MATH 146 Sec 1 January 06 Lecture notes

Pseudo-Definition. A field is an “algebraic system” F having:

(1) elements 0,1 (and possibly others)
(2) operations +,x, —, and ! (the last defined for all nonzero elements)

and satisfying the “obvious” algebraic laws. (See Appendix C for the real definition.)
Example 1. R, C, Q, Z, (p a prime) are fields.
Let F be a field.

Definition. A vector space over F is V' on which ’two operations‘

e addition, V x V — V', denoted = 4+ y
e scalar multiplication, F x V — V', denoted ax

, and such that ’the following conditions hold ‘:

For all x,y,z €V and a,b € F:

(VS 1) r+y=y+z

(VS2) (z+y)+z=a+(y+2)

(VS 3) There exists a “zero vector” in V', denoted 0, which satisfies z + 0 = z for all x € V.
(VS 4) For every x € V there exists u € V satlsfylng r+u=0.
(VS 5)
(VS 6)
(VS7)
(

lr =2
(ab)x = a(bx)
a(z +y) =ax +ay
VS8) (a+b)x=ax+bx

To define a vector space, you must specify the set and the two operations.
To prove that a set with two operations is a vector space, you need to verify the 8 conditions.

VS 6

Example 2. R" is the set of all n-tuples (ay, as, . .., a,) of real numbers. Addition and scalar multiplication
(by real numbers) on R™ are defined “coordinate-wise,” i.e.,

(a1, as, ..., an) + (b1, b2, ..., by)
def

clay,ag, ... a,) = (cay,cag,...,cay).

déf (a1+b17 a2+b2a cee 7an+bn)

Claim. R" with coordinate-wise addition and scalar multiplication is a vector space over R.
Proof sketch. (Omitted) O

Example 3. More generally, for any field F, the set F" = {(aq, as,...,a,) : ai,...,a, € F} of all n-tuples
from F, with coordinatewise addition and scalar multiplication, is a vector space over F.

Example 4. For any nonempty set D, F” is the set of all functions D — F. Given two functions f, g € FP
and a € F, define the functions f + ¢g and af “pointwise” by

(f+9)@) < f(2)+g(x),
(af)() a-f(x), x€D.

Claim. For any nonempty set D, FP with pointwise operations is a vector space over F.

def

Example 5. Let V = {&} where @ is the apple I brought to class. Defining addition and scalar multipli-
cation in the only possible way, V' is a vector space over F (for any field F).
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More examples. Let F be a field.

(1) For n > 0, P,(F) denotes the set of all “formal polynomials” in the variable z, of degree at most
n, using coefficients from F. Thus

P.(F) = {a,2" + ap 12" '+ -+ a1z +ag : ag,ai,...,a, € F}

Addition of polynomials in P, () is defined “term-wise” in the usual way (using the arithmetic
of F). Multiplication of a polynomial by a scalar ¢ € F is defined similarly.

Claim. P, (F) with addition and scalar multiplication defined “term-wise” is a vector space over F.

(2) F|x] is the set of all polynomails in x with coefficients from F. Addition and scalar multiplication
is the same is in the previous example.

Claim. F[z| is a vector space over F.

Remark. The text uses the notation P(IF) instead of F[z], but this is nonstandard.

Next: some basic facts true of all vector spaces.

Theorem (Cancellation Law). Suppose V' is a vector space. If x,y,z € V and x + z =y + z, then x = y.
Proof. (Omitted) O
Corollary 1. Suppose V is a vector space. There is exactly one vector in V' that can be the zero vector.
Proof. (Omitted) O

Corollary 2. Suppose V' is a vector space and v € V. There is exactly one vector uw € V satisfying
r+u=0.

Proof. Just like the proof of Corollary 1. 0

Definition. Let V be a vector space and x,y € V.
(1) —x denotes the unique vector v € V satisfying « + u = 0.
(2) x —y denotes x + (—y).

Because of (VS 2), we can (and do) write expressions like x1 + x2 + - - - + x,, without declaring where
the brackets go. And we could (if required) prove true facts like

clarry + agxo + -+ apxy) = (cay)zy + (cag)wa + -+ - + (can)y,.
Definition. Let V be a vector space over F and suppose x,uq,...,u, € V. We say that = is a linear
combination of wuq,...,u, if there exist scalars aq,...,a, € F satisfying

T = a1Uy + QU + -+ -+ + Aply.
Basic Problem: Given z,uy,...,u, € V, to determine whether x is a linear combination of uy, ..., u,.

Example 3. Consider the vector space R[z] of formal polynomials over R. Is 4z* + 72? — 2z + 3 a linear
combination of

ot — 2%+ 22 — 1, 22 + 32% + 2z, ot 422 4+ 1, 222 + 3, 417
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Theorem. Suppose V is a vector space over F, x € V, and a € F.

(1) 0z = 0.
(2) (—a)xr = —(az) = a(—x).
(3) a0 = 0.

Remark. Note the overloaded notation in the statement.

Definition. Let V' be a vector space over F, and let S C V.

(1) V is closed under addition if z,y € S = z+y € S.
(2) V is closed under scalar multiplication if z € S and a € F = ax € S.

Definition. Let V be a vector space over F. A subset W of V is a called subspace of V if
(1) W is closed under the operations of V', and
(2) W # @.

Theorem. Suppose V' is a vector space over F and W is a subspace of V.. Then W, with the operations of V
restricted to W, is a vector space over IF.

Proof sketch. (VS 1), (VS 2), and (VS 5)-(VS 8) follow automatically because of their logical nature
(universally quantified statements). Proving (VS 3) and (VS 4) requires a little more work and can be
done using the previous Theorem; in particular, —x = —(1z) = (—1)z. O

Remark. The converse to the previous theorem is also true: if W C V and W with the operations of V'
restricted to W is a vector space, then W # & and W is closed under the operations of V' (so is a subspace

of V).
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Definition. Suppose V is a vector space over F, x € V, and @ # S C V.

(1) z is a linear combination of S if z is a linear combination of some finite list of vectors from S.
(Note that S might be infinite.)
(2) The span of S, written span(S), is the set of all vectors # € V' which are linear combinations of S.

We also define span(@) = {0}.

Example 1. In R[z], what is the span of the infinite set S = {z, 22 2% 2% ...}? It includes all linear

combinations of finitely many of x, 2%, 23, 2%, .... Thus we get all polynomials of the form

ax + ayr? + - - + a,z”, ai,as,...,a, € R.
In other words, span(S) = {f(z) € R[z] : f(0) = 0}.

Technical Observations. (Assume S # J.)
(1) Suppose x € span(S). So z is a linear combination of some finite list uy, ..., u,, from S, say,

T = ajuy + -+ Qply,.

Ifvy,...,v, are some more vectors from .S, then x is also a linear combination of uy, ..., Uy, v1, ..., Un,
since we can write
T =aiuy + -+ apty, + 0v + - - - + 0v,y,.
(2) Thus if S is finite, say S = {uq, ..., u,}, then z € span(9S) iff z is a linear combination of us, . .., u,.
(3) If S is infinite, we can say the following. Suppose z,y € span(S). Then z is a linear combination
of a finite list uq,...,u,, from S and y is a linear combination of a finite list vy,...,v, from
S. By the earlier remark, we can view both x and y as linear combinations of the same list
Uty ooy Um,V1y...,Un.
Theorem (On span). Let V' be a vector space over F and S C V. Then span(S) is the (unique) smallest
subspace of V' which contains S. That is,
(1) span(S) is a subspace of V.
(2) span(S) 2 S.
(3) If W is any subspace of V and W 2 S, then W D span(S).

Proof. (1) and (2) in class; (3) deferred to Wednesday’s lecture. O
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Today: redundancies in span.
Example 1. Suppose S = {uy, us, us, uy, us} and uz can be written as a linear combination of s, ug4, us,
say
U3 = CoUsg + C4U4 + C5US5.
Claim: span(S) = span(S \ {us}).

Proof. O can be quickly proved using the Theorem on span from Monday’s lecture. For C, argue directly.
O

Also note that
0U1 —+ agug + (—1)U3 + aquy + asus = 0.
The scalars 0, ay, —1, a4, as are not all 0 (because of —1). This motivates the formal definition.

Definition. Let V be a vector space over F and S C V. We say that S is linearly dependent if there

exist distinct vectors uq,...,u, € S and scalars aq,...,a, € F such that
(1) aquq + -+ + ayu, = 0, and
(2) ai,...,a, are not all 0.

