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Pseudo-Definition. A field is an “algebraic system” F having:

(1) elements 0,1 (and possibly others)

(2) operations +,⇥, �, and
�1

(the last defined for all nonzero elements)

and satisfying the “obvious” algebraic laws. (See Appendix C for the real definition.)

Example 1. R, C, Q, Zp (p a prime) are fields.

Let F be a field.

Definition. A vector space over F is a set V on which two operations

• addition, V ⇥ V ! V , denoted x+ y
• scalar multiplication, F⇥ V ! V , denoted ax

are defined , and such that the following conditions hold :

For all x, y, z 2 V and a, b 2 F:
(VS 1) x+ y = y + x
(VS 2) (x+ y) + z = x+ (y + z)
(VS 3) There exists a “zero vector” in V , denoted 0, which satisfies x+ 0 = x for all x 2 V .

(VS 4) For every x 2 V there exists u 2 V satisfying x+ u = 0.

(VS 5) 1x = x
(VS 6) (ab)x = a(bx)
(VS 7) a(x+ y) = ax+ ay
(VS 8) (a+ b)x = ax+ bx

To define a vector space, you must specify the set and the two operations.

To prove that a set with two operations is a vector space, you need to verify the 8 conditions.

Example 2. Rn
is the set of all n-tuples (a1, a2, . . . , an) of real numbers. Addition and scalar multiplication

(by real numbers) on Rn
are defined “coordinate-wise,” i.e.,

(a1, a2, . . . , an) + (b1, b2, . . . , bn)
def
= (a1+b1, a2+b2, . . . , an+bn)

c(a1, a2, . . . , an)
def
= (ca1, ca2, . . . , can).

Claim. Rn with coordinate-wise addition and scalar multiplication is a vector space over R.
Proof sketch. (Omitted) ⇤
Example 3. More generally, for any field F, the set Fn

= {(a1, a2, . . . , an) : a1, . . . , an 2 F} of all n-tuples
from F, with coordinatewise addition and scalar multiplication, is a vector space over F.
Example 4. For any nonempty set D, FD

is the set of all functions D ! F. Given two functions f, g 2 FD

and a 2 F, define the functions f + g and af “pointwise” by

(f + g)(x)
def
= f(x) + g(x),

(af)(x)
def
= a · f(x), x 2 D.

Claim. For any nonempty set D, FD with pointwise operations is a vector space over F.
Example 5. Let V = {o} where o is the apple I brought to class. Defining addition and scalar multipli-

cation in the only possible way, V is a vector space over F (for any field F).
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More examples. Let F be a field.

(1) For n � 0, Pn(F) denotes the set of all “formal polynomials” in the variable x, of degree at most

n, using coe�cients from F. Thus
Pn(F) = {anxn

+ an�1x
n�1

+ · · ·+ a1x+ a0 : a0, a1, . . . , an 2 F}.
Addition of polynomials in Pn(F) is defined “term-wise” in the usual way (using the arithmetic

of F). Multiplication of a polynomial by a scalar c 2 F is defined similarly.

Claim. Pn(F) with addition and scalar multiplication defined “term-wise” is a vector space over F.
(2) F[x] is the set of all polynomails in x with coe�cients from F. Addition and scalar multiplication

is the same is in the previous example.

Claim. F[x] is a vector space over F.
Remark. The text uses the notation P(F) instead of F[x], but this is nonstandard.

Next: some basic facts true of all vector spaces.

Theorem (Cancellation Law). Suppose V is a vector space. If x, y, z 2 V and x+ z = y + z, then x = y.

Proof. (Omitted) ⇤
Corollary 1. Suppose V is a vector space. There is exactly one vector in V that can be the zero vector.

Proof. (Omitted) ⇤
Corollary 2. Suppose V is a vector space and x 2 V . There is exactly one vector u 2 V satisfying
x+ u = 0.

Proof. Just like the proof of Corollary 1. ⇤
Definition. Let V be a vector space and x, y 2 V .

(1) �x denotes the unique vector u 2 V satisfying x+ u = 0.

(2) x� y denotes x+ (�y).

Because of (VS 2), we can (and do) write expressions like x1 + x2 + · · · + xn without declaring where

the brackets go. And we could (if required) prove true facts like

c(a1x1 + a2x2 + · · ·+ anxn) = (ca1)x1 + (ca2)x2 + · · ·+ (can)xn.

Definition. Let V be a vector space over F and suppose x, u1, . . . , un 2 V . We say that x is a linear

combination of u1, . . . , un if there exist scalars a1, . . . , an 2 F satisfying

x = a1u1 + a2u2 + · · ·+ anun.

Basic Problem: Given x, u1, . . . , un 2 V , to determine whether x is a linear combination of u1, . . . , un.

Example 3. Consider the vector space R[x] of formal polynomials over R. Is 4x4
+ 7x2 � 2x+ 3 a linear

combination of

x4 � x2
+ 2x� 1, 2x4

+ 3x2
+ 2x, x4

+ 4x2
+ 1, 2x2

+ 3, x4
+ 1 ?
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Theorem. Suppose V is a vector space over F, x 2 V , and a 2 F.
(1) 0x = 0.
(2) (�a)x = �(ax) = a(�x).
(3) a0 = 0.

Remark. Note the overloaded notation in the statement.

Definition. Let V be a vector space over F, and let S ✓ V .

(1) V is closed under addition if x, y 2 S =) x+ y 2 S.
(2) V is closed under scalar multiplication if x 2 S and a 2 F =) ax 2 S.

Definition. Let V be a vector space over F. A subset W of V is a called subspace of V if

(1) W is closed under the operations of V , and
(2) W 6= ?.

Theorem. Suppose V is a vector space over F andW is a subspace of V . ThenW , with the operations of V
restricted to W , is a vector space over F.
Proof sketch. (VS 1), (VS 2), and (VS 5)–(VS 8) follow automatically because of their logical nature
(universally quantified statements). Proving (VS 3) and (VS 4) requires a little more work and can be
done using the previous Theorem; in particular, �x = �(1x) = (�1)x. ⇤
Remark. The converse to the previous theorem is also true: if W ✓ V and W with the operations of V
restricted to W is a vector space, then W 6= ? and W is closed under the operations of V (so is a subspace
of V ).
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Definition. Suppose V is a vector space over F, x 2 V , and ? 6= S ✓ V .

(1) x is a linear combination of S if x is a linear combination of some finite list of vectors from S.
(Note that S might be infinite.)

(2) The span of S, written span(S), is the set of all vectors x 2 V which are linear combinations of S.

We also define span(?) = {0}.

Example 1. In R[x], what is the span of the infinite set S = {x, x2, x3, x4, . . .}? It includes all linear

combinations of finitely many of x, x2, x3, x4, . . .. Thus we get all polynomials of the form

a1x+ a2x
2
+ · · ·+ anx

n, a1, a2, . . . , an 2 R.
In other words, span(S) = {f(x) 2 R[x] : f(0) = 0}.

Technical Observations. (Assume S 6= ?.)

(1) Suppose x 2 span(S). So x is a linear combination of some finite list u1, . . . , um from S, say,

x = a1u1 + · · ·+ amum.

If v1, . . . , vn are some more vectors from S, then x is also a linear combination of u1, . . . , um, v1, . . . , vn,
since we can write

x = a1u1 + · · ·+ amum + 0v1 + · · ·+ 0vn.

(2) Thus if S is finite, say S = {u1, . . . , un}, then x 2 span(S) i↵ x is a linear combination of u1, . . . , un.

(3) If S is infinite, we can say the following. Suppose x, y 2 span(S). Then x is a linear combination

of a finite list u1, . . . , um from S and y is a linear combination of a finite list v1, . . . , vn from

S. By the earlier remark, we can view both x and y as linear combinations of the same list

u1, . . . , um, v1, . . . , vn.

Theorem (On span). Let V be a vector space over F and S ✓ V . Then span(S) is the (unique) smallest
subspace of V which contains S. That is,

(1) span(S) is a subspace of V .
(2) span(S) ◆ S.
(3) If W is any subspace of V and W ◆ S, then W ◆ span(S).

Proof. (1) and (2) in class; (3) deferred to Wednesday’s lecture. ⇤
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Today: redundancies in span.

Example 1. Suppose S = {u1, u2, u3, u4, u5} and u3 can be written as a linear combination of u2, u4, u5,

say

u3 = c2u2 + c4u4 + c5u5.

Claim: span(S) = span(S \ {u3}).
Proof. ◆ can be quickly proved using the Theorem on span from Monday’s lecture. For ✓, argue directly.

⇤
Also note that

0u1 + a2u2 + (�1)u3 + a4u4 + a5u5 = 0.

The scalars 0, a2,�1, a4, a5 are not all 0 (because of �1). This motivates the formal definition.

Definition. Let V be a vector space over F and S ✓ V . We say that S is linearly dependent if there

exist distinct vectors u1, . . . , un 2 S and scalars a1, . . . , an 2 F such that

(1) a1u1 + · · ·+ anun = 0, and

(2) a1, . . . , an are not all 0.

If S is not linearly dependent, we say it is linearly independent.

Let’s explore this. A set is S linearly dependent

() (9 distinct u1, . . . , un 2 S)(9a1, . . . , an 2 F)(a1u1 + · · ·+ anun = 0 and ¬(a1 = · · · = an = 0))

Thus S is linearly independent

() ¬(9 distinct u1, . . . , un 2 S)(9a1, . . . , an 2 F)(a1u1 + · · ·+ anun = 0 and ¬(a1 = · · · = an = 0))

() (8 distinct u1, . . . , un 2 S)(8a1, . . . , an 2 F)(a1u1 + · · ·+ anun 6= 0 or a1 = · · · = an = 0)

() (8 distinct u1, . . . , un 2 S)(8a1, . . . , an 2 F)(a1u1 + · · ·+ anun = 0 =) a1 = · · · = an = 0)

Technical Observation. Suppose S is finite and nonempty, say S = {u1 . . . , un}. Then the definition

of linear dependence, and the characterization of linear independence, can both be simplified by dropping

the “9 distinct u1, . . . , un 2 S” or “8 distinct u1, . . . , un 2 S.” Thus (in this situation),

• S is linearly dependent i↵

(9a1, . . . , an 2 F)(a1u1 + · · ·+ anun = 0 and ¬(a1 = · · · = an = 0)).

• S is linearly independent i↵

(8a1, . . . , an 2 F)(a1u1 + · · ·+ anun = 0 =) a1 = · · · = an = 0).

Question: Is S = ? linearly dependent, or linearly independent? Linearly independent

Question: Is S = {0} linearly dependent, or linearly independent? Linearly dependent

Theorem (On dependence). Let V be a vector space over F and S ✓ V . S is linearly dependent i↵
S = {0} or some vector in S is a linear combination of other vectors in S.
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Recall: if V is a vector space/F and S ✓ V , then:

(1) span(S) is the set of all linear combinations of S.
(2) S is linearly dependent if there exist distinct u1, . . . , un 2 S and there exist a1, . . . , an 2 F,

not all zero, such that a1u1 + · · ·+ anun = 0.
• Else S is linearly independent.

Definition. Let V be a vector space over F.
(1) A subset S ✓ V is a spanning set if span(S) = V . We also say S spans V .
(2) We say V is finitely [countably] spanned if V has a finite [countable] spanning set.

Here countable means “finite or in 1-1 correspondence with N.”
E.g., Fn is finitely spanned, e.g., by {e1, . . . , en} where ei = (0, . . . , 0, 1, 0, . . . , 0) (1 in ith spot).
F[x] is countably spanned, e.g., by {1, x, x2, . . . , xn, . . .}.
R[0,1] is not countably spanned.

Definition. Let V be a vector space. A basis for V is a subset S ✓ V which is linearly independent and
spans V .

Theorem. Every countably spanned vector space has a basis.

Proof. Let V be spanned by the countable set S; so S = {v1, . . . , vn} or S = {v1, v2, . . .}.
We can assume WLOG that 0 62 S. Define

T = {vj : vj 62 span({v1, . . . , vj�1})}.
Write T = {vi1 , vi2 , . . .} (finite or infinite), i1 < i2 < · · · .
Claim: T is a basis for V .

First show T is linearly independent. Argue by contradiction; assume T is linearly dependent. We can
choose some finite initial segment of it, say {vi1 , . . . , vik} for which we can choose a1, . . . , ak 2 F, not all 0,
with

a1vi1 + · · ·+ akvik = 0.

Assume k has been chosen to be smallest with this property.
Cannot have k = 1 (since 0 62 S). So k > 1.
If ak = 0, then

a1vi1 + · · ·+ ak�1vik�1 = 0, not all a1, . . . , ak�1 equal 0

Contradicts choice of k; proves ak 6= 0.

Manipulate to get vik a linear combo of vi1 , . . . , vik�1
; contradicts vik 2 T .

Next we must show span(T ) = V . Intuition: span(S) = V and we’ve only thrown out “redundant”
vectors to get T . Formally, list vectors of S and of T . For each n, let

Sn = {v1, . . . , vn}
Tn = {vik 2 T : ik  n}.

Argue, by induction on n, that span(Tn) = span(Sn) for all n. (Don’t do.)
Then to show span(T ) = V , equivalently, V ✓ span(T ), let x 2 V ; then x 2 span(S); so by picking n

large enough we get x 2 span(Sn) = span(Tn) ✓ span(T ). ⇤
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Jan 17, Lecture 7: Dimensions

The next main result is to prove that any two bases of a finitely spanned vector space have the same
number of elements. To prove this, we first have an intermediate result.

Theorem 1.10. Let V be a finitely spanned vector space over a field F. Let {v1, . . . , vm} be a basis for V .

Let {w1, . . . , wn} µ V and n > m. Then {w1, . . . , wn} is a linearly dependent set.

Proof Sketch. Idea: Replace successively v1, v2, . . . , vr so that w1, w2, . . . , wr, vr+1, . . . , vm generate V for
all 1 Æ r Æ m ≠ 1. Finally, we have w1, . . . , wm generate V . Below is the detail of the proof.

Assume that {w1, . . . , wn} is linearly independent. (*)
Statement: After renumbering v1, . . . , vm if necessary, we have w1, w2, . . . , wr, vr+1, . . . , vm generate

V for all 1 Æ r Æ m ≠ 1.

