+ a2

3

and therefore

σ2 = Var(X) = E(X2)− µ2 =
b2 + ab+ a2

3
−
(
b+ a

2

)2

=
4b2 + 4ab+ 4a2 − 3b2 − 6ab− 3a2

12
=
b2 − 2ab+ a2

12

=
(b− a)2

12

In summary,

If X ∼ U(a, b) then E(X) =
a+ b

2
, σ2 = Var(X) =

(b− a)2

12

Example 8.2.1. Suppose X has the continuous probability density function

f(x) = 0.1e−0.1x, x > 0

and zero otherwise (This is called the Exponential distribution and is dicussed in the next section. It is used
in areas such as queueing theory and reliability.) We will show that hte new random variable

Y = e−0.1X

has a U(0, 1) distribution.
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Solution.

FY (y) = P (Y ≤ y)

= P (e−0.1X ≤ y)

= P (X ≥ −10 ln(y))

= 1− P (X < −10 ln(y))

= 1− FX(−10 ln(y))

Since for x > 0

FX(x) =

∫ x

0

0.1e−0.1udu = 1− e−0.1x

we have
FY (y) = 1− [1− e−0.1(−10 ln(y))] = y, 0 < y < 1

The range of Y is (0, 1) since X > 0. Thus,

fY (y) =

{
d
dy
FY (y) = 1 0 < y < 1

0 otherwise

which implies Y ∼ U(0, 1) �

8.2.3 Pseudo-random number generator
Many computer software systems use this way to generate random numbers because they are based on
deterministic algorithms. In addition they give obervations Y that have finite precision so they cannot be
exactly like continuous U(0, 1) random variables. However, good generators give Y ’s that appear indis-
tinguishable in most ways from U(0, 1) random variables. Given such a generator, we can also simulate
random variables X with the Exponential distribution above by the following algorithm:

1. Generate Y ∼ U(0, 1) using the computer random number generator

2. Compute X = −10 ln(Y )

Then X has the desired distribution. This is a particular case of a method decribed in Section 8.4 for
generating random variables from a general distribution.

8.3 Exponential Distribution
The continuous random variable X is said to have an Exponential distribution if its probability density
function is of the form

f(x) =

{
λe−λx x > 0

0 otherwise

where λ > 0 is a real parameter value.

Physical setup:

In a Poisson process for events in time let X be the length of time we wait for the first event occurrence.
We’ll show that X has a exponential distribution (Recall that the number of occurrences in a fixed time
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has a Poisson distribution. The difference between the Poisson andn Exponential distribution lies in what is
being measured).

Illustrations:

(1) The length of time X we wait with a Geiger counter until the emission of a radioactive particle is
recorded following an Exponential distribution

(2) The length of time between phone calls to a fire station (assuming calls follow a Poisson distribution)
follows an Exponential Distribution

8.3.1 Derivation of the PDF and the CDF

For x > 0

F (x) = P (X ≤ x) = P (time to 1st occurrence ≤ x)

= 1− P (time to 1st occurrence > x)

= 1− P (no occurrence in the interval (0, x))

We have now expressed F (x) in terms of number of occurrences in a Poisson process by time x, but
the number of occurrences has a Poisson distribution with mean µ = λx where λ is the average rate of
occurrence. Therefore,

F (x) =

{
1− (λx)0e−λx

0!
= 1− e−λx x > 0

0 x ≤ 0

Also since d
dx

(1− e−λx) = λe−λx we have

f(x) =

{
λe−λx x > 0

0 x ≤ 0

which is the formula we gave above.

Alternate Form:

It is common to use the parameter θ = 1
λ

in the Exponential distribution (We’ll see below that θ = E(X))
This gives

F (x) =

{
1− e−xθ x > 0

0 x ≤ 0

and

f(x) =

{
1
θ
e−

x
θ x > 0

0 x ≤ 0

We write X ∼ Exponential(θ)

From the graph of the Exponential distribution, we can see that it is positively skewed (skewed to the right)
or have a long right tail.
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8.3.2 Mean and Variance
We use gamma function to solve for µ and σ2, which extends the notion of factorials beyond the integers
to the positive real numbers.

Definition 8.3.1. The Gamma Function

Γ(α) =

∫ ∞
0

yα−1e−ydy

is called the gamma function of α, where α > 0

Note that α is 1 more than the power of y in the integrand. For instance,

Γ(5) =

∫ ∞
0

y4e−ydy

There are three properties of gamma functions we can use:

1. Γ(α) = (α− 1)Γ(α− 1) for α > 1

Proof. Using integration by parts:∫ ∞
−∞

yα−1e−ydy = − lim
y→∞

yα−1e−y + (α− 1)

∫ ∞
0

yα−2e−ydy

and provided that α > 1, limy→∞ y
α−1e−y = 0, therefore,∫ ∞

0

yα−1e−ydy = (α− 1)

∫ ∞
0

yα−2e−ydy = (α− 1)Γ(α− 1)

2. Γ(α) = (α− 1)! if α is a positive integer

Proof. It is easy to show that Γ(1) = 1. Using property 1 repeatedly, we obtain

Γ(2) = 1Γ(1) = 1

Γ(3) = 2Γ(2) = 2!

Γ(4) = 3Γ(2) = 3!

...

In general,
Γ(n+ 1) = n! for n = 0, 1, . . .

3. Γ(1
2
) =
√
π

Proof. (This can be proved using double integration)

Returning to the Exponential distribution we have:

µ =

∫ ∞
−∞

xf(x)dx =

∫ ∞
0

x
1

θ
e−

x
θ dx let y =

x

θ
with dx = θdy

=

∫ ∞
0

ye−yθdy = θ

∫ ∞
0

y1e−ydy = θΓ(2) = θ(1!)

= θ
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Note: read questions carefully. If you are given the average rate of occurrences is a Poisson process, then
this is the parameter λ. If you are given the average waiting time for an occurrence, then this is the parameter
θ.