If S is not linearly dependent, we say it is linearly independent.
Let’s explore this. A set is S linearly dependent
< (3 distinct uq,...,u, € S)(Jaq,...,a, € F)(aus + -+ + apu, =0 and —~(a; = --- = a,, = 0))
Thus S is linearly independent

< (3 distinct uq,...,u, € S)3Fay,...,a, € F)(arus + -+ + apu, =0 and =(a; = -+ = a,, = 0))
< (V distinct uq,...,u, € S)(Vay,...,a, € F)(ayus + -+ + apu, #0or ay = --- = a, = 0)
< (V distinct uq,...,u, € S)(Vay,...,a, € F)(aqus + -+ apu, =0 = a3 =---=a, =0)

Technical Observation. Suppose S is finite and nonempty, say S = {uy...,u,}. Then the definition
of linear dependence, and the characterization of linear independence, can both be simplified by dropping
the “3 distinct uq,...,u, € S” or “V distinct uq,...,u, € S.” Thus (in this situation),

e S is linearly dependent iff

(Jaq,...,a, € F)(aqu; + - -+ + ayu, =0 and =(a; = -+ = a,, = 0)).
e S is linearly independent iff
Vay,...,a, € F)(aqu; + -+ ayu, =0 = a3 =+ =a, =0).
Question: Is S = @ linearly dependent, or linearly independent? ’Linearly independent‘
Question: Is S = {0} linearly dependent, or linearly independent? ‘Linearly dependent‘

Theorem (On dependence). Let V' be a vector space over F and S C V. S is linearly dependent iff
S = {0} or some vector in S is a linear combination of other vectors in S.
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Recall: if V' is a vector space/F and S C V, then:

(1) span(S) is the set of all linear combinations of S.
(2) S is linearly dependent if there exist distinct uy,...,u, € S and there exist ai,...,a, € F,
not all zero, such that aquqy + - - - + a,u, = 0.
e Else S is linearly independent.

Definition. Let V' be a vector space over F.

(1) A subset S C V is a spanning set if span(S) = V. We also say S spans V.
(2) We say V is finitely [countably] spanned if V' has a finite [countable] spanning set.

Here countable means “finite or in 1-1 correspondence with N.”

E.g., F™ is finitely spanned, e.g., by {ej,...,e,} where ¢; = (0,...,0,1,0,...,0) (1 in 7th spot).
F[z] is countably spanned, e.g., by {1,z,22, ... 2" ...}

R is not countably spanned.

Definition. Let V be a vector space. A basis for V is a subset S C V' which is linearly independent and
spans V.

Theorem. FEvery countably spanned vector space has a basis.

Proof. Let V' be spanned by the countable set S; so S = {vy,...,v,} or S = {vy,vq,...}.
We can assume WLOG that 0 ¢ S. Define

T ={v; : v; €span({vy,...,v;_1})}.
Write T' = {v;,, vi,, ...} (finite or infinite), iy < iy < ---.
Claim: T is a basis for V.

First show T is linearly independent. Argue by contradiction; assume 7' is linearly dependent. We can
choose some finite initial segment of it, say {v;,,...,v;, } for which we can choose a1, ...,a; € F, not all 0,
with

a1v;, + -+ agv;, = 0.
Assume k has been chosen to be smallest with this property.
Cannot have k =1 (since 0 ¢ S). So k > 1.
If a;, = 0, then
a v, + -+ ag—1v;,—1 = 0, not all aq,...,ai_1 equal 0
Contradicts choice of k; proves a; # 0.

Manipulate to get v;, a linear combo of v;,,...,v;,_,; contradicts v;, € T
Next we must show span(7’) = V. Intuition: span(S) = V and we’ve only thrown out “redundant”
vectors to get T'. Formally, list vectors of S and of T'. For each n, let

Sn = {vl,...,vn}
T, = {Uik el .4y < TL}
Argue, by induction on n, that span(7,,) = span(S,,) for all n. (Don’t do.)

Then to show span(7T) = V, equivalently, V' C span(T'), let € V; then = € span(S); so by picking n
large enough we get = € span(S,,) = span(7},) C span(7). O
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The next main result is to prove that any two bases of a finitely spanned vector space have the same

number of elements. To prove this, we first have an intermediate result.

Theorem 1.10. Let V be a finitely spanned vector space over a field F. Let {vy,...,vm} be a basis for V.
Let {wn,...,wp} CV and n>m. Then {wi,...,wy} s a linearly dependent set.

Proof Sketch. Idea: Replace successively vy, vs,...,v, so that wy,we, ..., Wy, Vp41,..., vy generate V for
all 1 <r <m — 1. Finally, we have w1, ..., w,, generate V. Below is the detail of the proof.
Assume that {wi,...,wy,} is linearly independent. (*)
Statement: After renumbering vy, ..., vy, if necessary, we have wy, wa, ..., Wy, Vp41, ...,y generate
Vioralll <r <m—1.

e Base step: Since {v1,...,vn} is a basis, we have
W) = a1V + -+ amUm

By assumption, w; # 0, so a; # 0 for some 1 < ¢ < m. After renumbering vy, ..., v, if necessary,

we may assume WLOG that a1 # 0. Then we can solve for v; and get
a1V = W1 — agvy — +++ — AmUm

v = al_lwl — aflagvg — = al_lamvm
V =span({vi,ve,...,vn}) Cspan({wy,ve,...,vpn}) CV
V = span({wi,ve,...,vm}).

e Assume by induction that there is an integer r with 1 < r < m — 1 such that, after a suitable

renumbering of vy, ..., vy, V =span({wi, ..., wr, Vpt1,...,Um}).

e We will prove the statement is true for r + 1, that is, V' = span({wi, ..., Wr, Wrt1,Vr42,...,0m}),
after a suitable renumbering of vy, ..., vy,.
Since w1, ..., Wy, Vpi1, ..., Uy, generate V, we have

Wry1 = biwy + - + bpw, + G 1Vrg 1+ F CnUme

e Claim: We cannot have ¢; = 0 for all j = r +1,...m. Indeed, if ¢,41 = -+ = ¢, = 0, then
Wy41 is a linear combination of wy, ..., w,, hence {wy, ..., wyy1,...,wy} is linearly dependent,

a contradiction with the assumption (*).

17



e WLOG, assume ¢;4+1 # 0. Then
_ -1 —1 b —1 b —1 —1
Ur4+1 = CpyWr41 — Cyq01W1 — =0 — Cr 1 OpWyp — Cp 1 Cr42Up42 — = * - — Gy 1CmUm
Using the same argument as in the base step and using the induction assumption, we have
V =span({wi, ..., Wr, Wri1, Vpg2y -+ Um})-

e So by induction, we have proved that wy,...,w,, generates V. If n > m, then we can write w,, as
a linear combination of wy, ..., wy,. Therefore, the set {w;,...,w,} is linearly dependent, a contra-
diction to the assumption (*). In conclusion, the assumption (*) is wrong, and the set {w1,...,w,}

is linearly dependent.
O

Theorem 1.11. Let V' be a vector space and suppose that one basis has n elements, and another basis

has m elements. Then m = n.

Proof. Previous theorem implies that both alternatives n > m and m > n are impossible, and hence

m=n. O

Definition 15. Let V' be a vector space having a basis consisting of n elements. We say that n is the
dimension of V., dimV = n.

For V = {0}, dim{0} = 0.

A wector space which has a basis consisting of a finite number of elements , or the zero vector space, is

called finite dimensional. Other vector space are called infinite dimensional.

Example 14. Dimensions of F", M, (F), P, (F).

Let {v1,...,v,} be linearly independent elements of a vector space V. We say that {vi,...,v,} is a
maximal set of linearly independent elements of V' if given any w € V, the set {w,v1,...,v,} is linearly
dependent.

Corollary: Let V be a vector space.

o If {v1,...,v,} is a maximal set of linearly independent elements of V', then {v1,...,v,} is a basis of
V.

e If dimV =n and {vi,...,v,} is a linearly independent set. Then {v1,...,v,} is a basis of V.

o If dimV = n and {v1,...,vx} is a linearly independent set (kK < m). Then one can find elements
Vk+1, - - -, Up such that {v1,...,v,} is a basis of V.

o If dimV =n and W is a subspace of V. Then dim W < dim V.

Proof. Exercise. O

18
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From Monday:

Theorem. Suppose V is a v.s., {v1,...,v,} is a basis of size m, and wy,...,w, €V (all distinct) with
n >m. Then {wy,...,w,} is linearly dependent.

Corollary. If V has one basis with m elements and another basis with n elements, then m = n.

Question: can V' have one basis with m elements and another basis with infinitely many elements?
Answer: no; else the infinite basis of V' would have a subset of size m + 1, which is automatically linearly
independent.

Corollary. IfV is finitely spanned, then any two bases have the same (finite) number of elements.

In this case, dim V' is by definition the (finite) number of elements in any basis.

Fact: Even if V is not finitely spanned, any two bases for V' have the same cardinality. (This is not easy
to prove.)

In this course we will simply write dim V' = oo if V' has an infinite basis (equivalently, V' has no finite
basis). So e.g., dimR[z] = co = dim R, But warning: in advanced linear algebra, we do not write
dim R[z] = dim R because actually

dimR[z] = N, while dim RI*Y = 22"

Corollary. IfV is finitely spanned and B = {wy, ..., w,} is linearly independent, then B can be extended
to a basis for V. Le., Juy, ..., v, such that {ws, ..., wy,v1,...,0.} is a basis for V.

The proof idea is simple: either B is already a basis, or else spanB C V. In the latter case, choose any
vy € V' \ span(B). Then B U {v;} is linearly independent (by Jan. 15 thm).