• Base step: Since {v1, . . . , vm} is a basis, we have

w1 = a1v1 + · · · + amvm

By assumption, w1 ”= 0, so ai ”= 0 for some 1 Æ i Æ m. After renumbering v1, . . . , vm if necessary,
we may assume WLOG that a1 ”= 0. Then we can solve for v1 and get

a1v1 = w1 ≠ a2v2 ≠ · · · ≠ amvm

v1 = a≠1
1 w1 ≠ a≠1

1 a2v2 ≠ · · · ≠ a≠1
1 amvm

V = span({v1, v2, . . . , vm}) µ span({w1, v2, . . . , vm}) µ V

V = span({w1, v2, . . . , vm}).

• Assume by induction that there is an integer r with 1 Æ r Æ m ≠ 1 such that, after a suitable
renumbering of v1, . . . , vm, V = span({w1, . . . , wr, vr+1, . . . , vm}).

• We will prove the statement is true for r + 1, that is, V = span({w1, . . . , wr, wr+1, vr+2, . . . , vm}),
after a suitable renumbering of v1, . . . , vm.
Since w1, . . . , wr, vr+1, . . . , vm generate V , we have

wr+1 = b1w1 + · · · + brwr + cr+1vr+1 + · · · + cmvm.

• Claim: We cannot have cj = 0 for all j = r + 1, . . . m. Indeed, if cr+1 = · · · = cm = 0, then
wr+1 is a linear combination of w1, . . . , wr, hence {w1, . . . , wr+1, . . . , wn} is linearly dependent,
a contradiction with the assumption (*).

17



• WLOG, assume cr+1 ”= 0. Then

vr+1 = c≠1
r+1wr+1 ≠ c≠1

r+1b1w1 ≠ · · · ≠ c≠1
r+1brwr ≠ c≠1

r+1cr+2vr+2 ≠ · · · ≠ c≠1
r+1cmvm

Using the same argument as in the base step and using the induction assumption, we have

V = span({w1, . . . , wr, wr+1, vr+2, . . . , vm}).

• So by induction, we have proved that w1, . . . , wm generates V . If n > m, then we can write wn as
a linear combination of w1, . . . , wm. Therefore, the set {w1, . . . , wn} is linearly dependent, a contra-
diction to the assumption (*). In conclusion, the assumption (*) is wrong, and the set {w1, . . . , wn}
is linearly dependent.

Theorem 1.11. Let V be a vector space and suppose that one basis has n elements, and another basis

has m elements. Then m = n.

Proof. Previous theorem implies that both alternatives n > m and m > n are impossible, and hence
m = n.

Definition 15. Let V be a vector space having a basis consisting of n elements. We say that n is the

dimension of V , dim V = n.

For V = {0}, dim{0} = 0.

A vector space which has a basis consisting of a finite number of elements , or the zero vector space, is

called finite dimensional. Other vector space are called infinite dimensional.

Example 14. Dimensions of Fn, Mm◊n(F), Pn(F).

Let {v1, . . . , vn} be linearly independent elements of a vector space V . We say that {v1, . . . , vn} is a
maximal set of linearly independent elements of V if given any w œ V , the set {w, v1, . . . , vm} is linearly
dependent.
Corollary: Let V be a vector space.

• If {v1, . . . , vn} is a maximal set of linearly independent elements of V , then {v1, . . . , vn} is a basis of
V .

• If dim V = n and {v1, . . . , vn} is a linearly independent set. Then {v1, . . . , vn} is a basis of V .

• If dim V = n and {v1, . . . , vk} is a linearly independent set (k < n). Then one can find elements
vk+1, . . . , vn such that {v1, . . . , vn} is a basis of V .

• If dim V = n and W is a subspace of V . Then dim W Æ dim V .

Proof. Exercise.

18
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From Monday:

Theorem. Suppose V is a v.s., {v1, . . . , vm} is a basis of size m, and w1, . . . , wn 2 V (all distinct) with
n > m. Then {w1, . . . , wn} is linearly dependent.

Corollary. If V has one basis with m elements and another basis with n elements, then m = n.

Question: can V have one basis with m elements and another basis with infinitely many elements?

Answer: no; else the infinite basis of V would have a subset of size m+1, which is automatically linearly

independent.

Corollary. If V is finitely spanned, then any two bases have the same (finite) number of elements.

In this case, dimV is by definition the (finite) number of elements in any basis.

Fact: Even if V is not finitely spanned, any two bases for V have the same cardinality. (This is not easy

to prove.)

In this course we will simply write dimV = 1 if V has an infinite basis (equivalently, V has no finite

basis). So e.g., dimR[x] = 1 = dimR[0,1]
. But warning: in advanced linear algebra, we do not write

dimR[x] = dimR[0,1]
, because actually

dimR[x] = @0 while dimR[0,1]
= 2

2@0 .

Corollary. If V is finitely spanned and B = {w1, . . . , wn} is linearly independent, then B can be extended
to a basis for V . I.e., 9v1, . . . , vr such that {w1, . . . , wn, v1, . . . , vr} is a basis for V .

The proof idea is simple: either B is already a basis, or else spanB ⇢ V . In the latter case, choose any

v1 2 V \ span(B). Then B [ {v1} is linearly independent (by Jan. 15 thm).

Repeat. This can’t go on forever because linearly independent sets must have size  dimV . ⇤
Fact: Even if V is not finitely spanned, every linearly independent subset of V can be extended to a basis

(this is proved using some form of the Axiom of Choice).

Recall: a finite linearly independent set {v1, . . . , vn} in a v.s. V is a maximal linearly independent set if
for every w 2 V \ {v1, . . . , vn}, {v1, . . . , vn, w} is linearly dependent.

Corollary. In a finitely spanned vector space, every maximal linearly independent set is a basis (and vice
versa).

Definition. More generally, a subset B ✓ V is a maximal linearly independent set if it is linearly inde-

pendent and for all x 2 V \B, B [ {w} is linearly dependent.

Fact: Even if V is not finitely spanned, every maximal linearly independent set is a basis and vice versa.

(Exercise)

We can also “shrink” spanning sets to bases.

Fact: In any vector space V , if B ✓ V and spanB = V , then there exists a subset B0 ✓ B such that B0
is

a basis for V .

We proved this fact for countably spanned vector spaces. One needs to use the Axiom of Choice to prove

it in general.

Definition. A subset B ✓ V is a minimal spanning subset of V if spanB = V and for every w 2 B,

span(B \ {w}) 6= V .

Fact: In any vector space, every minimal spanning set is a basis and vice versa.
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Definition 1. Suppose V is a vector space and W is a subspace. If x, y 2 V , we write x ⌘ y (mod W ) if
x� y 2 W .

Claim 2. In the above setting, ⌘ (mod W ) is an equivalence relation on V .

Definition 3. In the above setting, given x 2 V , we let x +W
df
= {x + w : w 2 W}, and call x +W the

translation of W by x (or the coset of W containing x).

(Note that x is fixed: x+W is the set gotten by adding x to all possible vectors in W . For an example,
think of W being a line through the origin; then x+W is the line parallel to W going through x.)

Lemma 4. If V is a vector space and W is a subspace, then for any x 2 V , the equivalence class of ⌘
(mod W ) containing x is exactly x+W .

Corollary. With V and W as above, for any x, y 2 V ,

x+W = y +W () x ⌘ y (mod W ) i.e., x� y 2 W.

Definition 5. Given a vector space V and a subspace W , V/W denotes the set of all translations of W .
Formally, V/W = {x+W : s 2 V }.

Definition 6. Let V be a vector space over F, and let W be a subspace. Operations of addition and
scalar-multiplication-by-F are defined naturally on V/W by representatives:

(x+W ) + (y +W ) := (x+ y) +W

c(x+W ) := (cx) +W.

Remark: the middle + in the expression (x+W ) + (y +W ) is not the same operation as the other +’s.
It is an operation on (certain) sets. If S = x + W and T = y + W , then the definition of S + T is not
{s+ t : s 2 S and t 2 T}. The definition is: choose x, y so that S = x+W and T = y +W ; add x and y
to get x+ y = z; then S + T is defined to be the translation of W through z (i.e., z +W ).

Claim 7. In the above situation,

(1) The two operations are well-defined, and
(2) The set V/W with these operations is a vector space over F.
(1) means the following: if x + W = x1 + W and y + W = y1 + W , then (x + y) + W should equal

(x1 + y1) +W , and (cx) +W should equal (cx1) +W for all c 2 F. Here is a proof of the second part:

x+W = x1 +W =) x� x1 2 W

=) c(x� x1) 2 W

=) (cx)� (cx1) 2 W

=) (cx) +W = (cx1) +W.

(2) means that the set V/W with the operations given above satisfies axiom (VS 1) – (VS 8). This is
an exercise. (What is the “zero vector”?)

Definition. V/W with the natural operations is called the quotient space of V modulo W .
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The next definition describes the “good” functions between vector spaces.

Definition. Let V and W be vector spaces over the same field F. A function T : V ! W is called a

linear transformation, or is said to be linear, if:

(1) T (x+ y) = T (x) + T (y) for all x, y 2 V , and

(2) T (ax) = aT (x) for all x 2 V and a 2 F.
Example 2.1.

(1) (F = R). Let V = W = R. Fix � 2 R. Define T : R ! R by T (x) = �x. Claim: T is a linear.

Remark: every linear transformation R ! R has this form (for some �).
(2) (F = R). Let V = W = R2

. Define T : R2 ! R2
by T (x1, x2) = (�x2, x1). (This is just “rotation

c.c.w. by 90
�
about (0, 0).”)

Claim. T is a linear transformation.

(3) The previous example is a special case of the following: let A 2 Mm⇥n(R), say

A =

0

BB@

a11 a12 · · · a1n
a21 a22 · · · a2n
...

. . .
...

am1 am2 · · · amn

1

CCA

Given x = (x1, . . . , xn) 2 Rn
, define

Ax =

0

BB@

a11 a12 · · · a1n
a21 a22 · · · a2n
...

. . .
...

am1 am2 · · · amn

1

CCA

0

BB@

x1

x2
...

xn

1

CCA =

0

BB@

a11x1 + a12x2 + · · ·+ a1nxn

a21x1 + a22x2 + · · ·+ a2nxn
...

am1x1 + am2x2 + · · ·+ amnxn

1

CCA 2 Rm.

Then define LA : Rn ! Rm
by LA(x) = Ax. Claim: LA is linear.

Can generalize this further: replace R with any field F. Given A 2 Mm⇥n(F), get a linear

transformation LA : Fn ! Fm
. We’ll see later that every linear transformation from Fn

to Fm
has

this form.

(4) Define T : C([�1, 1]) ! R by T (f) =
R 1

�1 f(x)dx. Claim: T is linear.

(5) Define D : C1
(R) ! C(R) by D(f) = f 0

. Claim: D is linear.

Here are some easily proved properties of all linear transformations T : V ! W .

(1) T (0) = 0.

(2) T (x� y) = T (x)� T (y).
(3) T (a1x1 + · · ·+ anxn) = a1T (x1) + · · ·+ anT (xn).

Example 2.1 (Continued).

(5) T : Mm⇥n(F) ! Mn⇥m(F) given by T (A) = At
(transpose).

(6) Given any V and W , the function T0 : V ! W which maps every x 2 V to the 0 vector in W .

(Called the zero transformation.)

(7) Given any V , the function IV : V ! V defined by IV (x) = x for all x 2 V . (This is the identity

function on V .)
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Definition. Suppose T : V ! W is linear.

(1) The null space of T is the set N(T ) = {x 2 V : T (x) = 0}.
(2) The range of T is the set R(T ) = {T (x) : x 2 V }.

Note that N(T ) ✓ V and R(T ) ✓ W .

Example. Define Dn : Pn(R) ! Pn(R) by Dn(f) = f 0. Obviously Dn is linear.

(1) N(Dn) = {f 2 Pn(R) : f 0 = 0} = {constant polynomials} = span(1).
(2) R(Dn) = {f 0 : f 2 Pn(R)} = Pn�1(R).

Theorem. Let T : V ! W be linear. Then N(T ) is a subspace of V , and R(T ) is a subspace of W .

Because linear transformations preserve linear combinations, we can prove the following.

Theorem (Useful Trick Theorem). Suppose T : V ! W is linear and V = span(v1, . . . , vn). Then

R(T ) = span(T (v1), . . . , T (vn)).

Example. Let A 2 Mm⇥n(F) and consider LA : Fn ! Fm. Fn is spanned by {e1, e2, . . . , en} where

ei = (0, . . . , 0,1, 0, . . . , 0).
"
i

Thus R(LA) = span(LA(e1), . . . , LA(en)) by the Useful Trick Theorem. Note that

LA(ei) =

0

BB@

a11 · · · a1i · · · a1n
a21 · · · a2i · · · a2n
...

...
...

am1 · · · ami · · · amn

1

CCA

0

BBBBB@

0
...
1
...
0

1

CCCCCA
=

0

BB@

a1i
a2i
...

ami

1

CCA = the ith column of A.

Hence R(LA) is the subspace of Fm spanned by the columns of A.

The Useful Trick Theorem can be helpful in deciding whether a linear transformation T : V ! W is
surjective, i.e., satisfies R(T ) = W .

The next theorem gives a useful test for deciding whether T is injective.

Theorem. A linear transformation T : V ! W is injective i↵ N(T ) = {0}.
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Announcements:

(1) Monday’s Tutorial: required material

Definition. A linear transformation T : V ! W is an isomorphism if it is injective and surjective (i.e.,
bijective). When this happens, we also write T : V ⇠= W .

We write V ⇠= W and say V is isomorphic to W , if there exists an isomorphism T : V ⇠= W .

Example: Pn(R) ⇠= Rn+1. One isomorphism is

T (a0 + a1x+ a2x
2 + · · ·+ anx

n) = (a0, a1, . . . , an).

Definition. Suppose T : V ! W is linear. Then rank(T ) := dim(R(T )) and nullity(T ) = dim(N(T )).

Theorem (Rank-Nullity Theorem). Suppose T : V ! W is linear and dim(V ) < 1. Then rank(T ) +
nullity(T ) = dim(V ).