To get σ2 = Var(X), we first find

E(X2) =

∫ ∞
−∞

x2f(x)dx =

∫ ∞
0

x2 1

θ
e−

x
θ dx let y =

x

θ

=

∫ ∞
0

θ2y2 1

θ
e−yθdy = θ2

∫ ∞
0

y2e−ydy = θ2Γ(3) = θ2(2!)

= 2θ2

Then,
σ2 = Var(X) = E(X2)− µ2 = 2θ2 − θ2 = θ2

In summary,
If X ∼ Exponential(θ) then E(X) = θ and Var(X) = θ2

Example 8.3.1. Suppose buses arrive at a bus stop according to a Poisson process with an average of 5
buses per hour. (λ = 5/hr so θ = 1

5
hr or 12 min)

Find the probability:

(1) you have to wait longer than 15 minutes for a bus

(2) you have to wait more than 15 minutes longer, having already waited for 6 minutes

Solution. (1)

P (X > 15) = 1− P (X ≤ 15) = 1− F (15) = 1− (1− e−
15
12 ) = e−1.25 = 0.2865

(2) If X is the total waiting time, the question asks for the conditional probability

P (X > 21|X > 6) =
P (X > 21 ∩X > 6)

P (X > 6)

=
P (X > 21)

P > 6

=
1− (1− e− 21

12 )

1− (1− e− 6
12 )

=
e−

21
12

e−
6
12

= e−1/25 = 0.2865

Surprisingly, the fact that you’ve already waited for 6 minutes doesn’t seem to matter.

�
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8.3.3 Memoryless Property of the Exponential Distribution
The example above illustrates the "memoryless property" of the Exponential distribution:

P (X > c+B|X > b) = P (X > c)

In other words for a Poisson process, given that you’ve waited b units of time for the next event, the proba-
bility you wait an additional c units of time does not depend on b but only depends on c

8.4 A Method for Computer Generation of Random Variables
Most computer software has a built-in "pseudo-random number" generator that will simulate observations
U from a U(0, 1) distribution, or at least a reasonable approximation to this Uniform distribution.

If we wish a random variable with a non-Uniform distribution, the standard approach is to take a suitable
function of U . We can do this through the inverse cumulative distribution function.

Definition 8.4.1. Inverse Cumulative Distribution Function
For an arbitrary cumulative distribution function F (x), we define

F−1(y) = min{x : F (x) ≥ y}

This is a real inverse, in other words,

F (F−1(y)) = F−1(F (y)) = y

when the cumulative distribution is continuous and strictly increasing.

However, in the more general case of a discontinuous non-decreasing cumulative distribution function
(such as the cdf of a discrete distribution), the function still has at least some of the properties of an inverse.

F−1 is useful for generating random variables having cumulative distribution function F (x) from U , a
Uniform random variable on the interval [0, 1]

Theorem 8.4.1. If F is an arbitrary cumulative distribution function and U is Uniform on [0, 1] then the
random variable defined by

X = F−1(U)

has the cumulative distribution function F (x)

Proof. The proof is a consequence of the fact that

[U < F (x)] ⊂ [X ≤ x] ⊂ [U ≤ F (x)] for all x

Taking probabilities on all sides of this, and using the fact that

P [U ≤ F (x)] = P [U < F (x)] = F (x)

we discover that P (X ≤ x) = F (x)

The relation X = U−1 implies that F (X) ≥ U and for any point z < X,F (z) < U .

Example 8.4.1. A Geometric random number generator
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For the Geometric distribution, the cumulative distribution function is given by

F (x) = 1− (1− p)x+1 for x = 0, 1, 2, . . .

Then if U is a Uniform random number in the interval [0, 1], we see an integer X such that

F (X − 1) < U ≤ F (x)

You should confirm that this is the value of X at which the above horizontal line strikes the graph of the
cdf, and solving these inequalities give

1− (1− p)X < U ≤ 1− (1− p)X+1

(1− p)X > 1− U ≥ (1− p)X+1

X ln(1− p) > ln(1− U) ≥ (X + 1) ln(1− p)

X <
ln(1− U)

ln(1− p)
≤ X + 1

so we compute the value of ln(1−U)
ln(1−p) and round down to the next lower integer.

8.5 Normal Distribution

Physical Setup:

A random variable X has a Normal distribution if it has probability density function of the form

f(x) =
1√
2πσ

e−
1
2

(x−µ
σ

)2 , x ∈ R

where µ ∈ R and σ > 0 are parameters. It turns out that

E(X) = µ

and

Var(X) = σ2

for this distribution. We write X ∼ N(µ, σ2) to denote that X has a normal distribution with mean µ
and variance σ2 (standard deviation σ) The Normal distribution is the most widely used distribution in
probability and statistics.

Illustrations:

• Heights or weights of males (or of females) in large populations tend to follow a Normal distribution

• The logarithms of stock prices are often assumed to have a Normal distribution

The graph of pdf f(x) is symmetric about the line x = µ. The shape of the pdf is often termed a "bell
shape" or "bell curve".
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We can show that f(x) integrates to 1:∫ ∞
−∞

1√
2πσ

e−
1
2

(x−µ
σ

)2dx (let z = x−µ
σ

)

=

∫ ∞
−∞

1√
2π
e−

z2

2 dz = 2

∫ ∞
0

1√
2π
e−

z2

2 dz (let y = 1
2
z2 and dz = dy

√
2y

1
2

)

= 2

∫ ∞
0

1√
2π
e−y

dy
√

2y
1
2

=
1√
π

∫ ∞
0

y−
1
2 e−ydy

=
1√
π

Γ(
1

2
) (where Γ is the gamma function)

= 1 (since Γ(1
2
) =
√
π)

8.5.1 Cumulative Distribution Function

The cdf of the Normal distribution N(µ, σ2) is

F (x) =

∫ x

−∞

1√
2πσ

e−
1
2

( y−µ
σ

)2dy for x ∈ R

In the statistical packages R we get F (x) using the function pnorm(x, µ, σ). Before computers, people
needed to produce tables of probabilities F (x) by numerical integration, using mechanical calculators.
Fortunately it is necessary to do this only for a single Normal distribution: the one with µ = 0 and σ = 1.
This is called the "standard" Normal distribution and is denoted N(0, 1)