Repeat. This can’t go on forever because linearly independent sets must have size < dim V. 0
Fact: Even if V' is not finitely spanned, every linearly independent subset of V' can be extended to a basis
(this is proved using some form of the Axiom of Choice).

Recall: a finite linearly independent set {vy,...,v,} in a v.s. V' is a mazimal linearly independent set if
for every w € V' \ {vy,..., v}, {v1,...,0n, w} is linearly dependent.

Corollary. In a finitely spanned vector space, every mazimal linearly independent set is a basis (and vice
versa,).

Definition. More generally, a subset B C V' is a maximal linearly independent set if it is linearly inde-
pendent and for all x € V' \ B, B U {w} is linearly dependent.

Fact: Even if V is not finitely spanned, every maximal linearly independent set is a basis and vice versa.
(Exercise)

We can also “shrink” spanning sets to bases.

Fact: In any vector space V, if B C V and spanB = V', then there exists a subset B’ C B such that B’ is
a basis for V.

We proved this fact for countably spanned vector spaces. One needs to use the Axiom of Choice to prove
it in general.

Definition. A subset B C V is a minimal spanning subset of V if spanB = V and for every w € B,
span(B \ {w}) £ V.

Fact: In any vector space, every minimal spanning set is a basis and vice versa.
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Definition 1. Suppose V' is a vector space and W is a subspace. If z,y € V', we write x =y (mod W) if
r—yeWw.

Claim 2. In the above setting, = (mod W) is an equivalence relation on V.

Definition 3. In the above setting, given z € V, we let © + W g {z+w : we W}, and call z + W the
translation of W by x (or the coset of W containing x).

(Note that x is fixed: =+ W is the set gotten by adding z to all possible vectors in W. For an example,
think of W being a line through the origin; then x + W is the line parallel to W going through z.)

Lemma 4. If V is a vector space and W is a subspace, then for any x € V', the equivalence class of =
(mod W) containing x is exactly x + W.

Corollary. With V and W as above, for any x,y € V,
e+ W=y4+W <= z=y (mod W) ie,xz—yecW
Definition 5. Given a vector space V and a subspace W, V/W denotes the set of all translations of 1.
Formally, V/W ={z+W : s € V}.
Definition 6. Let V be a vector space over F, and let W be a subspace. Operations of addition and
scalar-multiplication-by-F are defined naturally on V/W by representatives:
(+W)+y+W) = (z+y)+W
c(lx+W) = (cx)+W.

Remark: the middle + in the expression (z + W) + (y + W) is not the same operation as the other +’s.
It is an operation on (certain) sets. If S = x + W and T' = y + W, then the definition of S + T is not

{s+t: s€ S andt €T} The definition is: choose z,y so that S =z +W and T =y + W; add x and y
to get x + y = z; then S + T is defined to be the translation of W through z (i.e., z + W).

Claim 7. In the above situation,

(1) The two operations are well-defined, and

(2) The set V/W with these operations is a vector space over F.

(1) means the following: if  + W = 21 + W and y + W = y; + W, then (z + y) + W should equal
(x1 4+ y1) + W, and (cx) + W should equal (cxzq) + W for all ¢ € F. Here is a proof of the second part:
c4+W=x14+W — zx—2;€W
= clx—x)EW

= (cx) —(cxy) e W
=  (cx)+ W = (cxp) + W.

(2) means that the set V/W with the operations given above satisfies axiom (VS 1) — (VS 8). This is
an exercise. (What is the “zero vector”?)

Definition. V/W with the natural operations is called the quotient space of V- modulo W.
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The next definition describes the “good” functions between vector spaces.

Definition. Let V and W be vector spaces over the same field F. A function T": V — W is called a
linear transformation, or is said to be linear, if:

(1) T(x+y) =T(x)+ T(y) for all z,y € V, and

(2) T(ax) = aT(x) for all x € V and a € F.

Example 2.1.

(1) (F=R). Let V=W =R. Fix A € R. Define T: R — R by T'(z) = Az. Claim: T is a linear.
Remark: every linear transformation R — R has this form (for some \).
(2) (F=R). Let V=W = R2 Define T : R? — R? by T(z1,73) = (—x9,2;). (This is just “rotation
c.c.w. by 90° about (0,0).”)

Claim. T is a linear transformation.

(3) The previous example is a special case of the following: let A € M,,.,(R), say

a1 Q2 - Qip
Q21 Q22 -+  Q2p
A =
Am1 Am2 Amn
Given x = (x1,...,2,) € R" define
ail QA2 Qg 1 a11T1 + A12To + -+ + A1, Ty
Q21 Q22 - Q2 To A21T1 + A22To + +++ + A2, Ty
Ar = . , . . = . e R™.
Am1 Qm2 - Amn Tn Am1T1 + Am2T2 +--+ AmnTn

Then define Ly : R* — R™ by La(z) = Az. Claim: L, is linear.

Can generalize this further: replace R with any field F. Given A € M,,»,(F), get a linear
transformation L4 : F" — F™. We'll see later that every linear transformation from F” to F™ has
this form.

(4) Define T : C([~1,1]) = R by T(f) = [', f(z)dz. Claim: T is linear.
(5) Define D : C*(R) — C(R) by D(f) = f’. Claim: D is linear.
Here are some easily proved properties of all linear transformations 7 : V' — W.
(1) T(0) = 0.
(2) T(z—y) =T(x) = T(y).
(3) T(arxy + -+ + apxy) = a1 T(z1) + -+ - + an T ().
Example 2.1 (Continued).
(5) T': Mypsn(F) = My (F) given by T(A) = A* (transpose).
(6) Given any V and W, the function Ty : V' — W which maps every x € V to the 0 vector in W.
(Called the zero transformation.)
(7) Given any V, the function Iy : V' — V defined by Iy (z) = x for all z € V. (This is the identity
function on V.)
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Definition. Suppose T': V — W is linear.
(1) The null space of T is the set N(T)) = {x € V : T'(z) = 0}.
(2) The range of T is the set R(T) ={T(z) : z € V'}.
Note that N(T) CV and R(T) C W.
Example. Define D, : P,(R) — P,(R) by D,(f) = f’. Obviously D, is linear.
(1) N(D,,) ={f € P,(R) : f/ =0} = {constant polynomials} = span(1).
(2) R(Dn) ={f": [ € Pu(R)} =Pra(R).
Theorem. Let T : V — W be linear. Then N(T) is a subspace of V', and R(T) is a subspace of W.

Because linear transformations preserve linear combinations, we can prove the following.

Theorem (Useful Trick Theorem). Suppose T : V' — W is linear and V' = span(vy, ...,v,). Then
R(T) = span(T'(v1), ..., T(v,)).
Example. Let A € M,,«,(F) and consider L, : F" — F™. F" is spanned by {ej, eg,...,e,} where
e; = (0,...,0,1,0,...,0).
T
7

Thus R(L4) =span(La(ey),. .., La(e,)) by the Useful Trick Theorem. Note that

ayy - Qo v Qin . Qa5
Q21+ G2yt A2p ) a2; .

La(e;) = } . . 1 = . = the 7th column of A.
aml PR a/mz. PR amn O ami

Hence R(L4) is the subspace of F spanned by the columns of A.

The Useful Trick Theorem can be helpful in deciding whether a linear transformation 7' : V. — W is
surjective, i.e., satisfies R(T) = W.
The next theorem gives a useful test for deciding whether T is injective.

Theorem. A linear transformation T : V' — W is injective iff N(T') = {0}.
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Announcements:
(1) Monday’s Tutorial: required material

Definition. A linear transformation 7" : V' — W is an isomorphism if it is injective and surjective (i.e.,
bijective). When this happens, we also write T': V = .
We write V =2 W and say V is isomorphic to W, if there exists an isomorphism 7" : V = W.

Example: P,(R) = R""!. One isomorphism is

T(aop + a17 + agx® + - - - + a,2") = (ag, ay, . . ., ay,).
Definition. Suppose T': V' — W is linear. Then rank(7") := dim(R(7")) and nullity(7") = dim(N(7)).
Theorem (Rank-Nullity Theorem). Suppose T' : V. — W is linear and dim(V') < co. Then rank(T) +
nullity (7) = dim(V).

Proof sketch. Suppose dim(V) = n and dim(N(7")) = k < n. Let m = n — k. Must show dim(R(7)) = m.
Pick a basis S = {v1...,v} for N(T). By A2Q2, S can be extended to a basis B O S for V. Thus
|B| =n =k +m, so we can write B = {vy,..., v} U{z1,..., 20}
————

S
Let C ={T(x1),...,T(xy)}. It suffices to show that |C| = m and C is a basis for R(T"). Then it will
follow that dim(R(7")) = m. O

Consider the proof in the special case when T': V = W. Then N(T) = {0}, so S = &, so m = n and
{z1,...,2,} is a basis for V. The proof shows that {T'(z1),...,T(z,)} is a basis for R(7T"), which is WW.
This proves:

Corollary. If T : V = W and dim(V) < oo, then dim(V) = dim(W) and T sends any basis of T to a
basis of W.

Here is another cute consequence of the RNT.