Proof sketch. Suppose dim(V ) = n and dim(N(T )) = k  n. Let m = n� k. Must show dim(R(T )) = m.
Pick a basis S = {v1 . . . , vk} for N(T ). By A2Q2, S can be extended to a basis B ◆ S for V . Thus

|B| = n = k +m, so we can write B = {v1, . . . , vk}| {z }
S

[{x1, . . . , xm}.

Let C = {T (x1), . . . , T (xm)}. It su�ces to show that |C| = m and C is a basis for R(T ). Then it will
follow that dim(R(T )) = m. ⇤

Consider the proof in the special case when T : V ⇠= W . Then N(T ) = {0}, so S = ?, so m = n and
{x1, . . . , xn} is a basis for V . The proof shows that {T (x1), . . . , T (xn)} is a basis for R(T ), which is W .
This proves:

Corollary. If T : V ⇠= W and dim(V ) < 1, then dim(V ) = dim(W ) and T sends any basis of T to a
basis of W .

Here is another cute consequence of the RNT.

Corollary. Suppose T : V ! W is linear and dim(V ) = dim(W ) = n < 1. Then T is injective i↵ T is
surjective.

Proof. Observe that

(1) T is injective () N(T ) = {0} () nullity(T ) = 0, and
(2) T is surjective () R(T ) = W () rank(T ) = n.

Since nullity(T ) + rank(T ) = n, the claim holds. ⇤
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Proposition. Suppose {v1, . . . , vn} is a basis for vector space V over F. Then for every x 2 V , x can be
written uniquely as

x = a1v1 + · · ·+ anvn, a1, . . . , an 2 F.
Proof sketch. (In class) ⇤

Example: W = {(x, y, z) 2 R3 : x+ y + z = 0} with basis {v1, v2} where v1 = (�1, 1, 0) and v2 =
(0,�1, 1). (Visualizing points in v 2 W via the pair of numbers (a, b) such that v = av1 + bv2.)

Definition. Let V be a finite-dimensional vector space. An ordered basis for V is a basis (v1, . . . , vn),
ordered as an n-tuple.

Following the text, I’ll use ↵, �, � etc for ordered bases.

Definition. Given a vector space V over F with dim(V ) = n, an ordered basis � = (v1, . . . , vn) for V ,
and a vector x 2 V , the coordinate vector of x relative to � is the unique n-tuple (a1, . . . , an) 2 Fn

satisfying
x = a1v1 + · · ·+ anvn.

We denote (a1, . . . , an) by [x]�.

Example 2.15. In the previous example, let � = (v1, v2) where v1 = (�1, 1, 0) and v2 = (0,�1, 1). If
x = (�3, 1, 2) then [x]� = (3, 2).

If � is an ordered basis for V (where V is a finite-dimensional vector space over F with n = dim(V )),
then we can view [ ]� as a function V ! Fn.

Theorem 2.16. Let V be a finite-dimensional vector space over F, dim(V ) = n, and let � be an ordered
basis for V . The map [ ]� : V ! Fn is a bijective linear transformation (i.e., an isomorphism).

Proof. (In class) ⇤
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Proposition. Suppose V,W are vector spaces over F, B is a basis for V , and T : V ! W is a linear
transformation. Then T is completely determined by its values T (v), v 2 B.

I.e., if T 0
: V ! W is another linear transformation and T (v) = T 0

(v) for all v 2 B, then T = T 0
.

Proof #1. Let T 0
be another linear transformation with T |B = T 0|B. Let x 2 V . x can be written

x = a1v1 + · · ·+ anvn

for some v1, . . . vn 2 B and a1, . . . , an 2 F. Then
T 0
(x) = T 0

(a1v1 + · · ·+ anvn) = a1T
0
(v1) + · · ·+ anT

0
(vn) = · · · = T (x).

Since x 2 V was arbitrary, T = T 0
. ⇤

Proof #2. Claim: the set of all linear transformations from V to W is a subspace of W V
. (Exercise).

This set is called Hom(V,W ). Now define D = T � T 0
, i.e., D(x) = T (x) � T 0

(x). T, T 0 2 Hom(V,W )

so D 2 Hom(V,W ), meaning D is linear. Let’s prove D is constantly 0 by showing N(D) = V . By

hypothesis, B ✓ N(D). Since N(D) is a subspace of V , we get span(B) ✓ N(D), i.e, V ✓ N(D). ⇤
Proposition. Suppose V,W,B are as above. Every function ⌧ : B ! W extends (uniquely) to a linear
transformation T : V ! W , i.e., with T |B = ⌧ .

We call this “freely extending” ⌧ .

Proof. First we say how to define T . Given x 2 V , x can be written

x = a1v1 + · · ·+ anvn

with v1, . . . , vn 2 B and a1, . . . , an 2 F. Define
T (x) := a1⌧(v1) + · · ·+ an⌧(vn).

Now show that T extends ⌧ and is linear (done in class). ⇤
Example. Let V = R3

and W = R2
. Choose the basis {v1, v2, v3} where

v1 = (1, 0, 1), v2 = (1, 0,�1), v3 = (1, 1, 1).

Ask for three random vectors A,B,C 2 R2
. Define ⌧ : {v1, v2, v3} ! R2

by ⌧(v1) = A, ⌧(v2) = B, and

⌧(v3) = C. Now find the unique linear transformation R3 ! R2
, of the form LA (where A 2 M2⇥3(R)),

extending ⌧ .

Example. Let V be a vector space over F and dim(V ) = n. Let � = (v1, . . . , vn) be an ordered basis for

V . Define ⌧ : {v1, . . . , vn} ! Fn
by ⌧(vi) = ei = (0, . . . , 0, 1, 0, . . . , 0) for i = 1, . . . , n. ⌧ freely extends to

a (unique) linear transformation T : V ! Fn
, namely, to T = [ ]�.

Example. Let V,F, � be as before. Pick a = (a1, . . . , an) 2 Fn
. Define ⌧a : {v1, . . . , vn} ! F by ⌧a(vi) = ai

for i = 1, . . . , n. ⌧a extends to a (unique) linear transformation fa : V ! F (i.e., to a linear functional),
which satisfies

fa(c1v1 + · · ·+ cnvn) = c1a1 + · · ·+ cnan.

In particular, if a = e1 = (1, 0, 0, . . . , 0) then

fe1(c1v1 + · · ·+ cnvn) = c1.

In other words, fe1 is the linear functional f1 in the dual basis �⇤
= (f1, . . . , fn) for V ⇤

defined in Monday’s

tutorial. Similarly, fei = fi for i = 2, . . . , n.
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Announcements:

(1) No tutorial on Monday Feb 10.

Suppose T : V ! W is linear where V and W are both finite-dimensional vector spaces over F.
Suppose � = (v1, . . . , vn) is an ordered basis for V and � = (w1, . . . , wm) is an ordered basis for W .

• T is completely determined by T (v1), . . . , T (vn).
• Each T (vj) is determined by its coordinate vector [T (vj)]� 2 Fm.

Definition. In this context, the matrix representation of T for � and � is the matrix A 2 Mm⇥n(F)
whose columns are [T (v1)]�, . . . , [T (vn)]�. Thus

A =

0

B@
· · · · · ·

[T (v1)]� · · · [T (vj)]� · · · [T (vn)]�

· · · · · ·

1

CA .

We denote this matrix A by [T ]��.

Example. Let A 2 Mm⇥n(F) and T = LA : Fn ! Fm, where LA(x) = Ax. Let �n be the standard ordered
basis for Fn, i.e., �n = (e1, . . . , en) where ej = (0, . . . , 0, 1, 0, . . . , 0) 2 Fn with 1 in the j-th position.
Similarly let �m be the standard ordered basis for Fm.

Claim: [LA]�m
�n

= A (not surprisingly).

Proof. First recall that, for each j = 1, . . . , n, Aej equals the j-th column of A. Second, note that for any
x = (b1, . . . , bm) 2 Fm we have x = b1e1 + · · ·+ bmem and so [x]�m = (b1, . . . , bm) = x.

Now the j-th column of [LA]�m
�n

is by definition

[LA(ej)]�m = [Aej]�m

= Aej by the 2nd remark

= the j-th column of A by the 1st remark.

Thus [LA]�m
�n

and A have the same columns, so are the same matrix. ⇤
Theorem 2.21. Suppose V,W are finite-dimensional vector spaces over F, � = (v1, . . . , vn) is an ordered
basis for V , � = (w1, . . . , wm) is an ordered basis for W , and T : V ! W is linear. Then for all x 2 V ,

[T (x)]� = [T ]�� · [x]�.

Proof. Write

[T ]�� =

0

B@
· · · · · ·

[T (v1)]� · · · [T (vj)]� · · · [T (vn)]�

· · · · · ·

1

CA =

0

BB@

a11 a12 · · · a1n
a21 a22 · · · a2n
...

...
am1 am2 · · · amn

1

CCA

meaning
T (vj) = a1jw1 + a2jw2 + · · ·+ amjwm for j = 1, . . . , n.

Also write
[x]� = (c1, . . . , cn),



meaning
x = c1v1 + · · ·+ cnvn.

On the one hand,

[T ]�� · [x]� =

0

BB@

a11 a12 · · · a1n
a21 a22 · · · a2n
...

...
am1 am2 · · · amn

1

CCA

0

BB@

c1
c2
...
cn

1

CCA =

0

BB@

a11c1 + a12c2 + · · ·+ a1ncn
a21c1 + a22c2 + · · ·+ a2ncn

...
am1c1 + am2c2 + · · ·+ amncn

1

CCA .

On the other hand,

T (x) = T (c1v1 + · · ·+ cnvn)

= c1T (v1) + · · ·+ cnT (vn) (T is linear)

= c1(a11w1 + · · ·+ am1wm) + · · ·+ cn(a1nw1 + · · ·+ amnwm)

= (c1a11 + · · ·+ cna1n)w1 + · · ·+ (c1am1 + · · ·+ cnamn)wm

= (a11c1 + · · ·+ a1ncn)w1 + · · ·+ (am1c1 + · · ·+ amncn)wm.

Hence we can see that [T ]�� · [x]� is the coordinate vector of T (x) relative to �, proving the theorem. ⇤

2
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Notation. Suppose A 2 Mm⇥n(F).
• For j = 1, . . . , n, Colj(A) denotes the j-th column of A. Thus Colj(A) 2 Fm.
• For i = 1, . . . ,m, Rowi(A) denotes the i-th row of A. Thus Rowi(A) 2 Fn.

I may write

A =

0

B@
|

Col1
|

, . . . ,

|
Coln
|

1

CA =

0

B@
– Row1 –

...
– Rowm –

1

CA .

Recall that A determines a linear transformation LA : Fn ! Fm defined by LA(x) = Ax. Also recall:

(1) Aej = Colj(A) for each j = 1, . . . , n.
(2) Whenever T : V ! W is a linear transformation, ↵ = (v1, . . . , vn) is an ordered basis for V , and

� = (w1, . . . , wm) is an ordered basis for W , then [T ]�↵ is the m ⇥ n matrix whose j-th column is
given by Colj([T ]�↵) = [T (vj)]� for j = 1, . . . , n.

With this information we can calculate [LA]�m
�n

; it is the m⇥ n matrix whose j-th column is

Colj([LA]
�m
�n

) = [LA(ej)]�m = [Aej]�m = [Colj(A)]�m = Colj(A),

where the last equality is because Colj(A) 2 Fm and �m is the standard ordered basis for Fm. This proves
that [LA]�m

�n
= A; that is, the matrix representation of LA with respect to the standard ordered bases is A.

Definition. Let F be a field. Suppose A 2 Mm⇥n(F) and B 2 Mn⇥p(F). The matrix product AB is
the m ⇥ p matrix C 2 Mm⇥p(F) whose row-i, column-j entry is the linear combination of the entries in
Colj(B) using as scalars the entries of Rowi(A). That is,
0

BBBBBB@

a11 · · · a1t · · · a1n
...

ai1 · · · ait · · · ain

...
am1 · · · amt · · · amn

1

CCCCCCA

0

BBBBBB@

b11
...
bt1
...
bn1

· · ·

b1j
...
btj
...
bnj

· · ·

b1p
...
btp
...
bnp

1

CCCCCCA
=

0

BBBBB@

c11 · · · c1j · · · c1p
...

...
...

ci1 · · · cij · · · cip

...
...

...
cm1 · · · cmj · · · cmp

1

CCCCCA

where each entry cij of the product is given by cij = ai1b1j + ai2b2j + · · ·+ ainbnj.

Remarks.

(1) If p = 1, so B and AB are column vectors, then the definition above is just our usual definition for
multiplying a matrix by a column vector.

(2) In general (i.e., when B has several columns), B and AB have the same number of columns, and
the j-th column of AB is obtained by multiplying A by the j-th column of B. I.e., Colj(AB) =
A · Colj(B) for j = 1, . . . , p.

Now suppose we have T : V ! W and U : W ! Z, both linear, where V,W,Z are all finite-dimensional,

say dim(V ) = p, dim(W ) = n, and dim(Z) = m. In this situation, define UT
def
= U � T : V ! Z; it is also

linear (exercise). Also assume that ↵, �, � are ordered bases for V,W,Z respectively.

Theorem 2.22. In this situation, [UT ]�↵ = [U ]�� · [T ]�↵.
Proof. Given in class. (Show Colj(LHS) = Colj(RHS) for j = 1, . . . , p.) ⇤
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Here is an application of Monday’s Theorem. Let A 2 Mm⇥n(F) and B 2 Mn⇥p(F). Thus LB : Fp ! Fn

and LA : Fn ! Fm
. So we can compose LB with LA to get LALB : Fp ! Fm

.

Corollary. In this situation, LALB = LAB.

Proof. It su�ces to show that [LALB]
�m
�p

= [LAB]
�m
�p

, since linear transformations are determined by their

matrix representations. Apply Monday’s Theorem to the LHS and use [LD]
�m
�n

= D repeatedly. ⇤
Corollary. Matrix multiplication (when defined) is associative. I.e., if A 2 Mm⇥n(F), B 2 Mn⇥p(F), and
C 2 Mp⇥r(F), then (AB)C = A(BC).

Proof. It su�ces to show L(AB)C = LA(BC) (as functions). Use the previous Corollary and the fact that

composition of functions is associative. ⇤
Warning: Matrix multiplication is not in general commutative.