It is easy to see that if X ∼ N(µ, σ2) then the "new" random variable Z = X−µ
σ

is distributed as Z ∼
N(0, 1) (Use the change of variables methods in 8.1) We’ll use this result to compute probabilities for X ,
and to show that E(X) = µ and Var(X) = σ2

8.5.2 Mean

If f(x) is an odd function, then
∫∞
−∞ f(x)dx = 0, provided the integral exists. Consider:

E(X − µ) =

∫ ∞
−∞

(x− µ)
1√
2πσ

e−
1
2

(x−µ
σ

)2dx

Let y = x− µ then,

E(Y ) =

∫ ∞
−∞

y
1

σ
√

2π
e−

1
2

( y
σ

)2dy

where the integrand is an odd function so that E(Y ) = 0, but since

E(Y ) = E(X)− µ

this implies that E(X) = µ
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8.5.3 Variance
To obtain variance we have

Var(X) = E[(X − µ)2]

=

∫ ∞
−∞

(x− µ)2 1

σ
√

2π
e−

1
2

(x−µ
σ

)2dx

= 2

∫ ∞
µ

(x− µ)2 1

σ
√

2π
e−

1
2

(x−µ
σ

)2dx (since the function is symmetric about µ)

We can obtain a gamma function by letting y = (x−µ)2

2σ2 and noting that

(x− µ)2 = 2σ2y, x− µ = σ
√

2y since x > µ

dx =
σ
√

2dy

2
√
y

=
σ√
2y
dy

Then

Var(X) = 2

∫ ∞
0

(2σ2y)
1

σ
√

2π
e−y

(
σ√
2y
dy

)
=

2σ2

√
π

∫ ∞
0

y
1
2 e−ydy

=
2σ2√

(π)
Γ(

3

2
) =

2σ2

√
π

(
1

2

)
Γ

(
1

2

)
=
σ2
√
π√
π

(since Γ(α) = (α− 1)Γ(α− 1))

= σ2

Theorem 8.5.1. Let X ∼ N(µ, σ2) and define Z = X−µ
σ

, then Z ∼ N(0, 1) and

P (X ≤ x) = P (Z ≤ x− µ
σ

)

Proof. The fact that Z ∼ N(0, 1) has the probability density function

φ(z) =
1√
2π
e−

1
2
z2 z ∈ R

follows immediately by change of variables

Alternatively, we can just note that

P (X ≤ x) =

∫ x

−∞

1√
2πσ

e−
1
2

( y−µ
σ

)2dy let z =
y − µ
σ

=

∫ x−µ
σ

−∞

1√
2π
e−

1
2
z2dz

= P (Z ≤ x− µ
σ

)
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Example 8.5.1. Find the following probabilities, where Z ∼ N(0, 1)

(a) P (Z ≤ 2.11)

(b) P (Z < 3.40)

(c) P (Z > 1.06)

(d) P (Z ≤ −1.06)

(e) P (−1.06 < Z ≤ 2.11)

Solution. (a) Look up 2.11 in the table by going down the left column to 2,1 then across to the heading
0.01, we find the number 0.98257. Then P (Z ≤ 2.11) = 0.98357

(b) P (Z < 3.40) = P (Z ≤ 3.40) = 0.99966

(c) P (Z > 1.06) = 1− P (Z ≤ 1.06) = 1− 0.85543 = 0.14457

(d) Now we have to use symmetry:

P (Z ≤ −1.06) = P (Z > 1.06) = 1− P (Z ≤ 1.06) = 1− 0.85543 = 0.14457

(e)

P (−1.06 < Z < 2.11) = P (Z < 2.11)− P (Z ≤ 1.06)

= P (Z ≤ 2.11)− P (Z > 1.06)

= P (Z ≤ 2.11)− 1 + P (Z ≤ 1.06)

= 0.98257− 1 + 0.85543 = 0.83800

�

We also have the tables to find desired values.

Example 8.5.2. (a) Find a number c such that P (Z ≤ c) = 0.85

(b) Find a number d such that P (Z > d) = 0.90

(c) Find a number b such that P (|z| ≤ b) = 0.95

Solution. (a) We can look in the body of the table to get an entry close to 0.85.This occurs for z between
1.03 and 1.04, z = 1.04 gives the closest value to 0.85. For greater accuracy, the table at the bottom
of the last page is designed for finding numbers, given the probability. Looking beside hte entry 0.85,
we find z = 1.0364

(b) Since P (Z > d) = 0.90 we have

P (Z ≤ d) = 1− P (Z > d) = 0.10

There is no entry for which P (Z ≤ z) = 0.10 so we again have to use symmetry, since d will be
negative. From the table we hae P (Z ≤ 1.2816) = 0.90, then by symmetry, P (Z > −1.2816) = 0.90
and therefore d = 1.2816.
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(c) We first note that P (|z| < b) = P (−b < Z < b) = 0.95 By symmetry, the probability outside the
interval (−b, b) must be 0.05, and this evenly split between the area between b and the area below−b.
Therefore,

P (Z ≤ −b) = P (Z > b) = 0.0025

and
P (Z ≤ b) = 0.975

Looking within the body of the top table, we can see P (Z ≤ 1.96) = 0.975 so b = 1.96

�

Finding N(µ, σ2) probabilities:

To find N(µ, σ2) probabilities in general, we use theorem given earlier that

P (a ≤ X ≤ b) = P (
a− µ
σ
≤ Z ≤ b− µ

σ
)

= P (Z ≤ b− µ
σ

)− P (Z ≤ a− µ
σ

)

where Z ∈ N(0, 1)

Example 8.5.3. Let X ∼ N(3, 25)

(a) Find P (X < 2)

(b) Find a number c such that P (X > c) = 0.95

Solution. (a)

P (X < 2) = P (
X − µ
σ

<
2− 3

5
)