Corollary. Suppose T : V. — W s linear and dim(V') = dim(W) = n < co. Then T is injective iff T is
surjective.
Proof. Observe that
(1) T is injective <= N(T') = {0} <= nullity(7) = 0, and
(2) T is surjective <= R(T) =W <= rank(T) =n.
Since nullity(7") + rank(7") = n, the claim holds. O
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Proposition. Suppose {v1,...,v,} is a basis for vector space V' over F. Then for every x € V, x can be
written uniquely as

r=av+ - +a,v,, ai,...,a, €F.
Proof sketch. (In class) 0

Example: W = {(z,y,2) € R® : o+ y+ 2 =0} with basis {v,v2} where v; = (=1,1,0) and vy =
(0,—1,1). (Visualizing points in v € W via the pair of numbers (a,b) such that v = av; + bv,.)

Definition. Let V be a finite-dimensional vector space. An ordered basis for V' is a basis (v1,...,v,),
ordered as an n-tuple.

Following the text, I'll use «, 3,7 etc for ordered bases.

Definition. Given a vector space V over F with dim(V) = n, an ordered basis 8 = (vy,...,v,) for V,
and a vector x € V, the coordinate vector of z relative to f is the unique n-tuple (aq,...,a,) € F"
satisfying

T = aiv] + -+ a,vy,.
We denote (ay, ..., a,) by [z]s.

Example 2.15. In the previous example, let § = (v1,v9) where v; = (—1,1,0) and vy = (0,—1,1). If
x = (—3,1,2) then [z]g = (3,2).

If 8 is an ordered basis for V' (where V' is a finite-dimensional vector space over F with n = dim(V")),
then we can view [ |z as a function V' — F".

Theorem 2.16. Let V be a finite-dimensional vector space over F, dim(V') = n, and let 5 be an ordered
basis for V.. The map [ |z:V — F" is a bijective linear transformation (i.e., an isomorphism).

Proof. (In class) O
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Proposition. Suppose V,W are vector spaces over F, B is a basis for V, and T : V — W is a linear
transformation. Then T is completely determined by its values T'(v), v € B.

Le.,if T": V — W is another linear transformation and 7'(v) = 7"(v) for all v € B, then T'=T".
Proof #1. Let T' be another linear transformation with 7'|p = 7"|p. Let x € V. x can be written

r = av; + -+ a,v,

for some vy,...v, € B and ay,...,a, € F. Then
T'(x) =T (a1vy + -+ apvn) = T (v1) + - - + a, T (v,) = - - = T(2).
Since x € V was arbitrary, T =T". ([l

Proof #2. Claim: the set of all linear transformations from V to W is a subspace of WV. (Exercise).
This set is called Hom(V, W). Now define D =T — 1", ie., D(z) = T(z) — T"(x). T,T7" € Hom(V, W)
so D € Hom(V, W), meaning D is linear. Let’s prove D is constantly 0 by showing N(D) = V. By
hypothesis, B C N (D). Since N(D) is a subspace of V', we get span(B) C N(D), i.e, V C N(D). O

Proposition. Suppose V,W, B are as above. Every function 7 : B — W extends (uniquely) to a linear
transformation T : V — W, i.e., with T|g = 7.

We call this “freely extending” 7.
Proof. First we say how to define T'. Given x € V', x can be written
r=aiv;+ -+ ayv,

with v1,...,v, € B and ay,...,a, € F. Define

T(z) :=ar7(v1) + -+ + an7(vn).
Now show that 7" extends 7 and is linear (done in class). 0
Example. Let V = R3 and W = R2. Choose the basis {v;, v, v3} where

v = (1,0,1), vy = (1,0, —-1), vy = (1,1,1).

Ask for three random vectors A, B,C' € R?. Define 7 : {v,v2,v3} — R? by 7(v;) = A, 7(v9) = B, and
7(v3) = C. Now find the unique linear transformation R®> — R?, of the form L, (where A € My, 3(R)),
extending 7.

Example. Let V' be a vector space over F and dim(V') = n. Let § = (vy,...,v,) be an ordered basis for
V. Define 7 : {vy,...,v,} = F* by 7(v;) = ¢; = (0,...,0,1,0,...,0) for i = 1,... ,n. 7 freely extends to
a (unique) linear transformation 7' : V' — F", namely, to T' = [ 5.

Example. Let V| F, § be as before. Pick a = (ay,...,a,) € F". Define 7, : {vy,...,v,} = F by 1a(v;) = a;
fori=1,...,n. T, extends to a (unique) linear transformation f, : V' — F (i.e., to a linear functional),

which satisfies
falcrvr + -+ cuun) = cra1 + -+ + cray.
In particular, if a = e; = (1,0,0,...,0) then
fel (01U1 + -+ Cnvn) = C1.

In other words, f., is the linear functional f; in the dual basis 5* = (fi, ..., f,) for V* defined in Monday’s
tutorial. Similarly, f., = f; fori=2,... n.
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Announcements:
(1) No tutorial on Monday Feb 10.

Suppose T : V' — W is linear where V' and W are both finite-dimensional vector spaces over F.
Suppose 5 = (vy,...,v,) is an ordered basis for V and v = (wy, ..., w,,) is an ordered basis for W.
e T is completely determined by T'(v1),...,T(v,).
e Each T'(v;) is determined by its coordinate vector [T'(v;)], € F™.

Definition. In this context, the matrix representation of 7" for § and 7 is the matrix A € M,,x,(F)
whose columns are [T'(v1)], ..., [T (v,)]y. Thus

We denote this matrix A by [T]3.

Example. Let A € M, (F) and T'= L : F* — F™, where Ly(z) = Az. Let o,, be the standard ordered
basis for F", ie., 0, = (e1,...,e,) where e; = (0,...,0,1,0,...,0) € F" with 1 in the j-th position.
Similarly let o, be the standard ordered basis for F™.

Claim: [La]7™ = A (not surprisingly).

Proof. First recall that, for each j =1,...,n, Ae; equals the j-th column of A. Second, note that for any
r=(by,...,bn) € F™ we have v = biey + - - + bye,, and so (x5, = (b1, ..., bp) = .
Now the j-th column of [L4]7™ is by definition

= Ae; by the 2nd remark

= the j-th column of A by the 1st remark.
Thus [L4]J™ and A have the same columns, so are the same matrix. O
Theorem 2.21. Suppose V,W are finite-dimensional vector spaces over F, f = (vq,...,v,) is an ordered

basis for V., v = (wy,...,wy) is an ordered basis for W, and T : V' — W is linear. Then for all x € V,
[T(x)]y = [T13 [z]s-
Proof. Write

| | | ailr G2 - Qg
[T]} _ [T(Ul)]'y [T(vj)h [T(Un)h _ A1 Qoo -+ QAop
| | o e
meaning
T(v;) = ajwy + agjwy + -+ + QW forj=1,...,n.
Also write

[z]sg = (c1,-.-,¢n),



meaning

On the one hand,

ai; @12
Tefls = |
Am1  Am2
On the other hand,
T(x) = T(civg+---
= oT(v)+ -

~

Hence we can see that [T} -

xr = cv+ -+ cpu,.

QA1n C1 aiic + aaca +
Qap, Co Q21C1 + Q29C +
Amn Cn am1C1 + Am2C2 +
+ CpUp)

T (vy,) (T is linear)

+a1ncn
+a2ncn

s+ AmnCn

ci(anwi + -+ A m) + -+ G(a1Ws + - )
(1011 + -+ + cpaip)wr + -+ + (C10m1 + -+ + Collnn ) Wi

(allcl + -+ alncn)wl + -+ (amlcl + -+ amncn)wm'

[x] is the coordinate vector of T'(x) relative to v, proving the theorem.
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Notation. Suppose A € M, (F).

e For j=1,...,n, Col;(A) denotes the j-th column of A. Thus Col;(A) € F™.
e For i =1,...,m, Row;(A) denotes the i-th row of A. Thus Row;(A4) € F".

I may write

A:

|
COll

February 13

|
Col,

Lecture notes

|
Recall that A determines a linear transformation Ly : F* — F™ defined by L4(z) = Az. Also recall:
(1) Aej = Col;(A) for each j =1,...,n.
(2) Whenever T': V. — W is a linear transformation, o = (vy,...,v,) is an ordered basis for V', and
B = (wy,...,wy) is an ordered basis for W, then [T]? is the m x n matrix whose j-th column is
given by Col;([T)8) = [T'(v;)]s for j =1,...,n.
With this information we can calculate [L4]J™; it is the m X n matrix whose j-th column is
Coly([Lalgy) = [La(ej)lon = [Aejlo, = [Coli(A)s,, = Col;(A),

where the last equality is because Col;(A) € F™ and o, is the standard ordered basis for F™. This proves
that [L4]7™ = A; that is, the matrix representation of L4 with respect to the standard ordered bases is A.

Definition. Let F be a field. Suppose A € M,,,x,,(F) and B € M, «,(F). The matrix product AB is
the m x p matrix C € M,,x,(FF) whose row-i, column-j entry is the linear combination of the entries in
Col;(B) using as scalars the entries of Row;(A). That is,

aip - A o Qip bi1 bi; b1y cnocce €y e Cip
a1 - Qi - Qin, btl e btj btp = Ci1 ce Cij te C’ip
m1 - Qmt - Omn b1 b”j bnp Cmi "t Cmyj " Cmp

where each entry c;; of the product is given by c¢;; = a;101; + aiobaj + - - - + Ginby;.
Remarks.