Definition. A square matrix A 2 Mn⇥n(F) is invertible if there exists B 2 Mn⇥n(F) satisfying AB =

BA = In.

Note that if such B exists, then B is unique. (Proof: if B1 and B2 satisfy AB1 = B1A = In and

AB2 = B2A = In, then B1 = B1In = B1(AB2) = (B1A)B2 = InB2 = B2.) This justifies the following:

Notation. If A is invertible, then the unique matrix B satisfying AB = BA = In is denoted A�1
and is

called the inverse of A.

Theorem 2.24. Suppose V,W are fin. dim. vector spaces over F, ↵, � are ordered bases for V,W respec-
tively, and T : V ! W is linear. T is an isomorphism i↵ [T ]�↵ is invertible, in which case ([T ]�↵)

�1
= [T�1

]
↵
� .

Proof. ()) Let A = [T ]�↵. Assume that T is an isomorphism. Then dim(V ) = dim(W ) = n, say (by

a corollary of the Rank-Nullity Theorem; see Jan. 31 lecture), so A is a square (n ⇥ n) matrix. Let

T�1
: W ! V be the inverse linear transformation to T . Then B := [T�1

]
↵
� is also an n⇥ n matrix, and

AB = [T ]�↵ · [T�1
]
↵
�

= [TT�1
]
�
� Monday’s Theorem

= [IW ]
�
�

= In (exercise).

A similar proof shows BA = [IV ]↵↵ = In. So by definition, A is invertible A�1
= B.

(() exercise. ⇤
Easy Lemma. If A,B 2 Mn⇥n(F) are invertible, then AB is also invertible and (AB)

�1
= B�1A�1.

Proof. Let C = B�1A�1
. It su�ces to show that (AB)C = C(AB) = In, for then it will follow that AB is

invertible and its inverse is C. So let’s check:

(AB)C = (AB)(B�1A�1
) = A(BB�1

)A�1
= AInA

�1
= AA�1

= In.

The proof of C(AB) = In is similar. ⇤
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Recall the following (Corollary of Rank-Nullity Theorem, Jan. 31):

Corollary. Suppose T : V ! W is linear and dim(V ) = dim(W ) = n < 1. Then T is injective () T
is surjective () T is an ⇠=.

Fact. Suppose f : X ! Y and g : Y ! Z, so gf := g � f : X ! Z. Assume gf is a bijection. Then f is
injective and g is surjective.

Proof. Exercise. ⇤
Theorem. Suppose A,B 2 Mn⇥n(F). If AB is invertible, then A and B are both invertible.

Proof. AB invertible =) LAB : Fn ! Fn is an isomorphism.
=) LALB : Fn ! Fn is an isomorphism (hence bijection), because LAB = LALB (Feb. 12).
=) LB is injective and LA is surjective (today’s Fact).
=) LA and LB are isomorphisms (Jan. 31 corollary).
=) A and B are invertible. ⇤

Corollary. If A,B are n⇥ n matrices and AB = In, then BA = In (so A is invertible and B = A�1).

Proof. Since AB = In and In is invertible, the Theorem gives that A is invertible, so A�1 exists. Multiplying
AB = In on the left by A�1 gives B = A�1. So of course BA = In. ⇤

Now back to discussing coordinatization.

Suppose V is a fin. dim. vector space over F. Suppose � and � are two ordered bases for V and x 2 V .
If we know [x]�, how can we find [x]� and vice versa?

Theorem. In this situation, let Q = [IV ]
�
�. Then:

(1) Q is invertible.
(2) For any x 2 V , Q[x]� = [x]� and Q�1[x]� = [x]�.

Proof. (1) IV is an isomorphism, so Q is invertible by a Theorem from Wednesday.
(2) Q[x]� = [IV ]

�
� · [x]� = [IV (x)]� by the Theorem from Feb. 7. But this equals [x]�. Now multiply this

equation on the left by Q�1 to get [x]� = Q�1[x]�. ⇤
Definition. The matrix Q = [IV ]

�
� is called the change of coordinates matrix from � to �.

Definition. If V is fin. dim., � is an ordered basis for V , and T : V ! V is linear, then [T ]� denotes [T ]��.

Theorem. Suppose V is finite-dimensional, T : V ! V is linear, and �, � are two ordered bases for V .
Let Q = [IV ]

�
� be the change of coordinates matrix from � to �. Then

[T ]� = Q�1[T ]�Q.

Proof. It su�ces to prove Q[T ]� = [T ]�Q. To prove this, apply the Theorem from Feb 10 to show each
side equals [T ]��. ⇤
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Recall the following facts from the Feb 10 lecture:

(1) Colj(AB) = A · Colj(B) for all j = 1, . . . , n (if B has n columns)

(2) Aej = Colj(A) for j = 1, . . . , n (if A has n columns, ej 2 Fn
).

(3) Ax =
Pn

j=1 xjColj(A) (if A has n columns and x 2 Fn
).

Here are the analogous facts for rows:

(4) Rowi(AB) = Rowi(A) · B for all i = 1, . . . ,m (if A has m rows).

(5) (ei)tA = Rowi(A) for i = 1, . . . ,m (if A has m rows).

(6) xtA =
Pm

i=1 xiRowi(A) (if A has m rows and x 2 Fm
).

Definition. Let A 2 Mm⇥n(F). An elementary row operation is any one of the following actions,

resulting in a new matrix A0
:

(1) Switching two rows of A. Ri ⌧ Rj

(2) Multiplying one row of A by a nonzero scalar. Ri  aRi (a 6= 0)

(3) Adding a scalar multiple of one row of A to another row of A. Ri  Ri + aRj

An elementary column operation is any action of the above kinds, but with rows replaced by columns.

An elementary row or column operation is an elementary operation. An elementary operation is type
1, type 2 or type 3 according to whether it is obtained by rule (1), (2) or (3).

Newton’s 3rd Law of Operations. To every elementary operation there is an equal and opposite
elementary operation.

For example, the operation Ri  Ri + aRj is undone by Ri  Ri + (�a)Rj.

Definition. An elementary matrix is an n⇥n matrix which can be obtained by applying one elementary

operation to In. It is of type 1, 2 or 3 according to the type of the operation used.

Notation. If O is an elementary operation on m ⇥ n matrices, A 2 Mm⇥n(F), and A0
is the result of

applying O to A, then we write A
O
�! A0

.

Theorem 3.1. Fix m,n and suppose that O is an elementary column operation on m ⇥ n matrices. Let
E be the elementary matrix obtained by applying O to In.

Then for all A 2Mm⇥n(F), if A
O
�! A0 then A0

= AE.

Proof sketch. Let Aj := Colj(A) for j = 1, . . . , n, so we can write A = [A1 A2 · · · An]. The columns of In
are e1, . . . , en, so we can write In = [e1 e2 · · · en]. Now consider cases according the type of the column

operation is O, and use Facts (1) and (2) judiciously. For example:

Case 3: O is Ci  Ci + aCj.

Then E = [e1, . . . , ei + aej, . . . , en] and the columns of AE are Ae1, . . . , A(ei + aej), . . . , Aen. Note that

A(ei + aej) = Aei + aAej (by linearity of LA). Thus the columns of AE are A1, . . . , Ai + aAj, . . . , An. In

other words, AE is the result of adding a times column j of A to to column i of A, so A
O
�! AE. ⇤

Theorem 3.2. Fix m,n and suppose that O is an elementary row operation on m⇥ n matrices. Let E be
the elementary matrix obtained by applying O to Im.

Then for all A 2Mm⇥n(F), the result of applying O to A is EA.

From Theorems 3.1 and 3.2 we can deduce:

Theorem 3.3. Elementary matrices are invertible. Moreover, if E is an elementary matrix correspond-
ing to the elementary operation O, then E�1 is the elementary matrix corresponding to the “opposite”
elementary operation to O.
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Definition. Suppose A,B are matrices of the same size. We write A  B if there exists a sequence of

elementary row and/or column operations that transforms A to B.

Theorem 3.4. For every matrix A 2 Mm⇥n(F) there exists a matrix D of the form

D =

✓
Ir O1

O2 O3

◆

where r � 0 and O1, O2, O3 are all-zero matrices, such that A D.

Proof sketch. If A is all 0s, we’re done. Otherwise, A has a nonzero entry, and using type-1 operations

we can move it to the 1,1 position. By a type-2 operation, we can change it to 1. Then using type-3

operations, we can “clear” the remaining entries in the first row and column. Thus we have converted A

to a matrix A
0
of the form

A
0
=

0

BB@

1 0 · · · 0

0

... B

0

1

CCA

Repeat: if B is all 0s we’re done. Else we can move a nonzero entry of B to the 2,2 position of A
0
; make

it equal 1; and then clear the rest of the 2nd row and column. Etc. ⇤
Theorem 3.5. If A 2 Mm⇥n(F) and A B, then there exist invertible P 2 Mm⇥m(F) and Q 2 Mn⇥n(F)
such that B = PAQ.

Proof sketch. Suppose A B via a sequence of elementary operations. Let O1, . . . ,Ok be the elementary

row operations used, in this order, and O
0
1, . . . ,O

0
` the elementary column operations used. Let E1, . . . , Ek

be the m ⇥m elementary matrices corresponding to the row operations, and let E
0
1, . . . , E

0
` be the n ⇥ n

elementary matrices corresponding to the column operations. Then

B = Ek · · ·E2E1| {z }
=:P

AE
0
1E

0
2 · · ·E

0
`| {z }

=:Q

.

Each elementary matrix is invertible (Feb 24), and products of invertible matrices are invertible (Feb 12),

so P and Q are invertible. ⇤
Suppose some evil math professor asks you to find the matrices P,Q promised by Theorem 3.5. What

do you do?

Option 1: To find P , first find E1, . . . , Ek and then multiply them (in the correct order). For Q, find

E
0
1, . . . , E

0
` and multiply them.

Option 2: To find P , just apply the elementary row operations O1, . . . ,Ok to Im. The resulting matrix

will be P . To find Q, just apply the elementary column operations O
0
1, . . . ,O

0
` to In. The resulting matrix

will be Q.

Why does Option 2 work? The answer is easy: applying O1, . . . ,Ok to Im is the same as multiplying

In on the left by E1, . . . , Ek, so the result will be Ek · · ·E2E1Im = Ek · · ·E2E1 = P . Similarly, ap-

plying O
0
1, . . . ,O

0
` to In is the same as multiplying In on the right by E

0
1, . . . , E

0
`, so the result will be

InE
0
1E

0
2 · · ·E

0
` = E

0
1E

0
2 · · ·E

0
` = Q.
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Corollary. If A B, then

(1) B  A.
(2) A

t  B
t.

Definition. Let A 2 Mm⇥n(F).
(1) We call span({Row1(A), . . . ,Rowm(A)}) the row space of A.
(2) Similarly, we call span({Col1(A), . . . ,Coln(A)}) the column space of A.

Recall that span({Col1(A), . . . ,Coln(A)}) = R(LA). So the column space of A equals the range of LA.

Definition.

(3) The null space of A, denoted N(A), is the null space of LA. I.e.,

N(A) := N(LA) = {x 2 Fn : Ax = 0}.

Thus:

• The column space of A is a subspace of Fm.
• The row space and null space of A are subspaces of Fn.

Also note that the row space of A is identical to the column space of At and vice versa.

Definition.

(1) The rank of A is defined by rank(A) := dim(R(LA)), i.e., the dimension of the column space of A.
(2) The nullity of A is defined by nullity(A) := nullity(LA).

Note that rank(A) + nullity(A) = dim(Fn) = n by the Rank-Nullity Theorem applied to LA.

Theorem 1. If A 2 Mm⇥n(F) and Q 2 Mn⇥n with Q invertible, then R(LA) = R(LAQ).

Proof sketch. Consider LAQ = LA � LQ. Note that LQ is an isomorphism (because Q is invertible). ⇤
Corollary 1. If A B entirely by column operations, then A and B have the same column space.

Corollary 2. If A B entirely by row operations, then A and B have the same row space.

Proof sketch. If A B by row operations, then A
t  B

t by column operations. ⇤
Lemma. Suppose V is a finite-dimensional space, T : V ⇠= V

0, and W is a subspace of V . Let W
0 =

{T (w) : w 2 W}. Then dim(W ) = dim(W 0).

Proof sketch. Let {x1, . . . , xk} be a basis for W . Prove that {T (x1), . . . , T (xk)} is a basis for W 0. ⇤
Theorem 2. Suppose A 2 Mm⇥n(F) and P 2 Mm⇥m(F) with P invertible. Then rank(A) = rank(PA).

Proof sketch. Consider LPA = LP � LA. LP is an isomorphism. Let W = R(LA), define W
0 = {LP (w) :

w 2 W}, and prove that W 0 = R(LPA). ⇤
Corollary 3. If A B entirely by row operations, then rank(A) = rank(B).

Corollary 4. If A B, then rank(A) = rank(B).

Corollary 5. If A 
✓

Ir O1

O2 O3

◆
= D, then rank(A) = r.



Proof. Obviously rank(D) = r, and rank(A) = rank(D) by Corollary 4. ⇤
Corollary 6. rank(A) = rank(At). Equivalently, the row space and column space of A have the same
dimension.

Proof. A 
✓

Ir O1

O2 O3

◆
for some r, by the Feb 26 lecture. Then rank(A) = r by Corollary 5. Also

A
t  

✓
Ir O1

O2 O3

◆t

=

✓
Ir (O2)t

(O1)t (O3)t

◆

by the 1st Corollary today, so rank(At) = r by Corollary 5. Hence rank(At) = r = rank(A). ⇤

2
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Recall from Feb 26 that if A 2 Mn⇥n(F) then A can be transformed by elementary row and column

operations to D =

✓
Ir O1

O2 O3

◆
where r = rank(A). Furthermore,

D = (Ek · · ·E2E1)| {z }
P

A (E
0
1E

0
2 · · ·E 0

`)| {z }
Q

= PAQ

where Ei, E
0
j are the corresponding elementary matrices (Ei for row ops, E

0
j for column ops).