= P (Z < −0.20) where Z ∼ N(0, 1)

= 1− P (Z < 0.20) = 1− 0.57926 = 0.42074

(b)

P (X > c) = P (
X − µ
σ

>
c− 3

5
)

= P (Z >
c− 3

5
) where Z ∼ N(0, 1)

= 0.95

Therefore, c−3
5

= −1.6449, c = −5.2245

�

8.5.4 Gaussian Distribution
The normal distribution is also known as the Gaussian Distribution.The notation X ∼ G(µ, σ) means
that X has Guassian (Normal) distribution with mean µ and standard deviation σ, so, for example, if X ∼
N(1, 4), then we could write X ∼ G(1, 2)
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Example 8.5.4. The distribution of heights of adult males in Canada is well approximate by a Guassian
distribution with µ = 69.0 inches and standard deviation σ = 2.4 inches. Find the 10th and 90th percentiles
of the height distribution.

Solution. We have X ∼ G(69.0, 2.4), or equivalently, X ∼ N(69.0, 5.76). To find the 90th percentile c, we
use

P (X ≤ c) = P (
X − 69.0

2.4
≤ c− 69.0

2.4
)

= P (Z ≤ c− 69.0

2.4
) where Z ∼ G(0, 1)

= 0.90

From the table we see P (Z ≤ 1.2816) = 0.90 so we need

c− 69.0

2.4
= 1.2816

which gives c = 72.08 inches as the 90th percentile.

Similarly, to find c such that P (X ≤ c) = 0.10 we find that P (Z ≤ −1.2816) = 0.10, so we need

c− 69.0

2.4
= −1.2816

or c = 65.92 inches as the 10th percentile. �



Chapter 9

Multivariate Distributions

9.1 Basic Terminology and Techniques
Many problems involve more than one single random variable. We need to extend the ideas introduced for
single variables to deal with multivariate problems.

9.1.1 Joint Probability Function
Suppose there are two discrete random variables X and Y , and define the function

f(x, y) = P (X = x and Y = y)

= P (X = x, Y = y)

We call f(x, y) the joint probability function of (X, Y ). The properties of a joint probability function are
similar to those for a single variable; for two random variables we have f(x, y) ≥ 0 for all (x, y) and∑

all (x,y)

f(x, y) = 1

In general,
f(x1, x2, . . . , xn) = P (X1 = x1, X2 = x2, . . . , Xn = xn)

if there are n random variables X1, . . . , Xn

Example: Consider the following, where we show f(x, y) in a table:

x
f(x, y) 0 1 2
y 1 0.1 0.2 0.3

2 0.2 0.1 0.1
1

Example: Suppose a fair coin is tossed 3 times. Define the random variable X = number of Heads and
Y = 1(0) if Heads (Tails) occurs on the first toss. Find the joint probability function for (X, Y )

65
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Solution. First we should note the range for (X, Y ), which is the set of possible values (x, y) which can
occur. Clearly X can be 0, 1, 2, 3 and Y can be 0, 1, but we’ll see that not all 8 combinations (x, y) are
possible. We can find f(x, y) = P (X = x, Y = y) by just writing down the sample space

S = {HHH,HHT,HTH, THH,HTT, THT, TTH, TTT}

that we have used before for this process. Then sample sounting gives f(x, y) as shown in the following
table:

x
f(x, y) 0 1 2 3
y 0 1

8
2
8

1
8

0
1 0 1

8
2
8

1
8

1

For example, (X, Y ) = (0, 0) if and only if the outcome is TTT ; (X, Y ) = (1, 0) if and only if the outcome
is either THT or TTH
Note that we just use a table for joint probability function since it’s a little awkward to write it down in a
formula. �

9.1.2 Marginal Distributions
We may be given a joint probability function involving more variables than we’re interested in using. Look-
ing at the previous example, if we’re only interested in X , and don’t care what value Y takes, we can see
that

P (X = 0) = P (X = 0, Y = 1) + P (X = 0, Y = 2)

= f(0, 1) + f(0, 2)

= 0.3

Similarly,

P (X = 1) = f(1, 1) + f(1, 2) = 0.3

P (X = 2) = f(2, 1) + f(2, 2) = 0.4

The distribution of X obtained in this way from the joint probability funciton is called the marginal prob-
ability function of X:

x 0 1 2 Total
f1(x) = P (X = x) 0.3 0.3 0.4 1

In the same way, if we were only interested in Y , we obtain

P (Y = 1) = f(0, 1) + f(1, 1) + f(2, 1) = 0.6

Since X can be 0,1,2 when Y = 1, the marginal probability of Y would be:

y 1 2 Total
f2(y) = P (Y = y) 0.6 0.4 1
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Note that we use the notation f1(x) and f2(y) to avoid confusion with f(x, y) = P (X = x, Y = y). An
alternative notation would be fX(x) and fY (y)

In general, to find f1(x) we add over all values of y where X = x, and to find f2(y) we add over all values
of x with Y = y, then

f1(x) =
∑
all y

f(x, y)

f2(y) =
∑
all x

f(x, y)

The same reasoning can be extended beyond two variables, for example, with three variables (X1, X2, X3)

f1(x1) =
∑

all (x2,x3)

f(x1, x2, x3)

f1,3(x1, x3) =
∑
all x2

f(x1, x2, x3) = P (X1 = x1, X3 = x3)

where f1,3(x1, x3) is the marginal joint probability function of X1, X3

Note that if the joint probability function is given in a table then the marginal probability functions are
obtained by simply summing over the rows and columns as shown in the table below for the coin example
above:

x
f(x, y) 0 1 2 3 f2(y)
y 0 1

8
2
8

1
8

0 4
8

1 0 1
8

2
8

1
8

4
8

f1(x) 1
8

3
8

3
8

1
8

1

9.1.3 Independent Random Variables
Definition 9.1.1. X and Y are independent random variables if f(x, y) = f1(x)f2(y) for all values (x, y)

Definition 9.1.2. In general, X1, X2, . . . , Xn are independent random variables if and only if

∀ x1, x2, . . . , xn, f(x1, x2, . . . , xn) = f1(x1)f2(x2) · · · fn(xn)

Be careful with this definition, we can only conclude that X and Y are independent variables after checking
all (x, y) combinations. Even a single case where f1(x)f2(y) 6= f(x, y) makes X and Y dependent random
variables.