(1) If p=1, so B and AB are column vectors, then the definition above is just our usual definition for
multiplying a matrix by a column vector.

(2) In general (i.e., when B has several columns), B and AB have the same number of columns, and
the j-th column of AB is obtained by multiplying A by the j-th column of B. I.e., Col;(AB) =
A-Coly(B) for j=1,...,p.

Now suppose we have T': V — W and U : W — Z, both linear, where V, W, Z are all finite-dimensional,

say dim(V') = p, dim(W) = n, and dim(Z) = m. In this situation, define UT Y UoT V= Z; it is also

linear (exercise). Also assume that «, 3,7 are ordered bases for V, W, Z respectively.
Theorem 2.22. In this situation, [UT]}, = [U]} - [T,

o

Proof. Given in class. (Show Col;(LHS) = Col;(RHS) for j =1,...,p.) O
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Here is an application of Monday’s Theorem. Let A € M,y (F) and B € M, «,(F). Thus Lp : F? — F”
and Ly : F" — F™. So we can compose Lg with L4 to get LaLpg : FP — F™.

Corollary. In this situation, LaLg = Lap.

Proof. 1t suffices to show that [LaLp|g™ = [Lag|g™, since linear transformations are determined by their

CTp’

matrix representations. Apply Monday’s Theorem to the LHS and use [Lp|7™ = D repeatedly. O

Corollary. Matriz multiplication (when defined) is associative. Le., if A € My,un(F), B € Myy,(F), and
C € M,y (F), then (AB)C = A(BC).

Proof. 1t suffices to show Lapc = Lac) (as functions). Use the previous Corollary and the fact that
composition of functions is associative. O

Warning: Matrix multiplication is not in general commutative.

Definition. A square matrix A € M, (F) is invertible if there exists B € M, «,(F) satisfying AB =
BA=1,.

Note that if such B exists, then B is unique. (Proof: if By and B, satisfy AB; = B1A = I, and
ABy = ByA =1, then By = BI,, = B1(ABy) = (B1A)By = I,, By = Bs.) This justifies the following:

Notation. If A is invertible, then the unique matrix B satisfying AB = BA = I, is denoted A~! and is
called the inverse of A.

Theorem 2.24. Suppose V. W are fin. dim. vector spaces over F, «, B are ordered bases for V,W respec-
tively, and T : V. — W is linear. T is an isomorphism iff [T}, is invertible, in which case ([T]5)~" = [T7']§.

[0}

Proof. (=) Let A = [T]?. Assume that T is an isomorphism. Then dim(V) = dim(W) = n, say (by
a corollary of the Rank-Nullity Theorem; see Jan. 31 lecture), so A is a square (n x n) matrix. Let
T=': W —V be the inverse linear transformation to 7. Then B := [T"!]§ is also an n X n matrix, and

AB = [T]3-[T7'5
= [T T’l]g Monday’s Theorem
= [Iw]}
= I, (exercise).
A similar proof shows BA = [Iy]® = I,,. So by definition, A is invertible A~! = B.
(<) exercise. O

Easy Lemma. If A, B € M, (F) are invertible, then AB is also invertible and (AB)™' = B~ 'A~1.

Proof. Let C = B~'A~!. Tt suffices to show that (AB)C' = C(AB) = I,,, for then it will follow that AB is
invertible and its inverse is C. So let’s check:

(AB)C = (AB)(B'A™) = A(BB YA ' = ALLA7' = AA™ = I,,.
The proof of C(AB) = I,, is similar. O
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Recall the following (Corollary of Rank-Nullity Theorem, Jan. 31):

Corollary. Suppose T : V. — W is linear and dim(V') = dim(W) =n < oco. Then T is injective <= T
15 surjective <= T is an =.

Fact. Suppose f: X Y andg:Y — Z,sogf :=go f: X — Z. Assume ¢gf is a bijection. Then f is
injective and ¢ is surjective.

Proof. Exercise. O
Theorem. Suppose A, B € M, .,(F). If AB is invertible, then A and B are both invertible.

Proof. AB invertible = L,p : F" — F" is an isomorphism.
=—> LaLp:TF" — F" is an isomorphism (hence bijection), because Lap = LaLp (Feb. 12).
= Lp is injective and L4 is surjective (today’s Fact).
= L4 and Lg are isomorphisms (Jan. 31 corollary).
= A and B are invertible. O

Corollary. If A, B are n x n matrices and AB = I,,, then BA = I,, (so A is invertible and B = A™!).

Proof. Since AB = I,, and I, is invertible, the Theorem gives that A is invertible, so A~! exists. Multiplying
AB = I, on the left by A~! gives B = A~!. So of course BA = I,. O

Now back to discussing coordinatization.
Suppose V' is a fin. dim. vector space over F. Suppose S and v are two ordered bases for V and z € V.
If we know [x]g, how can we find [z], and vice versa?
Theorem. In this situation, let Q = [Iv]}. Then:
(1) Q is invertible.
(2) For any x € V, Q[z]s = [z], and Q *[z], = [z]s.

Proof. (1) Iy is an isomorphism, so @ is invertible by a Theorem from Wednesday.
(2) Qlz]s = [Iv]} - [x]s = [Iv(x)], by the Theorem from Feb. 7. But this equals [z],. Now multiply this
equation on the left by @' to get [z]s = Q *[z],. O

Definition. The matrix @ = [Iy]} is called the change of coordinates matrix from £ to 7.

Definition. If V is fin. dim., § is an ordered basis for V', and 7": V' — V is linear, then [Tz denotes [T’ ]g

Theorem. Suppose V' is finite-dimensional, T : V — V s linear, and (5,7 are two ordered bases for V.
Let Q) = [Iv]g be the change of coordinates matriz from 3 to . Then

[T]s = Q7'T],Q.

Proof. 1t suffices to prove Q[T'|g = [T],Q. To prove this, apply the Theorem from Feb 10 to show each
side equals [T7}. O
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Recall the following facts from the Feb 10 lecture:
(1) Col;(AB) = A-Col;(B) for all j =1,...,n (if B has n columns)
(2) Ae; = Col;(A) for j =1,...,n (if A has n columns, e; € F").
(3) Ax =77, 2;Col;(A) (if A has n columns and x € F").

Here are the analogous facts for rows:
(4) Row;(AB) = Row;(A) - B for all i = 1,...,m (if A has m rows).
(5) (e;)*A =Row;(A) for i =1,...,m (if A has m rows).
(6) 2'A=>"" x;Row;(A) (if A has m rows and = € F™).

Definition. Let A € M,,«,(F). An elementary row operation is any one of the following actions,
resulting in a new matrix A’

(1) Switching two rows of A. R, S R;
(2) Multiplying one row of A by a nonzero scalar. R; < aR; (a #0)
(3) Adding a scalar multiple of one row of A to another row of A. R; <+ R; + aR,;

An elementary column operation is any action of the above kinds, but with rows replaced by columns.
An elementary row or column operation is an elementary operation. An elementary operation is type
1, type 2 or type 3 according to whether it is obtained by rule (1), (2) or (3).

Newton’s 3rd Law of Operations. 7o cvery elementary operation there is an equal and opposite
elementary operation.
For example, the operation R; <— R; + aR; is undone by R; < R, + (—a)R;.

Definition. An elementary matrix is an n X n matrix which can be obtained by applying one elementary
operation to I,. It is of type 1, 2 or 3 according to the type of the operation used.

Notation. If O is an elementary operation on m x n matrices, A € M,,.,(F), and A’ is the result of
applying O to A, then we write A Ny
Theorem 3.1. Fiz m,n and suppose that O is an elementary column operation on m X n matrices. Let
E be the elementary matriz obtained by applying O to I,.

Then for all A € M,xn(F), if A Oy A then A' = AE.

Proof sketch. Let Aj := Col;(A) for j =1,...,n, so we can write A = [4; Ay --- A,]. The columns of I,
are ey, ...,e,, SO we can write [, = [e; ea --- e,]. Now consider cases according the type of the column
operation is O, and use Facts (1) and (2) judiciously. For example:

Cask 3: O is C; « C; + aCj.

Then E = [e1,...,e; + aej, ..., e,] and the columns of AE are Aey, ..., A(e; + aej), ..., Ae,. Note that
A(e; + aej) = Ae; + aAe; (by linearity of L,). Thus the columns of AE are A;,..., A; +aA;, ..., A,. In
other words, AFE is the result of adding a times column ;7 of A to to column ¢ of A, so A 9, AE. O

Theorem 3.2. Fiz m,n and suppose that O is an elementary row operation on m X n matrices. Let F be
the elementary matriz obtained by applying O to I,,.
Then for all A € M,xn(F), the result of applying O to A is EA.