Theorem (Invertible Matrix Theorem). For A 2 Mn⇥n(F), the following are equivalent:

(1) A is invertible.
(2) rank(A) = n.
(3) A can be written as a product of elementary matrices.
(4) A In.
(5) A can be transformed by elementary row operations to In.

Proof sketch. (2) , (1): rank(A) = n () LA is surjective () LA is an isomorphism (Jan 31).

(2) , (4): This follows from the remarks before the Theorem.

(4) ) (3): If A In, then In  A. Thus

A = (Ek · · ·E2E1)In(E
0
1E

0
2 · · ·E 0

`) = Ek · · ·E2E1E
0
1E

0
2 · · ·E 0

`.

(3) ) (5): Assume that A = E1E2 · · ·Ek where each Ei is elementary. Then A is invertible (it is a

product of invertible matrices), and A
�1

= E
�1
k · · ·E�1

2 E
�1
1 . Thus

In = A
�1
A = E

�1
k · · ·E�1

2 E
�1
1 A.

Each E
�1
i is also elementary. Multiplying on the left by elementary matrices is the same as applying

elementary row operations. Thus the equation In = E
�1
k · · ·E�1

2 E
�1
1 A shows that A can be transformed

by elementary row operations to In. ⇤
Here is an application. Suppose A is invertible, so can be transformed by elementary row operations

to In. Let E1, . . . , Ek be the corresponding elementary matrices. Thus In = Ek · · ·E2E1A. Multiply both

sides of this equation on the right by A
�1

to get A
�1

= Ek · · ·E2E1In. This proves the following:

Theorem. If A is invertible, then the sequence of elementary row operations which transforms A to In

also transforms In to A
�1.

This theorem gives an easy way to find A
�1

(when it exists).

(1) Form the n⇥ 2n matrix (A | In).
(2) Using row operations, transform A to In, but apply the operations to (A | In).
(3) If (A | In) is transformed to (In |B), then B = A

�1
.

The above algorithm can be applied to a square matrix A even when A is not invertible. Here is what

will happen.

If A is not invertible, then it can be shown that the attempt to transform A to In via row operations will

always lead to a row of all zeroes. Elementary operations do not change the rank of a matrix (Corollary 4

from Feb. 28). Clearly if an n⇥n matrix A
0
has a row of all zeroes, then the row space of A

0
has dimension

at most n� 1. Since the dimension of the row space of A
0
equals the rank of A

0
by Corollary 6 from Feb.

28, it follows that rank(A
0
) < n. This proves that if elementary row operations transform A to a matrix

A
0
having a row of all zeroes, then rank(A) < n and so A is not invertible.

Thus in the process of transforming (A | In), if at any point you arrive at the situation where a row has

the form (0 · · · 0 | ⇤ · · · ⇤), you can stop and conclude that A is not invertible.
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Consider a system of m linear equations in n unknowns:

(S)

a11x1 + a12x2 + · · · · · · a1nxn = b1
a21x1 + a22x2 + · · · · · · a2nxn = b2

...
am1x1 + am2x2 + · · · · · · amnxn = bm

We always have a field F in mind. The coe�cients aij and right-hand sides bi belong to F, and we are
looking for solutions (x1, . . . , xn) 2 Fn.

We can write the system as
0

BB@

a11 a12 · · · a1n
a21 a22 · · · a2n
...

...
...

am1 am2 · · · amn

1

CCA

0

BB@

x1

x2
...
xn

1

CCA =

0

BB@

b1
b1
...
bm

1

CCA ,

that is, as
AX = b

where A 2 Mm⇥n(F), b 2 Fm, and X = (x1, . . . , xn) is an n-tuple of formal variables “ranging over F.”
• The formal matrix equation AX = b is the matrix form of (S).
• A is the coe�cient matrix and b is the RHS vector.
• (A | b) 2 Mm⇥(n+1)(F) is called the augmented matrix of the system.
• The system is said to be homogeneous if b = 0, and is nonhomogeneous otherwise.
• If b 6= 0, then the system AX = 0 is the homogeneous system associated to AX = b.

Definition. A solution to AX = b is a vector x = (x1, . . . , xn) 2 Fn satisfying Ax = b. The solution

set to AX = b is the set
Sol(AX=b) = {x 2 Fn : Ax = b}.

A system is consistent if it has at least one solution; otherwise it is inconsistent.

Theorem 3.15. Let A 2 Mm⇥n(F) and b 2 Fm.

(1) Sol(AX=0) = N(A).
(2) AX = b is consistent i↵ b 2 the column space of A.
(3) If AX = b is consistent, then its solution set is a translation of N(A), i.e.,

Sol(AX=b) = u+N(A) where u can be any solution to AX = b.

Proof. In class. ⇤
Theorem 3.16. Suppose A 2 Mm⇥n(F), b 2 Fm, and the augmented matrix (A | b) can be transformed via
elementary row operations to a matrix (A0 | b0). Then Sol(AX=b) = Sol(A0X=b0).

Proof. In class. ⇤
Definition. A matrix is in Reduced Row Echelon Form (or RREF) if all of the following hold:

(1) If a row has a nonzero entry, then its first nonzero entry is 1. (Called the leading 1 of the row.)
(2) If a column contains a leading 1 (of some nonzero row), then all other entries in the column are 0.
(3) Lower nonzero rows have their leading 1 increasingly to the right.
(4) All-zero rows (if any) are at the bottom of the matrix.
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Theorem. For every matrix A 2 Mm⇥n(F) there exists a matrix R in RREF such that A  R via row
operations.

Proof sketch. Given in class. ⇤
It is easy to determine the rank of a matrix in RREF.

Proposition. If R is in RREF, then rank(R) = the number of leading 1s.

Proof. Suppose the first k rows of R have leading 1s and the rest of the rows are zero. The columns
containing the leading 1s are e1, . . . , ek and they clearly form a basis for the columns space of R. ⇤

We can apply these results to augmented matrices of linear systems. If (A | b) (R | s) by row operations
then Sol(AX = b) = Sol(RX = s). So it su�ces to describe Sol(RX = s) when (R | s) is in RREF. I will
illustrate the method by an example. Suppose

(R | s) =

0

BB@

1 0 2 0 �3 s1
0 1 �1 0 4 s2
0 0 0 1 �2 s3
0 0 0 0 0 s4

1

CCA .

• Obviously column space(R) = span{e1, e2, e3} so RX = s is consistent i↵ s4 = 0.
• Assuming s4 = 0, write the equations of the system corresponding to RX = s:

8
>><

>>:

x1 + 2x3 � 3x5 = s1
x2 � x3 + 4x5 = s2

x4 � 2x5 = s3
0 = 0

• The variables corresponding to leading 1s are said to be dependent ; the other variables are free. In
this example, x3 and x5 are free.

• Rewrite the system by expressing each variable in terms of the free variables:
8
>>>><

>>>>:

x1 = s1 + �2x3 + 3x5

x2 = s2 + x3 � 4x5

x3 = x3

x4 = s3 + 2x5

x5 = x5

• Now rewrite these last equations in vector form:
0

BBBB@

x1

x2

x3

x4

x5

1

CCCCA
=

0

BBBB@

s1
s2
0
s3
0

1

CCCCA
+ x3

0

BBBB@

�2
1
1
0
0

1

CCCCA
+ x5

0

BBBB@

3
�4
0
2
1

1

CCCCA
.

"
u

"
v1

"
v2

• Note that x3, x5 can be any values in F. Thus
Sol(AX = b) = u+ span({v1, v2}).



• It is easy to check that u is a solution to RX = s and so is also a solution to AX = b. The
same analysis with s replaced by 0 shows that span{v1, v2} = N(R) = N(A). In this example
rank(A) = rank(R) = 3 so nullity(A) = 5� 3 = 2. Thus {v1, v2} is a basis for N(A).

The same arguments work generally. If A 2 Mm⇥n(F), b 2 Fm, and (A | b) row (R | s) in RREF, RX = s
is consistent (i.e., (R | s) has no row of the form (0 · · · 0 | 1)), and R has r columns containing a leading 1
and hence n � r free variables, then nullity(A) = n � r and the equations for RX = s, when translated
to expressions for each variable in terms of the free variables and then written in vector form, lead to a
description of

Sol(AX=b) = u+ span({v1, . . . , vn�r})
where span({v1, . . . , vn�r}) = N(A). Hence u is a solution to AX = b and {v1, . . . , vn�r} is a basis for
N(A).

Theorem. For each A 2 Mm⇥n(F), there is a unique matrix R in RREF such that A
row R.

Proof sketch. Given A, there is at least one such R (by today’s first theorem). It su�ces to show that the
entries of R are determined by A.

By A4Q5(b), the columns of R that contain leading 1s are exactly the columns with index j such that
Colj(A) 62 span{Col1(A), . . . ,Colj�1(A)}. In this way A determines the indices j1, . . . , jr of columns of R
containing leading 1s. By definition of RREF, Coljt(R) = et for t = 1, . . . , r.

Let j 2 {1, . . . , n} \ {j1, . . . , jr}. I.e., j is the index of a column of R which does not contain a leading
1. By definition of RREF, if j < j1 then Colj(R) = 0. Otherwise, let t 2 {1, . . . , r} be the largest such
that j > jt. Then by definition of RREF,

Colj(R) =

0

BBBBBBB@

c1
...
ct
0
...
0

1

CCCCCCCA

= c1Colj1(R) + · · ·+ ctColjt(R).

Apply A4Q5(a) to get

(⇤) Colj(A) = c1Colj1(A) + · · ·+ ctColjt(A).

We know that Colj1(R), . . . ,Coljt(R) are linearly independent; thus by A4Q5(a) again, Colj1(A), . . . ,Coljt(A)
are linearly independent. So the equation (⇤) uniquely determines c1, . . . , ct. ⇤

2
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To every square matrix A 2 Mn⇥n(F) there is an associated scalar det(A) 2 F, called the determinant

of A. In the next few lectures I will give a definition of det(A) and discuss/prove a number of properties

of det(�) as a function Mn⇥n(F) ! F. I’ll start with the 2⇥ 2 case.

If A =

✓
a b
c d

◆
2 M2⇥2(F), then det(A) = ad� bc.

Facts (2⇥ 2 case)

(1) A is invertible (i.e., rank(A) = 2) i↵ det(A) 6= 0.

(2) If A is invertible, then A�1
=

1

det(A)

✓
d �b

�c a

◆
.

(3) If A,B 2 M2⇥2(F), then det(AB) = det(A) · det(B).

The definition of det(A) in higher dimensions will have these (and other) properties.

First, to any square matrix we assign (�1)
i+j

to the (i, j) position. This creates a “checkerboard” sign

pattern

0

BB@

+ � + · · ·
� + � · · ·
+ � +

...
...

. . .

1

CCA

Definition. Suppose A 2 Mn⇥n(F) and 1  i, j  n.

(1) eAij denotes the n�1⇥ n�1 matrix obtained by deleting the i-th row and the j-th column from A.

(2) eAij is called the (i, j)-submatrix of A.

Once determinants have been defined:

(3) det( eAij) will be called the (i, j) minor of A.

(4) (�1)
i+j

det( eAij) will be called the (i, j) cofactor of A.

Recursive definition of det.

(1) If A = (a) 2 M1⇥1(F), then det(A) = a.

(2) If A =

0

@
a11 · · · a1n
...

...

an1 · · · ann

1

A 2 Mn⇥n(F) with n > 1, then

det(A) = a11 · det( eA11)� a21 · det( eA21) + a31 · det( eA31)� · · ·

=

nX

i=1

ai1 · (�1)
i+1

det( eAi1)| {z }
(i,1) cofactor of A

.

The recursive definition in (2) is called expansion by minors (or cofactors) on the first column.

To prove facts about det(�), we deal directly with its recursive definition.



Lemma 4.0. If A 2 Mn⇥n is upper-triangular (i.e., aij = 0 whenever i > j), then det(A) =
Qn

i=1 aii.

A =

0

BBBBBB@

a11 a12 a13 · · · a1,n�1 a1n
0 a22 a23 · · · a2,n�1 a2n
0 0 a33 · · · a3,n�1 a3n
...

...
...

...
0 0 0 · · · an�1,n�1 an�1,n

0 0 0 · · · 0 ann

1

CCCCCCA

Proof. By induction on n (in class). ⇤
Corollary 4.1. det(In) = 1.

Theorem 4.2. If A 2 Mn⇥n(F) and A has a row of zeros, then det(A) = 0.

Proof. By induction on n (in class). ⇤
Theorem 4.3. If A 2 Mn⇥n(F) and A has a column of zeros, then det(A) = 0.

Proof. By induction on n (in class). ⇤

2
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Theorem 4.5 (adj). If A 2 Mn⇥n(F) and A has two adjacent rows that are equal, then det(A) = 0.

Proof sketch. By induction. In the inductive step, suppose Rowi0(A) = Rowi0+1(A) = (r1 r2 · · · rn). Then
(1) For all i 6= i0, i0+1, eAi1 has two equal adjacent rows so det( eAi1) = 0 by induction.

(2) eAi0,1 =
eAi0+1,1, and their determinants appear (in the definition of detA) with the same coe�cient

(r1) and opposite sign.

Hence everything is 0 or cancels and detA = 0. ⇤

Theorem 4.6. det is “linear in each row.” That is, if we fix n, i0, and u1, . . . , ui0�1, ui0+1, . . . , un 2 Fn,
then for all r, s 2 Fn and all a 2 F,

det

0

BBBBB@

u1
...

r + s
...
un

1

CCCCCA
= det

0

BBBBB@

u1
...
r
...
un

1

CCCCCA
+ det

0

BBBBB@

u1
...
s
...
un

1

CCCCCA

where r, s and r + s were inserted in row i0; and similarly,

det

0

BBBBB@

u1
...
ar
...
un

1

CCCCCA
= a · det

0

BBBBB@

u1
...
r
...
un

1

CCCCCA
.

Proof sketch by example. Consider the first claim when n = 4 and i0 = 3. Write

A =

0

BB@

a11 a12 a13 a14
a21 a22 a23 a24
r1 r2 r3 r4
a41 a42 a43 a44

1

CCA B =

0

BB@

a11 a12 a13 a14
a21 a22 a23 a24
s1 s2 s3 s4
a41 a42 a43 a44

1

CCA C =

0

BB@

a11 a12 a13 a14
a21 a22 a23 a24

r1+s1 r2+s2 r3+s3 r4+s4
a41 a42 a43 a44

1

CCA

Note that:

(1) For each j = 1, 2, 4 the inductive hypothesis applies to give det( eCj1) = det( eAj1) + det( eBj1).