9.1.4 Conditional Probability Function
Definition 9.1.3. The conditional probability function of X given Y = y is

f1(x|y) =
f(x, y)

f2(y)
provided f2(y) > 0

Similarly, the conditional probability function of Y given X = x is

f2(y|x) =
f(x, y)

f1(x)
provided f1(x) > 0
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Example: Suppose X and Y have joint probability function:

x
f(x, y) 0 1 2 f2(y)
y 1 0.1 0.2 0.3 0.6

2 0.2 0.1 0.1 0.4
f1(x) 0.3 0.3 0.4 1

Find f1(x|Y = 1) = P (X = x|Y = 1)

Solution. Since

f1(x|Y = 1) =
f(x, 1)

f2(1)

we obtain

x 0 1 2 Total
f1(x|Y = 1) 0.1

0.6
= 1

6
0.2
0.6

= 1
3

0.3
0.6

= 1
2

1

As you would expect, the marginal and conditional probability functions are probability functions in that
they are always ≥ 0 and their sum is 1. �

9.1.5 Functions of Random Variables
We often encounter problems where we need to find the probability distribution of a function of two or
more random variables. The most general method for finding the probability function for some function
of random variables X and Y involves looking at every combination (x, y) to see what value the function
takes.

Example: Suppose X and Y have joint probability function

x
f(x, y) 0 1 2
y 1 0.1 0.2 0.3

2 0.2 0.1 0.1
1

and we want to find the probability function of U = 2(Y −X). The possible values of U are seen by looking
at hte value of u = 2(y − x) for each (x, y) in the range of (X, Y )

x
u 0 1 2

y 1 2 0 -2
2 4 2 0

Since

P (U = −2) = P (X = 2, Y = 1) = f(2, 1) = 0.3

P (U = 0) = P (X = 1, Y = 1) + P (X = 2, Y = 2) = f(1, 1) + f(2, 2) = 0.3

P (U = 2) = f(0, 1) + f(1, 2) = 0.2

P (U = 4) = f(0, 2) = 0.2

the probability function of U is
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u -2 0 2 4 Total
P (U = u) 0.3 0.3 0.2 0.2 1

For some functions it’s possible to approach this problem more systemetially. One of the most common
functions of this type is the total. Let T = X + Y , this gives:

x
t 0 1 2
y 1 1 2 3

2 2 3 4

Then
P (T = 3) = f(1, 2) + f(2, 1) = 0.4

Continuing in this way, we obtain

t 1 2 3 4 Total
P (T = t) 0.1 0.4 0.4 0.1 1

In fact, to find P (T = t), we are simply adding the probabilities for all (x, y) combinations with x+ y = t,
this could be written as

P (T = t) =
∑

all (x,y), x+y=t

f(x, y)

However, if x + y = t, then y = t − x. To systematically pick out the right combinations of (x, y), all we
really need to do is to sum over values of x and then substitute t− x for y, then

P (T = t) =
∑
all x

f(x, t− x) =
∑
all x

P (X = x, Y = T − x)

So P (T = 3) would be

P (T = 3) =
∑
all x

f(x, 3− x) = f(0, 3) + f(1, 2) + f(2, 1) = 0.4

(Note: f(0, 3) = 0 since Y can’t be 3)

We cam summarize the method of finding probability function for a function U = g(X, Y ) of two random
variables X and Y as follows

Theorem 9.1.1. Let f(x, y) = P (X = x, Y = y) be the probability function for (X, Y ), then the probabil-
ity function for U is

P (U = u) =
∑

all (x,y), g(x,y)=u

f(x, y)

This can also be extended to functions of three or more random variables U = g(X1, X2, . . . , Xn):

P (U = u) =
∑

(x1,...,xn): g(x1,...,xn)=u

f(x1, . . . , xn)

Theorem 9.1.2. If X ∼ Poisson(µ1) and Y ∼ Poisson(µ2) independently then T = X + Y ∼
Poisson(µ1 + µ2)
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Proof. Since X ∼ Poisson(µ1) and independently Y ∼ Poisson(µ2) their joint probability function is
given by

f(x, y) =
µx1e

−µ1

x!
· µ

y
2e
−µ2

y!
for x = 0, 1, . . . and y = 0, 1, . . .

The probability function of T is

P (T = t) = P (X + Y = t)

=
∑
all x

P (X = x, Y = t− x)

=
t∑

x=0

µx1e
−µ1

x!
· µ

t−x
2 e−µ2

(t− x)!

= µt2e
−(µ1+µ2)

t∑
x=0

1

x!(t− x)!

(
µ1

µ2

)x
=
µt2e

−(µ1+µ2)

t!

t∑
x=0

(
t

x

)(
µ1

µ2

)x
=
µt2e

−(µ1+µ2)

t!

(
1 +

µ1

µ2

)t
(by the Binomial Theorem)

=
µt2e

−(µ1+µ2)

t!
· (µ1 + µ2)t

µt2

=
(µ1 + µ2)t

t!
e−(µ1+µ2) for t = 0, 1, 2, . . .

which we recognize as the probability function of a Poisson(µ1 + µ2) and we’ve proven the desired result.

Theorem 9.1.3. If X ∼ Binomial(n, p) and Y ∼ Binomial(m, p) independently then T = X + Y ∼
Binomial(n+m, p)

9.2 Multinomial Distribution
This is a generalization of the Binomial model to the case where each trial has k possible outcomes.

Example: Three sprinters, A, B, and C, compete against each other in 10 independent 100m races. The
probability of winning any single race are 0.5 for A, 0.4 for B, and 0.1 for C. Let X1, X2 and X3 be the
number of races A, B and C win respectively.