From Theorems 3.1 and 3.2 we can deduce:

Theorem 3.3. Elementary matrices are invertible. Moreover, if E is an elementary matriz correspond-
ing to the elementary operation O, then E~' is the elementary matriz corresponding to the “opposite”
elementary operation to Q.
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Definition. Suppose A, B are matrices of the same size. We write A ~» B if there exists a sequence of
elementary row and/or column operations that transforms A to B.

Theorem 3.4. For every matric A € M,«,(F) there exists a matriz D of the form

(L. O
b= ( 0r O )
where r > 0 and O1, Oy, O3 are all-zero matrices, such that A ~ D.

Proof sketch. If A is all Os, we’'re done. Otherwise, A has a nonzero entry, and using type-1 operations
we can move it to the 1,1 position. By a type-2 operation, we can change it to 1. Then using type-3
operations, we can “clear” the remaining entries in the first row and column. Thus we have converted A
to a matrix A" of the form

1 ‘ 0 --- 0
A = !
: B
0
Repeat: if B is all Os we're done. Else we can move a nonzero entry of B to the 2,2 position of A’; make
it equal 1; and then clear the rest of the 2nd row and column. Etc. 0

Theorem 3.5. If A € M,,»,(F) and A ~~ B, then there exist invertible P € M,xm(F) and Q € M, «,(F)
such that B = PAQ.

Proof sketch. Suppose A ~ B via a sequence of elementary operations. Let Oy,..., O, be the elementary
row operations used, in this order, and O, ..., O, the elementary column operations used. Let E, ..., Ej
be the m x m elementary matrices corresponding to the row operations, and let £, ..., E}; be the n x n
elementary matrices corresponding to the column operations. Then

B=Ey - EBEAEE) - B

=P :‘E)

Each elementary matrix is invertible (Feb 24), and products of invertible matrices are invertible (Feb 12),
so P and () are invertible. O

Suppose some evil math professor asks you to find the matrices P, ) promised by Theorem 3.5. What
do you do?

Option 1: To find P, first find Ei,..., Ex and then multiply them (in the correct order). For @, find
Ei, ..., E; and multiply them.

Option 2: To find P, just apply the elementary row operations Oy,...,O; to I,,. The resulting matrix
will be P. To find @, just apply the elementary column operations O, ..., O, to I,,. The resulting matrix
will be Q.

Why does Option 2 work? The answer is easy: applying Oq,..., O to I, is the same as multiplying
I, on the left by Ei,..., Eg, so the result will be Ey---FEyFEil,, = FEy---FEyE; = P. Similarly, ap-

plying Of,...,0; to I, is the same as multiplying I,, on the right by Ei,..., Ej, so the result will be
I,EE,---E,=EF, - E, = Q.
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Corollary. If A ~~ B, then
(1) B~ A.
(2) At ~ B!,

Definition. Let A € M, (F).

(1) We call span({Row;(A),...,Row,,(A)}) the row space of A.
(2) Similarly, we call span({Col;(A),...,Col,(A)}) the column space of A.

Recall that span({Col;(A),...,Col,(A)}) = R(L4). So the column space of A equals the range of L 4.

Definition.
(3) The null space of A, denoted N(A), is the null space of L4. Le.,

N(A):=N(Ls)={x €F": Az = 0}.
Thus:

e The column space of A is a subspace of F™.
e The row space and null space of A are subspaces of F".

Also note that the row space of A is identical to the column space of A' and vice versa.

Definition.

(1) The rank of A is defined by rank(A) := dim(R(L4)), i.e., the dimension of the column space of A.
(2) The nullity of A is defined by nullity(A) := nullity(L,).

Note that rank(A) + nullity(A) = dim(F") = n by the Rank-Nullity Theorem applied to L.
Theorem 1. If A € My, (F) and Q € M,,x,, with Q invertible, then R(La) = R(Lag).
Proof sketch. Consider Lag = L4 o Lg. Note that L is an isomorphism (because @) is invertible). O
Corollary 1. If A ~» B entirely by column operations, then A and B have the same column space.
Corollary 2. If A ~ B entirely by row operations, then A and B have the same row space.
Proof sketch. If A ~ B by row operations, then A* ~ B? by column operations. O

Lemma. Suppose V is a finite-dimensional space, T : 'V = V' and W is a subspace of V. Let W' =
{T(w) : we W}. Then dim(W) = dim(W’).

Proof sketch. Let {x1,...,x;} be a basis for W. Prove that {T'(x;),...,T(x)} is a basis for W'. O
Theorem 2. Suppose A € Myxn(F) and P € M, «m(F) with P invertible. Then rank(A) = rank(PA).

Proof sketch. Consider Lpy = Lp o La. Lp is an isomorphism. Let W = R(Ly), define W' = {Lp(w) :
w € W}, and prove that W/ = R(Lpa). O

Corollary 3. If A~ B entirely by row operations, then rank(A) = rank(B).
Corollary 4. If A~ B, then rank(A) = rank(B).

[r Ol

Corollary 5. If A ~ ( 0, O;

) = D, then rank(A) =r.



Proof. Obviously rank(D) = r, and rank(A) = rank(D) by Corollary 4. O

Corollary 6. rank(A) = rank(A"). Equivalently, the row space and column space of A have the same
dimension.
I, O

Proof. A ~~ ( 0, O

> for some r, by the Feb 26 lecture. Then rank(A) = r by Corollary 5. Also

At ~ [r 01 ' — Ifr (02)t
Oz O3 (O1)" (Os)f
by the 1st Corollary today, so rank(A") = r by Corollary 5. Hence rank(A") = r = rank(A). O
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Recall from Feb 26 that if A € M, «,(F) then A can be transformed by elementary row and column

Ir O ) where r = rank(A). Furthermore,

operations to D = ( 0. O
2 Us

D= (Ey - EyFy) A(E{E} - E)) = PAQ

P Q
where Ej, E} are the corresponding elementary matrices (E; for row ops, £’ for column ops).

Theorem (Invertible Matrix Theorem). For A € M,,«,(F), the following are equivalent:

(1) A is invertible.

(2) rank(A) = n.

(3) A can be written as a product of elementary matrices.
(4) A~ I,,.

(5) A can be transformed by elementary row operations to I,,.

Proof sketch. (2) < (1): rank(A) =n <= L4 is surjective <= L4 is an isomorphism (Jan 31).
(2) < (4): This follows from the remarks before the Theorem.
(4) = (3): If A~ I, then I, ~ A. Thus

A = (Ey---EyE))L(E\Ey---E)) = Ey---EyE\EEy--- E.

(3) = (5): Assume that A = E E,--- Ej, where each E; is elementary. Then A is invertible (it is a
product of invertible matrices), and A=t = E.'-.. E;'E; ! Thus

I, = A7'A = B! Ey'E{ A

Each E; ! is also elementary. Multiplying on the left by elementary matrices is the same as applying
elementary row operations. Thus the equation I, = E;'--- E; ' E; ' A shows that A can be transformed
by elementary row operations to I,. 0

Here is an application. Suppose A is invertible, so can be transformed by elementary row operations
to I,,. Let Ey,..., E} be the corresponding elementary matrices. Thus I,, = F}, - - - Ex E1 A. Multiply both
sides of this equation on the right by A~! to get A~! = Ej, - -- E3E,1,,. This proves the following:

Theorem. If A is invertible, then the sequence of elementary row operations which transforms A to I,
also transforms I, to A~'.

This theorem gives an easy way to find A~! (when it exists).

(1) Form the n x 2n matrix (A|1,).
(2) Using row operations, transform A to I,,, but apply the operations to (A|1,).
(3) If (A| ) is transformed to (I,, | B), then B = A~

The above algorithm can be applied to a square matrix A even when A is not invertible. Here is what
will happen.

If A is not invertible, then it can be shown that the attempt to transform A to I,, via row operations will
always lead to a row of all zeroes. Elementary operations do not change the rank of a matrix (Corollary 4
from Feb. 28). Clearly if an n x n matrix A’ has a row of all zeroes, then the row space of A’ has dimension
at most n — 1. Since the dimension of the row space of A" equals the rank of A" by Corollary 6 from Feb.
28, it follows that rank(A’) < n. This proves that if elementary row operations transform A to a matrix
A" having a row of all zeroes, then rank(A) < n and so A is not invertible.

Thus in the process of transforming (A | 1,), if at any point you arrive at the situation where a row has
the form (0 --- 0] *---%), you can stop and conclude that A is not invertible.
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Consider a system of m linear equations in n unknowns:

a11T1 + Qe + o oo AT, = b
1Ty + QgeTy + - - AT, = b

(S)
Ap1T1 + Qa2 + -+ 0 App®y = bm

We always have a field F in mind. The coefficients a;; and right-hand sides b; belong to [, and we are
looking for solutions (z1,...,x,) € F".
We can write the system as

apn G2 - Qin T by
Q21 Q22 -+ Q2p ) _ by
Am1 Gm2 G Tn bm
that is, as
AX =0
where A € My, (F), b € ™, and X = (x1,...,x,) is an n-tuple of formal variables “ranging over F.”

e The formal matrix equation AX = b is the matrix form of (S).

e A is the coefficient matrix and b is the RHS vector.

o (A|b) € My (nt1)(F) is called the augmented matrix of the system.

e The system is said to be homogeneous if b = 0, and is nonhomogeneous otherwise.

o If b £ 0, then the system AX = 0 is the homogeneous system associated to AX = b.