(2) eC31 = cofA31 = eB31.

Putting these facts together, we get

det(C) = a11 · det( eC11)� a21 · det( eC21) + (r1 + s1) · det( eC31)� a41 · det( eC41)

= · · ·
= det(A) + det(B).

⇤

Theorem 4.7 (adj). If A 2 Mn⇥n(F) and A
Ri Ri+cRj�! B where j = i± 1, then det(B) = det(A).



Proof. Let Rowi(A) = r, Rowj(A) = s, and Rowt(A) = ut for t 6= i, j. Assume j = i+ 1. Thus

A =

0

BBB@

...

r
s
...

1

CCCA
and B =

0

BBB@

...

r + cs
s
...

1

CCCA

so by “linearity in row i,”

det(B) = det

0

BBB@

...

r + cs
s
...

1

CCCA
= det

0

BBB@

...

r
s
...

1

CCCA
+ c · det

0

BBB@

...

s
s
...

1

CCCA
.

The first determinant on the right side is det(A). The second determinant on the right side is 0 because

the matrix has two equal adjacent rows (using Theorem 4.5(adj) here). ⇤

Theorem 4.8 (adj). If A 2 Mn⇥n(F) and A
Ri⌧Ri+1�! B, then det(B) = � det(A).

Proof. This can be deduced from Theorem 4.7(adj) and linearity in rows i and i+ 1, as follows.

det(B) = det

0

BBB@

...

s
r
...

1

CCCA
= det

0

BBB@

...

s� r
r
...

1

CCCA
= det

0

BBB@

...

s� r
r + (s� r)

...

1

CCCA

= det

0

BBB@

...

s� r
s
...

1

CCCA
= det

0

BBB@

...

(�r)
s
...

1

CCCA
= � det

0

BBB@

...

r
s
...

1

CCCA
= � det(A).

⇤
Theorem 4.5 (gen). If A has two equal rows (not necessarily adjacent), then det(A) = 0.

Proof. By a sequence of adjacent row switches, we can transform A to a matrix A0 with two equal adjacent

rows. Then det(A) = ± det(A0) = 0 by Theorems 4.8(adj) and 4.5(adj). ⇤

Theorem 4.7 (gen). If A 2 Mn⇥n(F) and A
Ri Ri+cRj�! B, then det(B) = det(A).

Proof. Just like the proof of Theorem 4.7(adj), using Theorem 4.5(gen) instead of Theorem 4.5(adj). ⇤

Theorem 4.8 (gen). If A
Ri⌧Rj�! B then det(B) = � det(A).

Proof. Just like the proof of Theorem 4.8(adj), using Theorem 4.7 (gen) instead of Theorem 4.7(adj). ⇤

Corollary 4.9. If A
Ri cRi�! B then det(B) = c · det(A).

Proof. By linearity of det(�) in row i. ⇤

2
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Theorem 4.7 (gen). If A 2Mn⇥n(F) and A
Ri Ri+cRj
�! B, then det(B) = det(A).

Corollary 4.8 (gen). If A
Ri⌧Rj
�! B then det(B) = � det(A).

Corollary 4.9. If A
Ri cRi
�! B then det(B) = c · det(A).

Hence we completely understand the e↵ect of elementary row operations on the value of det(�). Recall

that elementary matrices can be obtained by applying row elementary operations to In. Thus:

(1) If E is an elementary matrix of the first kind (Ri ⌧ Rj), then det(E) = � det(In) = �1.
(2) If E is an elementary matrix of the second kind (Ri  cRi), then det(E) = c · det(In) = c.
(3) If E is an elementary matrix of the third kind (Ri  Ri + cRj) then det(E) = det(In) = 1.

Note that det(E) 6= 0 for every elementary matrix. Also note that det(Et
) = det(E) because Et

is an

elementary matrix of the same type as E.

We pause to note that these facts give us an e�cient way to calculate the determinant of a matrix:

transform the matrix to upper-triangular form using elementary row operations of types 1 and 3 only.

Example. To find det

0

@
0 1 3

�2 �3 �5

3 �1 1

1

A, do

A =

0

@
0 1 3

�2 �3 �5

3 �1 1

1

A (1)
�!

0

@
�2 �3 �5

0 1 3

3 �1 1

1

A (3)
�!

0

@
�2 �3 �5

0 1 3

0 �
11
2 �

13
2

1

A (3)
�!

0

@
�2 �3 �5

0 1 3

0 0 10

1

A = B.

B is upper-triangular, so det(B) = (�2) ·1 ·10 = �20. We swapped rows once, so det(A) = � det(B) = 20.

In general, count the number of times two rows are swapped, and change the sign if the number is odd.

(Back to the general theory.)

Theorem 4.10. If A,E 2Mn⇥n(F) with E elementary, then det(EA) = det(E) det(A).

Proof. Let O be the elementary row operation corresponding to E. Then A
O
�! EA. Theorem 4.7(gen)

and Corollaries 4.8 and 4.9 relate det(EA) to det(A) via a constant factor of �1, c, or 1 (depending

on the type of operation). Since this constant factor is equal to det(E) (see remarks above), we get

det(EA) = det(E) det(A). ⇤
Let’s extend this last result. Suppose A,B 2Mn⇥n(F) and

B = E1E2 · · ·EkA

where E1, . . . , Ek are elementary matrices. By applying Theorem 4.10 repeatedly, we get

det(B) = det(E1(E2E3 · · ·EkA))

= det(E1) det(E2E3 · · ·EkA) by Theorem 4.10

= det(E1) det(E2) det(E3 · · ·EkA) by Theorem 4.10

...

and so det(E1E2 · · ·EkA) = det(E1) det(E2) · · · det(Ek) det(A). (⇤)

I’m going to call this result (⇤) and draw some consequences from it.



(1) If we set A = In in (⇤), we get

det(E1E2 · · ·Ek) = det(E1) det(E2) · · · det(Ek). (⇤⇤)

(2) Since every invertible matrix can be written as a product of elementary matrices, and the determi-

nant of any elementary matrix is nonzero, this proves that A invertible =) det(A) 6= 0.

(3) Suppose A is not invertible. Then rank(A) < n. A can be transformed by elementary row operations

to some matrix R in RREF. Necessarily R has a row of zeroes. Thus det(R) = 0 by Theorem 4.3.

Furthermore, R can be transformed to A by elementary row operations, so A = E1E2 · · ·EkR for

some elementary matrices E1, . . . , Ek. It follows from (⇤) that

det(A) = det(E1) det(E2) · · · det(Ek) det(R) = 0 since det(R) = 0.

Items (2) and (3) prove:

Theorem 4.11. If A 2Mn⇥n(F), then A is invertible i↵ det(A) 6= 0.

Now we can prove

Theorem 4.12. For all A,B 2Mn⇥n(F), det(AB) = det(A) det(B).

Proof. Case 1: A is invertible. Then A can be written as a product of elementary matrices:

A = Ek · · ·E2E1.

Thus

det(AB) = det(Ek · · ·E2E1B)

= det(Ek) · · · det(E2) det(E1) det(B) by (⇤)

= det(Ek · · ·E2E1) det(B) by (⇤⇤)

= det(A) det(B).

Case 2: A is not invertible. Then AB is also not invertible (Feb. 14), so

det(A) det(B) = 0 · det(B) = 0 = det(AB)

by Theorem 4.11. ⇤
Corollary 4.13. If A is invertible, then det(A�1) = 1

det(A) .

Proof. By Theorem 4.12, det(A) det(A�1) = det(AA�1) = det(In) = 1. ⇤
Corollary 4.14. det(At

) = det(A).

Proof. We already know this for elementary matrices. Now consider cases.

Case 1: rank(A) < n. Then rank(At
) < n as well so det(A) = 0 = det(At

) by Theorem 4.11.

Case 2: rank(A) = n. Then we can write A = E1E2 · · ·Ek with each Ei elementary. By Theorem 4.12,

det(A) = det(E1) det(E2) · · · det(Ek). We also have At
= (Ek)

t
· · · (E2)

t
(E1)

t
, which is a product of

elementary matrices, so again by Theorem 4.12,

det(At
) = det((Ek)

t
) · · · det((E2)

t
) det((E1)

t
)

= det(Ek) · · · det(E2) det(E1) as det(Et
) = det(E) for elementary E

= det(A). ⇤

2
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Welcome back! Recall from way back when:

Corollary 4.14. det(At
) = det(A).

This corollary implies that if we have proved a determinant result about rows, we can deduce the same

result for columns. For example:

Corollary 4.15 (“Column version” of Corollary 4.8(gen)). If A
Ci⌧Cj�! B then det(B) = � det(A).

Corollary 4.16 (“Column version” of Theorem 4.6). det(�) is “linear in each column.”

Suppose A =

0

BBBBBB@

r1
r2
r3
r4
r5
...

1

CCCCCCA
and B =

0

BBBBBB@

r2
r3
r4
r1
r5
...

1

CCCCCCA
. Thus B is obtained from A by “cyclically

permuting” the first 4 rows. How are det(A) and det(B) related? We can simulate the cyclic permutation

by a sequence of row swaps:

A =

0

BBBBBB@

r1
r2
r3
r4
r5
...

1

CCCCCCA

R1⌧R2�!

0

BBBBBB@

r2
r1
r3
r4
r5
...

1

CCCCCCA

R2⌧R3�!

0

BBBBBB@

r2
r3
r1
r4
r5
...

1

CCCCCCA

R3⌧R4�!

0

BBBBBB@

r2
r3
r4
r1
r5
...

1

CCCCCCA
= B.

Three row-swaps were used, so det(B) = � det(A). In general,

Lemma 4.17. If A 2Mn⇥n(F) and B is obtained from A by cyclically permuting k consecutive rows, then
det(B) = (�1)k�1

det(A).

Note: a similar result holds for cyclically permuting k consecutive columns of A (via det(A) = det(At
)).

We are now ready to tackle a technically di�cult result: the “Lemma before Theorem 4.4 in the text-

book.”

Lemma 4.18. Suppose A 2 Mn⇥n(F) and for some 1  i, j  n, row i of A is ej = (0, . . . , 0, 1, 0, . . . , 0).

Then det(A) = (�1)i+j
det( eAij).

Proof. Case 1: j = 1. Then A has the form

A =

0

BBBBBBB@

a11 a12 a13 · · · a1n
a21 a22 a23 · · · a2n
...

...

1 0 0 · · · 0

...
...

an1 an2 an3 · · · ann

1

CCCCCCCA
 i



When we calculate det(A) using the recursive definition, the minors det( eAt1) will all have a row of zeros

(so will equal 0), except for the minor at row i. Thus det(A) = (�1)i+1
det( eAi1) in Case 1.

Case 2: j > 1. Let B be the matrix obtained from A by cyclically shifting the first j columns. Thus

A =

0

BBBBBBB@

a11 a12 · · · a1,j�1 a1j · · · a1n
a21 a22 · · · a2,j�1 a2j · · · a2n
...

...

0 0 · · · 0 1 · · · 0

...
...

an1 an2 · · · an,j�1 anj · · · ann

1

CCCCCCCA

, B =

0

BBBBBBB@

a1j a11 a12 · · · a1,j�1 · · · a1n
a2j a21 a22 · · · a2,j�1 · · · a2n
...

...

1 0 0 · · · 0 · · · 0

...
...

anj an1 an2 · · · an,j�1 · · · ann

1

CCCCCCCA

.

We have:

(1) det(A) = (�1)j�1
det(B) by the “column” version of Lemma 4.17.

(2) det(B) = (�1)i+1
det( eBi1) by the proof of Case 1.

(3) eBi1 =
eAij (easily seen).

Hence det(A) = (�1)j�1
(�1)i+1

det( eBi1) = (�1)i+j
det( eAij) in Case 2. ⇤

Now we are ready for the biggest theorem.

Theorem 4.19. det(�) can be evaluated by expansion by cofactors on any row, or any column.
That is, if A 2Mn⇥n(F), then

• For any i = 1, . . . , n, det(A) =
Pn

j=1(�1)i+jaij · det( eAij). (Expansion on row i)

• For any j = 1, . . . , n, det(A) =
Pn

i=1(�1)i+jaij · det( eAij). (Expansion on column j)

Proof. I’ll prove the claim for expansion on a row. Fix i and consider a matrix

A =

0

BBBBB@

r1
...

ri
...

rn

1

CCCCCA
.

Write ri = (ai1, ai2, . . . , ain) = ai1e1 + ai2e2 + · · ·+ ainen. Then

det(A) = det

0

BBBBB@

r1
...

ai1e1 + · · ·+ ainen
...

rn

1

CCCCCA
=

nX

j=1

aij det

0

BBBBB@

r1
...

ej
...

rn

1

CCCCCA
by linearity in row i

=

nX

j=1

aij(�1)i+j
det( eAij) by Lemma 4.18.

Look at that! This is the formula for the expansion by cofactors on row i.
The claim for columns can be obtained from the claim from rows by taking transposes. ⇤
Theorem 4.19 can make the calculation of some determinants quite easy.

2



Example. Let A =

0

BB@

2 0 �1 3

3 �2 4 0

6 1 3 0

7 2 0 5

1

CCA. By Theorem 4.19, we can calculate det(A) by cofactor expansion

along any row or column. The 4th column conveniently has 2 zeros, so let’s use it. Recalling that the ±
pattern in column 4 starts with �, we get

det(A) = (�3) det

0

@
3 �2 4

6 1 3

7 2 0

1

A

| {z }
=:B

+(0)(something)� (0)(something) + (5) det

0

@
2 0 �1
3 �2 4

6 1 3

1

A

| {z }
=:C

.

To compute det(B), we might note that B has a zero in row 3, so we decide to use cofactor expansion on

the 3rd row:

det(B) = (7) det

✓
�2 4

1 3

◆
� (2) det

✓
3 4

6 3

◆
+ (0)(something)

= 7(�6� 4)� (2)(9� 24)

= �40.
Similarly, to compute det(C) we might note that C has a zero in row 1, so we decide to use cofactor

expansion on the 1st row:

det(C) = (2) det

✓
�2 4

1 3

◆
� (0)(something) + (�1) det

✓
3 �2
6 1

◆

= 2(�6� 4) + (�1)(3 + 12)

= �35.
Then

det(A) = (�3)(�40) + (5)(�35) = �55.