(a) Find the joint probability function, f(x1, x2, x3)

Solution. We know that x1 + x2 + x3 = 10 since there are 10 races in all. We only need to have two
variables since x3 = 10−x1−x2. However, it’s convenient just to use x3 to save writing and preserve
symmetry.

The reasoning to this problem is similar to the Binomial distribution except there are now 3 types of
outcomes. There are 10!

x1!x2!x3!
different outcomes. Each of these arrangements has a probability of

(0.5)x1 , (0.4)x2 , and (0.1)x3 times in some order, that is (0.5)x1(0.4)x2(0.1)x3
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Therefore,

f(x1, x2, x3) =
10!

x1!x2!x3!
(0.5)x1(0.4)x2(0.1)x3

The domain of f is the set {(x1, x2, x3) : xi = 0, 1, . . . , 10, i = 1, 2, 3 and x1 + x2 + x3 = 10} �

(b) Find the marginal probability function, f1(x1)

Solution. It would also be acceptable to drop x3 as a variable, and write down the probability function
for X1, X2 only:

f(x1, x2) =
10!

x1!x2!(10− x1 − x2)!
(0.5)x1(0.4)x2(0.1)10−x1−x2

We now have f1(x1) =
∑

x2
f(x1, x2) The limits of summation need care: x2 could be as small as 0,

but since x1 + x2 ≤ 10, we also require x2 ≤ 10− x1, thus

f1(x1) =

10−x1∑
x2=0

10!

x1!x2!(10− x1 − x2)!
(0.5)x1(0.4)x2(0.1)10−x1−x2

=
10!

x1!
(0.5)x1(0.1)10−x1

10−x1∑
x2=0

1

x2!(10− x1 − x2)!

(
0.4

0.1

)x2
=

10!

x1!(10− x1!)
(0.5)x1(0.1)10−x1

10−x1∑
x2=0

(
10− x1

x2

)(
0.4

0.1

)x2
=

(
10

x1

)
(0.5)x1(0.1)10−x1

(
1 +

0.4

0.1

)10−x1
(by the Binomial Theorem)

=

(
10

x1

)
(0.5)x1(0.1)10−x1 (0.1 + 0.4)10−x1

(0.1)10−x1

=

(
10

x1

)
(0.5)x1(0.5)10−x1 (for x1 = 0, 1, 2, . . . , 10)

This derivation is included as an example of how to find marginal distribution by summing a joint
probability function, there is a much simpler method fo rthis problem. Note that each race is either
won by A ("success") or it is not won by A ("failure"). Since the races are independent and X1 is
now just the number of "success" outcomes, X1 must have a Binomial distribution, with n = 10 and
p = 0.5. Hence,

f1(x1) =

(
10

x1

)
(0.5)x1(0.5)10−x1 for x1 = 0, 1, . . . , 10

�

(c) Find the conditional probability function, f(x2|x1)

Solution. Since f(x2|x1) = P (X2 = x2|X1 = x1), so that

f(x2|x1) =
f(x1, x2)

f1(x1)
=

10!
x1!x2!(10−x1−x2)!

(0.5)x1(0.4)x2(0.1)10−x1−x2

10!
x1!(10−x1)!

(0.5)x1(0.5)10−x1

=
(10− x1)!

x2!(10− x1 − x2)!

(0.4)x2(0.1)10−x1−x2

(0.5)x2(0.5)10−x1−x2

=

(
10− x1

x2

)(
4

5

)x2 (1

5

)10−x1−x2
(for x2 = 0, 1, . . . , (10− x1))
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The range of X2 depends on the value of x1, which makes sense: if B wins x1 races then the most A
can win is 10− x1

Note: This result can be obtained more simply by general reasoning. Once we’re given A wins x1

races, the remaining 10−x1 races ("trials") are all won by either B or C. Since P (B wins) = 0.4 and
P (C wins) = 0.1, then for the races won by either B or C, the probability that B wins ("Success") is

P (B wins|B or C wins) =
P (B wins)

P (B or C wins)
=

0.4

0.4 + 0.1
= 0.8

So the probability function of the number of wins ("Sucesses") in 10− x1 races ("trials") is

f(x2|x1) =

(
10− x1

x2

)
(0.8)x2(0.2)10−x1−x2 for x2 = 0, 1, . . . , 10− x1

�

(d) Are X1 and X2 independent? Why?

Solution. X1 and X2 are clearly not independent random variables since the more races A wins, the
fewer races there are for B to win. More formally,

f1(x1)f2(x2) =

(
10

x1

)
(0.5)x1(0.5)10−x1

(
10

x2

)
(0.4)x2(0.6)10−x2 6= f(x1, x2)

(In general, if the range for X1 depends on the value of X2, then X1 and X2 cannot be independent
random variables). �

(e) Find the probability function of T = X + Y

Solution. If T = X1 +X2 then

fT (t) = P (T = t) =
t∑
x1

f(x1, t− x1)

=
t∑

x1=0

10!

x1!(t− x1)! (10− x1 − (t− x1))!︸ ︷︷ ︸
(10−t)!

(0.5)x1(0.4)t−x1(0.1)10−t

The upper limit on x1 is t because, for example, if t = 7 then A could not have won more than 7
races. Then

fT (t) = P (T = t) =
10!

(10− t)!
(0.4)t(0.1)10−t

t∑
x1=0

1

x1!(t− x1)!

(
0.5

0.4

)x1
=

(
10

t

)
(0.4)t(0.1)10−t

(
1 +

0.5

0.4

)t
=

(
10

t

)
(0.4)t(0.1)10−t (0.4 + 0.5)t

(0.4)t

=

(
10

t

)
(0.9)t(0.1)10−t for t = 0, 1, . . . , 10

�
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Physical setup for the Multinomial distribution: Suppose an experiment is repeated independently n
times with k distinct types of outcome each time. Let the probabilities of these k types be p1, p2, . . . , pk
each time. Let X1 be the number of times the 1st type occurs, X2 the number of times the 2nd occurs,. . . ,
Xk the number of times the kth type occurs, then (X1, X2, . . . , Xk) has a Multinomial distribution.