Definition. A solution to AX = b is a vector x = (x1,...,2,) € F" satisfying Ax = b. The solution
set to AX = b is the set
Sol(AX=b) = {x €F" : Az = b}.

A system is consistent if it has at least one solution; otherwise it is inconsistent.
Theorem 3.15. Let A € M5, (F) and b € F™.

(1) Sol(AX=0) = N(A).

(2) AX = b is consistent iff b € the column space of A.

(3) If AX = is consistent, then its solution set is a translation of N(A), i.e.,

Sol(AX=b) = u+ N(A) where u can be any solution to AX =b.
Proof. In class. O

Theorem 3.16. Suppose A € M, (F), b € F™, and the augmented matriz (A|b) can be transformed via
elementary row operations to a matriz (A" |V'). Then Sol(AX=b) = Sol(A'X=V).

Proof. In class. O

Definition. A matrix is in Reduced Row Echelon Form (or RREF) if all of the following hold:

(1) If a row has a nonzero entry, then its first nonzero entry is 1. (Called the leading 1 of the row.)
(2) If a column contains a leading 1 (of some nonzero row), then all other entries in the column are 0.
(3) Lower nonzero rows have their leading 1 increasingly to the right.

(4) All-zero rows (if any) are at the bottom of the matrix.



MATH 146 March 6 Lecture notes

Theorem. For every matric A € M, (F) there exists a matriz R in RREF such that A ~~ R via row
operations.

Proof sketch. Given in class. O
It is easy to determine the rank of a matrix in RREF.

Proposition. If R is in RREF, then rank(R) = the number of leading 1s.

Proof. Suppose the first k rows of R have leading 1s and the rest of the rows are zero. The columns
containing the leading 1s are eq, ..., e, and they clearly form a basis for the columns space of R. U

We can apply these results to augmented matrices of linear systems. If (A |b) ~» (R|s) by row operations
then Sol(AX = b) = Sol(RX = s). So it suffices to describe Sol(RX = s) when (R|s) is in RREF. T will
illustrate the method by an example. Suppose

10 20 —3|s
o1 10 4s
(Bls) = | g0 01 2 53

00 00 O0fsq

e Obviously column space(R) = span{ey, €2, €3} so RX = s is consistent iff s, = 0.
e Assuming s, = 0, write the equations of the system corresponding to RX = s:

Ty + 2z3 — 35 = s
Ty — I3 -+ 4(E5 = S9

Tyg — 2%5 = 83

0 =0

e The variables corresponding to leading 1s are said to be dependent; the other variables are free. In
this example, x3 and x5 are free.
e Rewrite the system by expressing each variable in terms of the free variables:

r1 = 8 + —2x3 + 3xj

Tog = So -+ I3 — 41’5
T3 = T3

Ty = 83 + 21’5
Ty = L5

e Now rewrite these last equations in vector form:

T S1 —2 3
T2 S9 1 —4
T3 = 0 + T3 1 + T 0
T S3 0 2
Ts 0 0 1
T T

u 1 (%)

e Note that x3,z5 can be any values in F. Thus
Sol(AX =b) = u + span({vy, v2}).



e [t is easy to check that u is a solution to RX = s and so is also a solution to AX = b. The
same analysis with s replaced by 0 shows that span{vi,vs} = N(R) = N(A). In this example
rank(A) = rank(R) = 3 so nullity(A) =5 — 3 = 2. Thus {vy, vy} is a basis for N(A).

The same arguments work generally. If A € M,,.,(F), b€ F™, and (A|b) "% (R|s) in RREF, RX = s
is consistent (i.e., (R|s) has no row of the form (0---0]1)), and R has r columns containing a leading 1
and hence n — r free variables, then nullity(A) = n — r and the equations for RX = s, when translated
to expressions for each variable in terms of the free variables and then written in vector form, lead to a
description of

Sol(AX=b) = u+ span({vy,...,Up—r})

where span({vy,...,v,—}) = N(A). Hence u is a solution to AX = b and {vy,...,v,_,} is a basis for
N(A).

Theorem. For each A € M,,x,(FF), there is a unique matriz R in RREF such that A ~ R.

Proof sketch. Given A, there is at least one such R (by today’s first theorem). It suffices to show that the
entries of R are determined by A.

By A4Q5(b), the columns of R that contain leading 1s are exactly the columns with index j such that
Col;(A) ¢ span{Col;(A),...,Col;_1(A)}. In this way A determines the indices ji, ..., J, of columns of R
containing leading 1s. By definition of RREF, Col;,(R) =e; fort =1,...,7.

Let j € {1,....,n}\ {J1,...,7-}. Le., 7 is the index of a column of R which does not contain a leading
1. By definition of RREF, if j < j; then Col;(R) = 0. Otherwise, let t € {1,...,r} be the largest such
that 7 > j;. Then by definition of RREF,

&1
Col,;(R) = (g = ¢,Col,, (R) + - - - + ¢,Col,, (R).
0
Apply A4Q5(a) to get
(%) Colj(A) = ¢1Col;, (A) + - - - 4+ ¢,Col, (A).
We know that Colj, (R), ..., Col;,(R) are linearly independent; thus by A4Q5(a) again, Col;, (4), ..., Col;,(A)
are linearly independent. So the equation (x) uniquely determines ¢y, ..., ¢. O
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To every square matrix A € M,,»,,(F) there is an associated scalar det(A) € F, called the determinant
of A. In the next few lectures I will give a definition of det(A) and discuss/prove a number of properties
of det(—) as a function M, y,(F) — F. I'll start with the 2 x 2 case.

If A= ( Z Z ) € Myyo(F), then det(A) = ad — be.

Facts (2 x 2 case)

(1) A is invertible (i.e., rank(A) = 2) iff det(A) # 0.
. . 1 d —b
(2) If A is invertible, then A~ = A\ —c )

(3) If A, B € Myys(F), then det(AB) = det(A) - det(B).

The definition of det(A) in higher dimensions will have these (and other) properties.
First, to any square matrix we assign (—1)""/ to the (i, j) position. This creates a “checkerboard” sign
pattern

+
_I_

[+

_|_
+

Definition. Suppose A € M,y (F) and 1 <i,j < n.

(1) IZL-]. denotes the n—1 x n—1 matrix obtained by deleting the i-th row and the j-th column from A.
(2) Ajj is called the (i, j)-submatrix of A.

Once determinants have been defined:

(3) det(gij) will be called the (7, 7) minor of A.

(4) (—1)"" det(A;;) will be called the (i,7) cofactor of A.
Recursive definition of det.

(1) If A= (a) € Myx1(F), then det(A) = a.
aipr - Qin
(2) If A= : : € Myxn(F) with n > 1, then

An1 *++ Qpp
det(A) = ai1: det(gn) — a91 * det(g21) + asy - det(ggl) —

= Z ;1 - (-1)i+1 det(gﬂ) .
i=1

(3,1) cofactor of A

The recursive definition in (2) is called expansion by minors (or cofactors) on the first column.
To prove facts about det(—), we deal directly with its recursive definition.



Lemma 4.0. If A € M,y,, is upper-triangular (i.c., a;; = 0 whenever i > j), then det(A) = [, ai-

a1; a2 aiz - a1 n—1 A1n
0 axp axy --- a2.n—1 Q2n,
0 0 asz --- a3 n—1 A3n
A= .
0 0 0 Up—1n—1 Gn-1n

o]
]
o]

0 Ann

Proof. By induction on n (in class).

Corollary 4.1. det([,) = 1.

Theorem 4.2. If A € M,,(F) and A has a row of zeros, then det(A) = 0.
Proof. By induction on n (in class).

Theorem 4.3. If A € M,x,(F) and A has a column of zeros, then det(A) = 0.

Proof. By induction on n (in class).
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Theorem 4.5 (adj). If A € Myxn(F) and A has two adjacent rows that are equal, then det(A) = 0.

Proof sketch. By induction. In the inductive step, suppose Row;,(A) = Row;,+1(A) = (r1 79 -+ 7,). Then

(1) For all i # ig,ig+1, A;; has two equal adjacent rows so det(A;;) = 0 by induction.
(2) Aiga = Aiy+1.1, and their determinants appear (in the definition of det A) with the same coefficient
(r1) and opposite sign.

Hence everything is 0 or cancels and det A = 0. 0

Theorem 4.6. det is “linear in each row.” That is, if we fix n, ig, and uy, ..., Ujy—1,Wigt+1,- .-, Uy € F?,
then for all r,s € F" and all a € F,

Uy Uy Uy
det| —r+s —— = det r + det s
Unp Unp, Un

where r, s and r + s were inserted in row ig; and similarly,

Uy U
det ar = a-det T
Uy, Uy,

Proof sketch by example. Consider the first claim when n = 4 and iy = 3. Write

aix Qg a1z Qaiq 11 a2 @13 A4 a11 Q12 a13 Q14
A — A1 Q22 23 QA24 B— Q21 Q22 Q23 A4 O — 21 22 23 Q24

T To T3 T4 ST S9  S3 S84 r1+81 rot+So T3+S3 1448y

g1 Q42 Q43 Q44 Q41 Q42 Q43 Q44 (075 Q42 Q43 Q44
Note that:

(1) For each j = 1,2,4 the inductive hypothesis applies to give det(C};) = det(A;1) + det(Bj1).
(2) 031 = COfA31 = B31-

Putting these facts together, we get
det(C’) = a1 - det(én) — as * det(égl) + (7"1 + 81) . det(égl) — ay4q det(6’41)

= det(A) + det(B).