3
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Announcement

• Before reading these notes, read the Tutorial on “Permutations and Determinants”

Definition. Let A 2 Mn⇥n(F). An eigenvector of A is any nonzero vector v 2 Fn satisfying Av 2 span(v).
The (unique) scalar � 2 F satisfying Av = �v is the eigenvalue of A corresponding to v.

Definition. Suppose A 2 Mn⇥n(F). If � 2 F is an eigenvalue of A, the set

E� = {v 2 Fn : Av = �v}
= {eigenvectors of A corresponding to �} [ {0}.

is called the eigenspace of A corresponding to �.

Example. Let A =

✓
3/2 �1
1/2 0

◆
. If v1 = (1, 1) and v2 = (2, 1), then LA(v1) = 1

2v1 and LA(v2) = v2.

Hence v1 and v2 are eigenvectors of A corresponding to the eigenvalues 1
2 and 1. We’ll see later that these

are the only eigenvalues of A. Calculations show

E 1
2

= {v 2 R2 : Av = 1
2v} = {(a, a) : a 2 R} = span({v1})

E1 = {v 2 R2 : Av = v} = {(2a, a) : a 2 R} = span({v2}).

Example. Let B =

✓
0 �1
1 0

◆
. We saw on Jan. 27 that LB rotates vectors in R2 90� counter-clockwise.

Hence if v 2 R2 and v 6= 0, then LB(v) 62 span(v). Thus B has no eigenvectors, and hence no eigenvalues.

There is a nice way to characterize the eigenvalues of a matrix. Suppose A 2 Mn⇥n(F) and � 2 F. Then

� is an eigenvalue of A () 9v 2 Fn, v 6= 0, such that Av = �v

() 9v 2 Fn, v 6= 0, such that Av � �v = 0

() 9v 2 Fn, v 6= 0, such that (A� �In)v = 0

() N(A� �In) 6= {0}
() nullity(A� �In) > 0

() rank(A� �In) < n

() det(A� �In) = 0.

We have proved:

Theorem 5.1. Let A 2 Mn⇥n(F) and � 2 F. � is an eigenvalue of A i↵ det(A� �In) = 0.

Note also that if � is an eigenvalue of A, then E� = N(A� �In). This proves that E� is a subspace of
Fn. We also get dim(E�) = nullity(A� �In) > 0.

If we view � as a variable ranging over F, then the expression det(A � �In) defines a function F ! F
(sending � 7! det(A � �In)). This function will turn out to be a polynomial function in �. To make this



a formal polynomial, we replace � with an indeterminate (formal variable), t, and consider the matrix

A� tIn =

0

BB@

a11 a12 · · · a1n

a21 a22 · · · a2n
...

...
...

an1 an2 · · · ann

1

CCA�

0

BB@

t 0 · · · 0
0 t · · · 0
...

...
...

0 0 · · · t

1

CCA =

0

BB@

a11 � t a12 · · · a1n

a21 a22 � t · · · a2n
...

...
...

an1 an2 · · · ann � t

1

CCA .

Definition. Let A 2 Mn⇥n(F). The characteristic polynomial of A is the formal expression det(A�tIn).
It is denoted pA(t).

Example. If A =

✓
3/2 �1
1/2 0

◆
, then

pA(t) = det

✓
3/2� t �1
1/2 �t

◆
= (32 � t)(�t)� 1

2(�1)

= t
2 � 3

2t+
1
2 = (t� 1

2)(t� 1).

The roots of pA(t) are 1/2 and 1, which are the eigenvalues of A.

For any A 2 Mn⇥n(F), the eigenvalues of A are the scalars � 2 F which make det(A � �In) = 0, i.e.,

pA(�) = 0. Hence the eigenvalues of A are the roots of pA(t) which belong to the scalar field F.

Definition. Given a square matrix A 2 Mn⇥n(F), the trace of A, denoted tr(A), is the sum of the diagonal
entries of A.

Theorem 5.2. Let A 2 Mn⇥n(F). Then pA(t) is a polynomial in F[t] of degree n. Moreover,

(1) The leading coe�cient of pA(t) is (�1)n.
(2) The coe�cient of tn�1 in pA(t) is (�1)n�1tr(A).
(3) The constant coe�cient is det(A).

That is,
pA(t) = (�1)n(tn � tr(A) · tn�1) + · · ·+ det(A).

Proof sketch. In the tutorial notes on “Permutations and Determinants,” you learned that the determinant
of a square matrix can be written as the alternating sum of all possible products consisting of one entry
from each row and each column of the matrix. (This is the complete expansion of the determinant.) Thus
the complete expansion of det(A � tIn) is an alternating sum of products of n entries from A � tIn, one
from each row and each column. Each entry of A� tIn is a polynomial in F[t] of degree  1. Hence each
product of n entries is a polynomial in F[t] of degree  n. As pA(t) is an alternating sum of such entries,
pA(t) is also a polynomial in F[t] of degree  n. It remains to prove that the coe�cients of tn and t

n�1

and the constant coe�cient are as claimed in the theorem.
The only contributions of t to pA(t) come from the diagonal entries of A�tIn. A product in the complete

expansion either has all the diagonal entries, or at most n � 2 of them. Hence the t
n term and the t

n�1

term of pA(t) come entirely from

(a11 � t)(a22 � t) · · · (ann � t) = (�t)n + (�t)n�1(a11 + · · ·+ ann) + (lower degree terms)

= (�1)n · tn + (�1)n�1tr(A) · tn�1 + (lower degree terms).

This proves (1) and (2). (3) follows by setting t = 0 in the definition of pA(t). ⇤
Corollary. If A 2 Mn⇥n(F), then A has at most n eigenvalues.

Proof. A polynomial of degree n has at most n roots in any field. ⇤
2



Definition. Suppose A,B 2 Mn⇥n(F). We say that B is similar to A (over F) if there exists an invertible
Q 2 Mn⇥n(F) such that B = Q

�1
AQ.

“Exercise 12.” If B is similar to A, then pB(t) = pA(t).

Proof. We can write tIn = tQ
�1
InQ = Q

�1(tIn)Q. Hence

B � tIn = Q
�1
AQ�Q

�1(tIn)Q = Q
�1(A� tIn)Q.

So

pB(t) = det(B � tIn) = det(Q�1(A� tIn)Q))

= det(Q�1) det(A� tIn) det(Q) as det(AB) = det(A) det(B)

= det(A� tIn) det(Q
�1) det(Q) as multiplication in F is commutative

= det(A� tIn) det(Q
�1
Q)

= pA(t). ⇤

3
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Definition. Let V be a vector space over F. A linear transformation T : V ! V is called a linear

operator on V .

L(V ) denotes the set of all linear operators on V .

Definition. Let V be a vector space over F and let T 2 L(V ). An eigenvector of T is any nonzero vector
v 2 V satisfying T (v) 2 span(v). The (unique) scalar � 2 F satisfying T (v) = �v is the eigenvalue of T
corresponding to v.

Definition. Suppose T 2 L(V ). Given an eigenvalue � of T , the set

E� = {v 2 V : T (v) = �v}
= {eigenvectors of T corresponding to �} [ {0}.

is called the eigenspace of T corresponding to �.

Example. Consider D : C1(R) ! C
1(R) given by D(f) = f

0. Every � 2 R is an eigenvalue of D, since
D(e�x) = �e

�x.

For the rest of this term we focus on the case when V is finite-dimensional. In this case, can we define
the characteristic polynomial of a linear operator T 2 L(V )? We could pick an ordered basis ↵ for V ,
define A = [T ]↵, and take pA(t). But what if we picked a di↵erent ordered basis �; would that give us a
di↵erent characteristic polynomial?

Lemma 5.3. Suppose V is finite-dimensional and T 2 L(V ). Let ↵ and � be two ordered bases for V and
let A = [T ]↵ and B = [T ]�. Then pA(t) = pB(t).

Proof. Let Q = [IV ]�↵ be the change-of-coordinates matrix from ↵ to �. By the last Theorem from Feb 14,

A = Q
�1
BQ.

Thus A is similar to B, so pA(t) = pB(t) by “Exercise 12.” ⇤
This lemma justifies the following definition.

Definition. Let T 2 L(V ) where V is finite-dimensional. The characteristic polynomial of T is the
characteristic polynomial of [T ]↵ for any ordered basis ↵ for V . We denote the polynomial by pT (t).

If T 2 L(V ) and V is a vector space over F, then pT (t) 2 F[t]. We are interested in the eigenvalues of T
(the roots of pT (t) which belong to F). We can also ask about how pT (t) factors in F[t]. These issues are
related: � is a root i↵ t� � is a factor. Both issues depend sensitively on F.

Example. Suppose pA(t) = t
4 + t

3 + t
2 + t+ 1.

• If F = Q, then pA(t) does not factor. (It is irreducible.) A has no eigenvalues.
• If F = R, then

pA(t) =

 
t
2 +

p
5 + 1

2
t+ 1

! 
t
2 �

p
5� 1

2
t+ 1

!

A again has no eigenvalues.
1



• If F = C, then
pA(t) = (t� a1)(t� a2)(t� a3)(t� a4)

where ak = cis(2k⇡/5) = cos(2k⇡/5) + i sin(2k⇡/5) 2 C for k = 1, . . . , 4. A has 4 eigenvalues. In
this case we say that pA(t) splits.

• If F = Z5, then
pA(t) = (t� 1)4 = (t� 1)(t� 1)(t� 1)(t� 1).

pA(t) again splits. A has one eigenvalue, of multiplicity 4.

Definition. A polynomial f(t) 2 F[t] splits over F if there exist scalars c, a1, . . . , an 2 F (not necessarily
distinct) such that

f(t) = c(t� a1)(t� a2) · · · (t� an).

Definition. Suppose V is finite-dimensional, T 2 L(V ), and � is an eigenvalue of T . The multiplicity

of � is the maximum value k such that (t� �)k is a factor of pT (t).

Theorem 5.4. Suppose V is finite-dimensional, T 2 L(V ), � is an eigenvalue of T , and m is the multi-
plicity of �. Then dim(E�)  m.

Proof. Let d = dim(E�). Let ↵ = (v1, . . . , vd) be an ordered basis for E�. Extend ↵ to an ordered basis
� = (v1, . . . , vd, vd+1, . . . , vn) for V . Let A = [T ]�, so pT (t) = pA(t).

Observe that for i = 1, . . . , d,

T (vi) = �vi (because vi 2 E�)

= 0v1 + · · ·+ 0vi�1 + �vi + 0vi+1 + · · · 0vd + 0vd+1 + · · ·+ 0vn.

Hence

A =

0

BBBBBBBBB@

� 0 · · · 0 ⇤ · · · ⇤
0 � · · · 0 ⇤ · · · ⇤
...

...
. . .

... ⇤ · · · ⇤
0 0 · · · � ⇤ · · · ⇤
0 0 · · · 0 ⇤ · · · ⇤
...

...
...

...
...

0 0 · · · 0 ⇤ · · · ⇤

1

CCCCCCCCCA

=

✓
�Id B

O C

◆

for some matrices of the appropriate dimensions. Thus

pT (t) = det(A� tIn) = det

✓
(�� t)Id B

O C � tIn�d

◆

= det((�� t)Id) · det(C � tIn�d) by A5Q6

= (�� t)d det(Id) · det(C � tIn�d) since det(cA) = c
n det(A) if A is n⇥ n

= (�� t)d · pC(t).
This proves that (t � �)d divides pT (t). Since m, the multiplicity of �, is by definition the largest value
such that (t� �)m divides pT (t), we have proved that d  m, i.e., dim(E�)  m. ⇤
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Example. Let A =

0

@
4 0 1
2 3 2
1 0 4

1

A, considered as a real matrix (i.e., over R).

pA(t) = det(A� tI3) = det

0

@
4� t 0 1
2 3� t 2
1 0 4� t

1

A = (3� t) det

✓
4� t 1
1 4� t

◆

= (3� t)((4� t)2 � 1) = (3� t)(t2 � 8t+ 15) = �(t� 3)2(t� 5).

Thus pA(t) splits over R, and has two real eigenvalues � = 3, 5 of multiplicities m = 2, 1 respectively. Let’s
find the corresponding eigenspaces, their dimensions, and a basis for each.

� = 3

E3 = N(A� 3I3) = N

0

@
1 0 1
2 0 2
1 0 1

1

A

By inspection, rank(A � 3I3) = 1, so dim(E3) = nullity(A � 3I3) = 2. To get a basis for E3, solve the
system (A� 3I3)x = 0. The augmented matrix for this system is

0

@
1 0 1 0
2 0 2 0
1 0 1 0

1

A  

0

@
1 0 1 0
0 0 0 0
0 0 0 0

1

A in RREF.

Writing x = (x1, x2, x3) and introducing parameters s, t for the non-leading variables x2, x3, we solve the
above system to find 0

@
x1

x2

x3

1

A = s

0

@
0
1
0

1

A+ t

0

@
�1
0
1

1

A , s, t 2 R.

Thus a basis for the solution set is {v1, v2} where v1 = (0, 1, 0), v2 = (�1, 0, 1).

� = 5

E5 = N(A� 5I3) = N

0

@
�1 0 1
2 �2 2
1 0 �1

1

A

By inspection, rank(A� 5I3) = 2, so dim(E5) = nullity(A� 5I3) = 1.

(Note that dim(E5) automatically equals 1, since 1  dim(E5)  (multiplicity of 5) = 1.)

To get a basis for E5, solve the system (A� 5I3)x = 0. The augmented matrix for this system is
0

@
�1 0 1 0
2 �2 2 0
1 0 �1 0

1

A  

0

@
1 0 �1 0
0 1 �2 0
0 0 0 0

1

A in RREF.

By solving, we find that a basis for the solution set is {v3} where v3 = (1, 2, 1).