Note:

• p1 + p2 + · · ·+ pk = 1

• X1 +X2 + · · ·+Xk = n

9.2.1 Joint Probability Function

There are n!
x1!x2!···xk!

different outcomes of the n trials. Therefore,

f(x1, x2, . . . , xk) =
n!

x1!x2! · · ·xk!
px11 p

x2
2 · · · p

xk
k

The domain on the xi’s are xi = 0, 1, . . . , n and
∑k

i=1 xi = n

We sometimes use the notation (X1, . . . , Xk) ∼Multinomial(n; p1, . . . , pk) to indicate that (X1, . . . , Xk)
have a Multinomial distribution.

Example: A potter is producing teapots one at a time. Assume that they are produced independently of
each other and with probability p the pot produced will be "satisfactory"; the rest are sold at a lower price.
The number, X , of rejects before producing a satisfactory teapot is recorded. When 12 satisfactory teapots
are produced, what is the probability the 12 values of X will consist of six 0’s, three 1’s, two 2’s and one
value which is ≥ 3?

Solution. Each time a "satisfactory" pot is produced the value of X falls in one of the four categories,
X = 0, X = 1, X = 2, X ≥ 3. Under the assumptions, X has a Geometric distribution with

P (X = x) = f(x) = p(1− p)x for x = 0, 1, 2, . . .

therefore, we have

P (X = 0) = f(0) = p

P (X = 1) = f(1) = p(1− p)
P (X = 2) = f(2) = p(1− p)2

P (X ≥ 3) = f(3) + f(4) + . . .

= p(1− p)3 + p(1− p)4 + · · ·

=
p(1− p)3

1− (1− p)
(by the Geometric Series)

= (1− p)3
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Therefore,

P (six 0’s, three 1’s, two 2’s, and one value ≥ 3)

=
12!

6!3!2!1!
[p]6[p(1− p)]3[p(1− p)2]2[(1− p)3]1

=
12!

6!3!2!1!
p6+3+2(1− p)3+4+3

=
12!

6!3!2!1!
p11(1− p)10

�

9.3 Markov Chains

9.4 Expection for Multivariate Distributions: Covariance and Cor-
relation

Definition 9.4.1.
E[g(X, Y )] =

∑
all (x,y)

g(x, y)f(x, y)

and
[g(X1, X2, · · · , Xn)] =

∑
all (x1,x2,··· ,xn)

g(x1, x2, · · · , xn)f(x1, · · · , xn)

Example: Let the joint probability function, f(x, y) be given by

x
f(x, y) 0 1 2 f2(y)
y 1 0.1 0.2 0.3 0.6

2 0.2 0.1 0.1 0.4
f1(x) 0.3 0.3 0.4 1

Find E(XY ) and E(X)

Solution.

E(XY ) =
∑

all (x,y)

xyf(x, y)

= (0× 1)(0.1) + (1× 1)(0.2) + (2× 1)(0.3) + (0× 2)(0.2) + (1× 2)(0.1) + (2× 2)(0.1)

= 1.4

To find E(X) we have a choice of methods. First, taking g(x, y) = x we get

E(X) =
∑

all (x,y)

xf(x, y)

= (0× 0)(0.1) + (1× 0.2) + (2× 0.3) + (0× 0.2) + (1× 0.1) + (2× 0.1)

= 1.1
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Alternatively, since E(X) only involves X , we could find f1(x) and use

E(X) =
2∑

x=0

xf1(x) = (0× 0.3) + (1× 0.3) + (2× 0.4) = 1.1

�

Property of Multivariate Expectation

It is easy proved that

E[ag1(X, Y ) + bg2(X, Y )] = aE[g1(X, Y )] + bE[g2(X, Y )]

This can be extended beyond 2 functions g1 and g2, and beyond 2 variables X and Y

9.4.1 Relationships between Variables
Definition 9.4.2. The covariance of X and Y , dentoed Cov(X, Y ) or σXY , is

Cov(X, Y ) = E[(X − σX)(Y − σY )]

Note that

CovX, Y = E[(X − σX)(Y − σY )]

= E(XY − σXY −XσY + σXσY )

= E(XY )− σXE(Y )− σYE(X) + σXσY

= E(XY )− E(X)E(Y )− E(Y )E(X) + E(X)E(Y )

= E(XY )− E(X)E(Y )

and Cov(X, Y ) = E(XY )− E(X)E(Y ) is the formula we usually use for calculation purposes.

Theorem 9.4.1. If X and Y are independent then Cov(X, Y ) = 0

Proof. Recall E(X − σX) = E(X)− σX = 0. Let X and Y be independent, then f(x, y) = f1(x)f2(y)

Cov(X, Y ) = E[(X − σX)(Y − σY )] =
∑
all y

[
∑
all x

(x− σX)(y − σY )f1(x)f2(y)]

=
∑
all y

[(y − σY )f2(y)
∑
all x

(x− σX)f1(x)]

=
∑
all y

[(y − σY )f2(y)E(X − σX)]

= σall y0 = 0

Theorem 9.4.2. Suppose random variables X and Y are independent random variables. Then, if g1(X)
and g2(Y ) are any two functions,

E[g1(X)g2(Y )] = E[g1(X)]E[g2(Y )]
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Proof. Since X and Y are independent, f(x, y) = f1(x)f2(y), thus

E[g1(X)g2(Y )] =
∑

all (x,y)

g1(x)g2(y)f(x, y)

=
∑
all x

∑
all y

g1(x)f1(x)g2(y)f2(y)

= [
∑
all x

g1(x)f1(x)][
∑
all y

g2(y)f2(y)]

= E[g1(X)]E[g2(Y )]

To prove Theorem 9.4.1, we just note that if X and Y are independent then by Theorem 9.4.2

Cov(X, Y ) = E[(X − σX)(Y − σY )]

= E(X − σX)E(Y − σY )

= 0× 0 = 0

Caution: This result is not reversible. If Cov(X, Y ) = 0 we cannot conclude that X and Y are independent
random variables!!