In this example, we can see that v3 62 span(v1, v2), since v1 and v2 both lie in the plane defined by
x + z = 0 but v2 does not. Hence v1, v2, v3 are linearly independent and so � = (v1, v2, v3) is an ordered
basis for R3. I will prove on Wednesday that, more generally, whenever we combine bases for di↵erent
eigenspaces, the resulting set is linearly independent.

1



Example. Let’s do the same thing for the matrix B =

0

@
3 1 0
0 3 0
0 0 5

1

A.

pB(t) = det(B � tI3) = det

0

@
3� t 1 0
0 3� t 0
0 0 5� t

1

A = (3� t)2(5� t) = �(t� 3)2(t� 5).

The same as pA(t); hence the same eigenvalues, with the same multiplicities. Let’s find the eigenspaces
and their dimensions.

� = 3

E3 = N(B � 3I3) = N

0

@
0 1 0
0 0 0
0 0 2

1

A .

By inspection, rank(B � 3I3) = 2, so dim(E3) = nullity(B � 3I3) = 1. To get a basis for E3, solve the
system (B � 3I3)x = 0. A basis for the solution set is {v1} where v1 = (1, 0, 0).

� = 5.
Since 5 has multiplicity 1, we know that dim(E5) = 1. By inspection, v2 = (0, 0, 1) is an eigenvector for

5, so {v2} is a basis for E5.

Note that in the second example, the bases for the two eigenspaces, when merged, do NOT form a basis
for R3. But their union is at least linearly independent. As mentioned before, this is always true. As
preparation for this Theorem (which I will prove on Wednesday), we need the following Lemma.

Lemma 5.5. Suppose V is finite-dimensional, T 2 L(V ), and �1, . . . ,�k are distinct eigenvalues of T . If
x1, . . . , xk are eigenvectors corresponding to �1, . . . ,�k, then {x1, . . . , xk} is linearly independent.

Proof. By induction on k. When k = 1 the claim is obvious. Suppose k > 1 and the claim is true for lower
values. In particular, {x1, . . . , xk�1} is linearly independent. Now let’s prove that {x1, . . . , xk} is linearly
independent. Assume

(⇤) a1x1 + a2x2 + · · ·+ ak�1xk�1 + akxk = 0.

Apply T to both sides to get

a1T (x1) + a2T (x2) + · · ·+ ak�1T (xk�1) + akT (xk) = 0

which simplifies to

(⇤⇤) a1�1x1 + a2�2x2 + · · ·+ ak�1�k�1xk�1 + ak�kxk = 0.

Subtract �k times (⇤) from (⇤⇤) to get

a1(�1 � �k)x1 + a2(�2 � �k)x2 + · · ·+ ak�1(�k�1 � �k)xk�1 = 0.

Since {x1, . . . , xk�1} is linearly independent, we get

a1(�1 � �k) = a2(�2 � �k) = · · · = ak�1(�k�1 � �k) = 0.

Since �i 6= �k for i < k, we get
a1 = a2 = · · · = ak�1 = 0.

Thus (⇤) implies akxk = 0. Since xk 6= 0 (it is an eigenvector), it follows that ak = 0. So we’ve proved
a1 = a2 = · · · = ak = 0, which proves {x1, x2, . . . , xk} is linearly independent. ⇤

2
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Recall from Monday:

Lemma 5.5. Suppose V is finite-dimensional, T 2 L(V ), and �1, . . . ,�k are distinct eigenvalues of T . If
x1, . . . , xk are eigenvectors corresponding to �1, . . . ,�k, then {x1, . . . , xk} is linearly independent.

Corollary. If V, T,�1, . . . ,�k are as in Lemma 5.5 and xi 2 E�i for i = 1, . . . , k, then

x1 + · · ·+ xk = 0 =) x1 = · · · = xk = 0.

Proof. The nonzero vectors (if any) among x1, . . . , xk are eigenvectors for distinct eigenvalues, so are linearly
independent by Lemma 5.5, yet they sum to 0. ⇤
Theorem 5.6. Suppose V is finite-dimensional, T 2 L(V ), and �1, . . . ,�k are distinct eigenvalues of T .
If for each i = 1, . . . , k, Bi is a basis for E�i, then

(1) Bi \ Bj = ? for i 6= j, and
(2) B1 [ B2 [ · · · [Bk is linearly independent.

Proof. (1) is easy: a nonzero vector cannot be an eigenvector for two di↵erent eigenvalues.
(2) For each i let di = dim(E�i) and write Bi = {vi1, vi2, . . . , vidi}. Then let

B = B1 [ · · · [Bk = {v11, v12, . . . , v1d1| {z }
B1

, v
2
1, v

2
2, . . . , v

2
d2| {z }

B2

, . . . , v
k
1 , v

k
2 , . . . , v

k
dk| {z }

Bk

}.

Assume

(†) a
1
1v

1
1 + a

1
2v

1
2 + · · ·+ a

1
d1v

1
d1| {z }

x1

+ a
2
1v

2
1 + a

2
2v

2
2 + · · ·+ a

2
d2v

2
d2| {z }

x2

+ · · ·+ a
k
1v

k
1 + a

k
2v

k
2 + · · ·+ a

k
dk
v
k
dk| {z }

xk

= 0.

For i = 1, . . . , k let xi =
Pdi

j=1 a
i
jv

i
j and note that xi 2 E�i . Thus our assumption can be summarized as

x1 + x2 + · · ·+ xk = 0.

The Corollary then gives x1 = x2 = · · · = xk = 0. Using linear independence of each Bi, we get that all
the coe�cients in (†) equal 0. ⇤
Definition.

(1) A square matrix is diagonal if every entry not on the diagonal is 0.
(2) Suppose V is finite-dimensional and T 2 L(V ). T is diagonalizable if there exists an ordered

basis � for V such that [T ]� is a diagonal matrix.
(3) Suppose A 2 Mn⇥n(F). A is diagonalizable (over F) if A is similar (over F) to a diagonal matrix

D. I.e., there exists an invertible Q 2 Mn⇥n(F) such that Q�1
AQ = D.

Exercise. For any A 2 Mn⇥n(F), A is diagonalizable (over F) i↵ LA is diagonalizable.

How can we tell if an operator (or a matrix) is diagonalizable? The rest of today’s lecture is devoted to
this question. Suppose T 2 L(V ) is diagonalizable. Let � = (v1, . . . , vn) be an ordered basis for V such
that [T ]� is a diagonal matrix, i.e.,

[T ]� =

0

BB@

a11 0 · · · 0
0 a22 · · · 0
...

...
...

0 0 · · · ann

1

CCA .

1



This implies that T (v1) = a11v1, T (v2) = a22v2,. . . , T (vn) = annvn. In otherwords, each vi is an eigenvector
of T (and aii is its corresponding eigenvalue). Conversely, if T has an ordered basis � = (v1, . . . , vn)
consisting of eigenvectors, then it is easy to see that [T ]� is a diagonal matrix. This proves

Theorem 5.7. Suppose V is a finite-dimensional vector space over F and T 2 L(V ). T is diagonalizable
i↵ V has an ordered basis consisting of eigenvectors of T .

Here is a more useful theorem:

Theorem 5.8. Suppose V is finite-dimensional, say dim(V ) = n, and T 2 L(V ). Let �1, . . . ,�k be the
distinct eigenvalues of T and let m1, . . . ,mk be their multiplicities. T is diagonalizable i↵

(a) pT (t) splits, i.e., pT (t) = (�1)n(t� �1)m1 · · · (t� �k)mk , and
(b) For each i = 1, . . . , k, dim(E�i) = mi.

Proof. (() Assume that (a) and (b) hold. For each i = 1, . . . , k let Bi be a basis for E�i ; thus |Bi| = mi

by (b). Let B = B1 [ · · ·[Bk. B is linearly independent by Theorem 5.6(2), and |B| = m1+ · · ·+mk = n

by Theorem 5.6(1). Hence B is a basis for V consisting of eigenvectors for T . Hence T is diagonalizable
by Theorem 5.7.

()) Assume T is diagonalizable. By Theorem 5.7, T has a basis B = {v1, . . . , vn} consisting of eigen-
vectors of T . Each vi belongs to E�1 [ · · · [ E�k

. For each i = 1, . . . , k, let Bi = B \ E�i and ni = |Bi|.
Then

(⇤) n1 + · · ·+ nk = |B| = n.

For each i let mi be the multiplicity of �i. Hence

(t� �1)
m1(t� �2)

m2 · · · (t� �k)
mk

is a factor of pT (t), which has degree n. So

(⇤⇤) m1 + · · ·+mk  n.

Finally, for each i = 1, . . . , k we have

(†) ni  dim(E�i)  mi,

where the first  is due to the fact that Bi is linearly independent in E�i , while the second  follows from
Theorem 5.4. Combining (⇤), (⇤⇤) and (†) we get ni = dim(E�i) = mi for all i, proving (b), and since
m1 + · · ·+mk = n we must also have (a). ⇤

(The proof also shows that each Bi is a basis for E�i .)
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Recall from Wednesday’s lecture:

Theorem 5.8. Suppose V is finite-dimensional, say dim(V ) = n, and T 2 L(V ). Let �1, . . . ,�k be the
distinct eigenvalues of T and let m1, . . . ,mk be their multiplicities. T is diagonalizable i↵

(a) pT (t) splits, i.e., pT (t) = (�1)n(t� �1)m1 · · · (t� �k)mk , and
(b) For each i = 1, . . . , k, dim(E�i) = mi.

Example. Let A =

0

@
4 0 1
2 3 2
1 0 4

1

A 2 M3⇥3(R). On March 30 we saw that pA(t) = �(t � 3)2(t � 5) and

dim(E3) = 2 and dim(E5) = 1. Hence A is diagonalizable by Theorem 5.8.
A basis for E3 was {v1, v2} where v1 = (0, 1, 0) and v2 = (�1, 0, 1). A basis for E5 was {v3} where

v3 = (1, 2, 1). Hence by the proof of Theorem 5.7, � = (v1, v2, v3) is an ordered basis for R3 and

[LA]� =

0

@
3 0 0
0 3 0
0 0 5

1

A =: D.

To find an invertible matrix Q such that Q�1
AQ = D, let � be the standard ordered basis for R3. Note

that D = [LA]� = [I]�� · [LA]� · [I]�� = ([I]��)
�1 ·A · [I]��, so we can take Q = [I]��, which is simply the matrix

whose columns are v1, v2, v3 expressed in standard form. That is, if

Q =

0

@
0 �1 1
1 0 2
0 1 1

1

A

then

Q
�1
AQ = D =

0

@
3 0 0
0 3 0
0 0 5

1

A .

Example. Let B =

0

@
3 1 0
0 3 0
0 0 5

1

A 2 M3⇥3(R). On March 30 we saw that B has the same characteristic

polynomial, eigenvalues, and multiplicities as A. But this time dim(E3) = 1. So B is not diagonalizable
by Theorem 5.8.

Here is a useful observation.

Corollary 5.9. Suppose T 2 L(V ) with dim(V ) = n. If T has n distinct eigenvalues, then T is diagonal-
izable.

Proof. Let �1, . . . ,�n be the eigenvalues. Then pT (t) = (�1)n(t� �1) · · · (t� �n), so pT (t) splits and each
multiplicity equals 1. Then 1  dim(E�i)  1 by Theorem 5.4; so we have equality for all i. ⇤

Example. Let A =

✓
0 �1
1 0

◆
2 M2⇥2(R). Is A diagonalizable? What if we consider A 2 M2⇥2(C)?

1



If a matrix A is diagonalizable, it is easy to explicitly compute A
k for any k. Here is how.

(1) If D is a diagonal matrix, say D =

0

BB@

�1 0 · · · 0
0 �2 · · · 0
...

...
. . .

...
0 0 · · · �n

1

CCA, then

D
k =

0

BB@

(�1)k 0 · · · 0
0 (�2)k · · · 0
...

...
. . .

...
0 0 · · · (�n)k

1

CCA .

Indeed, for each i, Dei = �iei, so D
2
ei = D(�iei) = �i(Dei) = (�i)2ei, etc.

(2) If A is diagonalizable, then there exists an invertible Q such that Q�1
AQ = D where D is diagonal.

We can rewrite this as A = QDQ
�1. So

A
k = (QDQ

�1)k = (QDQ
�1)(QDQ

�1) · · · (QDQ
�1)

= QD(Q�1
Q)D(Q�1

Q)D · · · (Q�1
Q)DQ

�1

= QD
k
Q

�1
.

Example. Let A =

0

@
4 0 1
2 3 2
1 0 4

1

A. We’ve seen that A is diagonalizable, and if Q =

0

@
0 �1 1
1 0 2
0 1 1

1

A then

Q
�1
AQ =

0

@
3 0 0
0 3 0
0 0 5

1

A =: D.

Thus A = QDQ
�1 and hence A

k = QD
k
Q

�1 for any k. To compute A
k explicitly, we need to know Q

�1:

(Q|I3) =

0

@
0 �1 1 1 0 0
1 0 2 0 1 0
0 1 1 0 0 1

1

A !

0

@
1 0 2 0 1 0
0 �1 1 1 0 0
0 1 1 0 0 1

1

A !

0

@
1 0 2 0 1 0
0 1 �1 �1 0 0
0 0 2 1 0 1

1

A

!

0

@
1 0 0 �1 1 �1
0 1 0 �1

2 0 1
2

0 0 2 1 0 1

1

A !

0

@
1 0 0 �1 1 �1
0 1 0 �1

2 0 1
2

0 0 1 1
2 0 1

2

1

A = (I3|Q�1).

Hence Q
�1 =

0

@
�1 1 �1
�1

2 0 1
2

1
2 0 1

2

1

A, so

A
k = QD

k
Q

�1 =

0

@
0 �1 1
1 0 2
0 1 1

1

A

0

@
3k 0 0
0 3k 0
0 0 5k

1

A

0

@
�1 1 �1
�1

2 0 1
2

1
2 0 1

2

1

A

=

0

@
0 �3k 5k

3k 0 2 · 5k
0 3k 5k

1

A

0

@
�1 1 �1
�1

2 0 1
2

1
2 0 1

2

1

A =

0

@
1
2(3

k + 5k) 0 1
2(5

k � 3k)
5k � 3k 3k 5k � 3k

1
2(5

k � 3k) 0 1
2(3

k + 5k)

1

A .
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