Definition 9.4.3. The correlation coefficient of X and Y is

ρ =
Cov(X, Y )

σXσY

The corrleation coefficient measures the strength of the linear relationship between X and Y and is simply
a rescaled version of the covariance, scaled to lie in the interval [−1, 1].

Properties of ρ:

1. Since σX and σY , the standard deviation of X and Y , are both positive, ρ will have the same sign as
Cov(X, Y ). Hence the interpretation of the sign of ρ is the same as for Cov(X, Y ), and ρ = 0 if X
and Y are independent. When ρ = 0 we say that X and Y are uncorrelated.

2. −1 ≤ ρ ≤ 1 and ρ→ ±1 the relation between X and Y becomes one-to-one and linear.

9.5 Mean and Variance of a Linear Combination of Random Vari-
ables

9.5.1 Results for Means
1. E(aX + bY ) = aE(X) + bE(Y ) = aσX + bσX , when a and b are constants.

2. Let ai be constants (real numbers) andE(Xi) = µi, i = 1, 2, . . . , n ThenE(
∑n

i=1 aiXi) =
∑n

i=1 aiµi.
In particular, E(

∑n
i=1 Xi =

∑n
i=1E(Xi))

3. Let X1, X2, . . . , Xn be random variables which have mean µ. The sample mean is X = 1
n

∑n
i=1Xi,

then E(X) = µ
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9.5.2 Result for Covariance
1. Cov(X,X) = VarX

2. Cov(aX + bY, cU + dV ) = acCov(X,U) + adCov(X, V ) + bcCov(Y, U) + bdCov(Y, V )

9.5.3 Results for Variance
1. Variance of a Linear Combination

Var(aX + bY ) = a2Var(X) + b2Var(Y ) + 2abCov(X, Y )

2. Variance of a sum of independent random variables: LetX and Y be independent, since Cov(X, Y ) =
0, result 1 gives:

Var(X + Y ) = σ2
X + σ2

Y

that is, for independent variables, the variance of a sum is the sum of the variances. Also note

Var(X − Y ) = σ2
Z + (−1)2σ2

Y = σ2
X + σ2

Y

3. Variance of a general linear combination of random variables: Let ai be constants and Var(Xi) =
σ2
i then

Var(
n∑
i=0

aiXi) =
n∑
i=1

a2
iσ

2
i + 2

n∑
i=1

n∑
j=i+1

aiajCov(Xi, Xj)

4. Variance of a linear combination of independent random variables: Special cases of result 3 are

a) If X1, . . . , Xn are independent then Cov(Xi, Xj) = 0, so that

Var(
n∑
i=1

aiXi) =
n∑
i=1

a2
iσ

2
i

b) If X1, . . . , Xn are independent and all have the same variance σ2, then

Var(X) =
σ2

n

9.6 Linear Combinations of Independent Normal Random Variables
Theorem 9.6.1. 1. Let X ∼ N(µ, σ2), and Y = aX + b, where a and b are constant real numbers, then

Y ∼ N(aµ+ b, a2σ2)

2. Let X ∼ N(µ1, σ
2
1) and Y ∼ N(µ2, σ

2
2) independently, and let a and b be constants, then aX +

bY ∼ N(aµ1 + bµ2, a
2σ2

1 + b2σ2
2). In general, if Xi ∼ N(µi, σ

2
i ), i = 1, 2, . . . , n independently and

a1, . . . , an are constants, then
∑n

i=1 aiXi ∼ N(
∑n

i=1 aiµi,
∑n

i=1 a
2
iσ

2
i )

3. Let X1, . . . , Xn be independent N(µ, σ2) random variables, then
∑n

i=1Xi ∼ N(nµ, nσ2) and X ∼
N(µ, σ

2

n
)
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Chapter 10

C.L.T., Normal Approximations and
M.G.F’s

10.1 Central Limit Theorem (C.L.T.) and Normal Approximations
Theorem 10.1.1. Central Limit Theorem

If X1, X2, . . . , Xn are independent random variables all having the same distribution, with mean µ and
variance σ2, then as n→∞, the cumulative distribution function of the random variables∑n

i=1 Xi − nµ
σ
√
n

=
Sn − nµ
σ
√
n

approaches the N(0, 1) cumulative distribution function. Similarly, the cumulative distribution function of

X − µ
σ√
n

approaches the N(0, 1) cumulative distribution function.

This is a theorem about limits. We’ll use it when n is large, but finite, to approximate the distirbution of Sn
or X by a Normal distribution. That is, we will use

Sn =
∑n

i=1Xi has approximately a N(nµ, nσ2) distribution for lage n

and

X = 1
n

∑n
i=1Xi has approximately a N(µ, σ

2

n
) distribution for large n

Notes:

1. As n→∞, both distirbutions N(nµ, nσ2) and N(µ, σ
2

n
) fail to exist.

2. The Central Limit Theorem does not hold if the common mean µ and covariance σ2 do not exist.

3. We use the Central Limit Theorem to approximate the distribution of the sum Sn =
∑n

i=1Xi or
average X = 1

n

∑n
i=1Xi. The accuracy of the approximation depends on n (bigger is better) and

also the actual distribution of Xi’s. The appximation works better for smaller n when the shape
of probability function/probability density function of Xi is symmetric (for exmaple, the U(a, b)
probability density function) or nearly symmetric (for exmaple, the Poisson(5) probability function).
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4. In section 9.6, the distributions of linear combination of indendent Normal random variables were
given. In particular, if X1, . . . , Xn are independent N(µ, σ2) random variables then

Sn =
n∑
i=1

X1 ∼ N(nµ, nσ2) and X =
1

n

n∑
i=1

Xi ∼ N(µ,
σ2

n
)

Thus, if the Xi’s themselves form a Normal distribution, then Sn and X have exactly Normal distri-
butions for all values of n. If the Xi’s do not have a Normal distribution themselves, then Sn and X
have approximately Normal distribution when n is large.
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