Theorem 4.7 (adj). If A € M,,xn(F) and A TN B owhere j=1i=x1, then det(B) = det(A).



Proof. Let Row;(A) = r, Row;(A) = s, and Row;(A) = w; for t # 4, j. Assume j =i+ 1. Thus

—r+cs —

A= and B =
s s
so by “linearity in row ¢,”
det(B) = det " tcs — det ) +c-det s

The first determinant on the right side is det(A). The second determinant on the right side is 0 because
the matrix has two equal adjacent rows (using Theorem 4.5(adj) here). U

i SRt

Theorem 4.8 (adj). If A € My, (F) and A "5 B, then det(B) = — det(A).

Proof. This can be deduced from Theorem 4.7(adj) and linearity in rows ¢ and i + 1, as follows.

—_— 5 =7 — —_— =T —

= det —r+(s—1r)—

det(B) = det = det

_ S = —
S

= det (=7) = —det r = —det(A).
s s

Theorem 4.5 (gen). If A has two equal rows (not necessarily adjacent), then det(A) = 0.

Proof. By a sequence of adjacent row switches, we can transform A to a matrix A’ with two equal adjacent
rows. Then det(A) = £ det(A’) = 0 by Theorems 4.8(adj) and 4.5(adj). O

Theorem 4.7 (gen). If A € M,,x,(F) and A fetgely B, then det(B) = det(A).

Proof. Just like the proof of Theorem 4.7(adj), using Theorem 4.5(gen) instead of Theorem 4.5(adj). O

Theorem 4.8 (gen). If A 28 B then det(B) = —det(A).

Proof. Just like the proof of Theorem 4.8(adj), using Theorem 4.7 (gen) instead of Theorem 4.7(adj). O

Corollary 4.9. If A "““5% B then det(B) = c - det(A).

Proof. By linearity of det(—) in row i. O
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Theorem 4.7 (gen). If A € My, ,(F) and A~ =577 B, then det(B) = det(A).

Lecture notes

Corollary 4.8 (gen). If A "= B then det(B) = —det(A).

Corollary 4.9. If A "“5% B then det(B) = c - det(A).
Hence we completely understand the effect of elementary row operations on the value of det(—). Recall
that elementary matrices can be obtained by applying row elementary operations to I,,. Thus:
(1) If E is an elementary matrix of the first kind (R; = R;), then det(E) = —det(I,) = —1.
(2) If E is an elementary matrix of the second kind (R; <— cR;), then det(E) = ¢ - det([,) = c.
(3) If E is an elementary matrix of the third kind (R; < R; + cR;) then det(E) = det([,) = 1.
Note that det(E) # 0 for every elementary matrix. Also note that det(E") = det(E) because E' is an
elementary matrix of the same type as F.

We pause to note that these facts give us an efficient way to calculate the determinant of a matrix:
transform the matrix to upper-triangular form using elementary row operations of types 1 and 3 only.

0 1 3
Example. To find det [ =2 -3 -5 |, do
3 -1 1
0 1 3 —2 -3 =5 -2 -3 -5 —2 -3 =5
A= 2 3 5| %[ o 1 3|2 o 1 3|2 0o 1 3]|=8
3 -1 1 3 -1 1 0o -4 -1 0 0 10

B is upper-triangular, so det(B) = (—2)-1-10 = —20. We swapped rows once, so det(A) = — det(B) = 20.
In general, count the number of times two rows are swapped, and change the sign if the number is odd.
(Back to the general theory.)

Theorem 4.10. If A, E € M,x,(F) with E elementary, then det(EA) = det(F) det(A).

Proof. Let O be the elementary row operation corresponding to E. Then A 9, EA. Theorem 4.7(gen)

and Corollaries 4.8 and 4.9 relate det(EA) to det(A) via a constant factor of —1, ¢, or 1 (depending

on the type of operation). Since this constant factor is equal to det(F) (see remarks above), we get
det(FA) = det(E) det(A). O

Let’s extend this last result. Suppose A, B € M,,«,(F) and
B:ElEgEkA
where E1, ..., E} are elementary matrices. By applying Theorem 4.10 repeatedly, we get

and so det(E1Es - - - ELA)

det(Ey) det(EqFE3 - - - ExA) by Theorem 4.10
det(E) det(Ey) det(Es - - - ERA) by Theorem 4.10

det(Ey) det(Ey) - - - det(Ey) det(A). (%)

I'm going to call this result (%) and draw some consequences from it.



(1) If we set A =1, in (x), we get

(2) Since every invertible matrix can be written as a product of elementary matrices, and the determi-
nant of any elementary matrix is nonzero, this proves that A invertible — det(A) # 0.

(3) Suppose A is not invertible. Then rank(A) < n. A can be transformed by elementary row operations
to some matrix R in RREF. Necessarily R has a row of zeroes. Thus det(R) = 0 by Theorem 4.3.
Furthermore, R can be transformed to A by elementary row operations, so A = E1FEs--- ExR for
some elementary matrices Ey, ..., Ej. It follows from (x) that

det(A) = det(Ey) det(Ey) - - - det(Ey) det(R) =0 since det(R) = 0.
Items (2) and (3) prove:
Theorem 4.11. If A € M,.,(F), then A is invertible iff det(A) # 0.
Now we can prove
Theorem 4.12. For all A, B € M, y,(F), det(AB) = det(A) det(B).

Proof. Case 1: A is invertible. Then A can be written as a product of elementary matrices:
A=FEy---EyF.
Thus
det(AB) = det(Ey---EyE1B)
= det(Ey) - - -det(Es) det(E7) det(B) by (*)
= det(Ey--- E2FEy) det(B) by ()
= det(A)det(B).
Case 2: A is not invertible. Then AB is also not invertible (Feb. 14), so
det(A) det(B) = 0-det(B) = 0 = det(AB)

by Theorem 4.11. O
Corollary 4.13. If A is invertible, then det(A™!) = #(A)'
Proof. By Theorem 4.12, det(A) det(A™!) = det(AA™!) = det([,,) = 1. O

Corollary 4.14. det(A") = det(A).

Proof. We already know this for elementary matrices. Now consider cases.
Case 1: rank(A) < n. Then rank(A") < n as well so det(A) = 0 = det(A") by Theorem 4.11.

Case 2: rank(A) = n. Then we can write A = E1E,--- Ej, with each E; elementary. By Theorem 4.12,
det(A) = det(E)det(Ey)---det(Ey). We also have A" = (Ej)"---(F2)'(E1)", which is a product of
elementary matrices, so again by Theorem 4.12,
det(A") = det((Ey)") - det((Ey)")det((Ey)")
= det(Ey) - --det(Ey) det(E) as det(E") = det(E) for elementary F
det(A). ]
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Welcome back! Recall from way back when:
Corollary 4.14. det(A") = det(A).

This corollary implies that if we have proved a determinant result about rows, we can deduce the same
result for columns. For example:

Corollary 4.15 (“Column version” of Corollary 4.8(gen)). If A “$ B then det(B) = —det(A).

Corollary 4.16 (“Column version” of Theorem 4.6). det(—) is “linear in each column.”

- — g ——
iy — SR
— T3 ——— — Ty —

Suppose A=| __ Ty —— and B=| ___ r— |- Thus B is obtained from A by “cyclically
SR SR

permuting” the first 4 rows. How are det(A) and det(B) related? We can simulate the cyclic permutation
by a sequence of row swaps:

—r — —ry — —ry — —ry —
— Ty —— —r — — g — —ry—
T3 R1SRo T3 RoSR3 1 R3S Ry T4
A= , — — — = B.
— Ty — — Ty — — Ty — — T —
— 5 — — s — — 5 — — s —
Three row-swaps were used, so det(B) = —det(A). In general,

Lemma 4.17. If A € M,,».,(F) and B is obtained from A by cyclically permuting k consecutive rows, then
det(B) = (—1)kLdet(A).

Note: a similar result holds for cyclically permuting k consecutive columns of A (via det(A) = det(A")).

We are now ready to tackle a technically difficult result: the “Lemma before Theorem 4.4 in the text-

book.”
Lemma 4.18. Suppose A € M, (F) and for some 1 <i,j <n, rowi of Aise; =(0,...,0,1,0,...,0).

Then det(A) = (—1)" det(A;;).
Proof. Case 1: j = 1. Then A has the form

a1x Q2 a3 - Qip
G21 Q22 A23 --° (A2p
A= ;
1 0 0 0 — 1

Apl Qp2 Ap3 -+ App



When we calculate det(A) using the recursive definition, the minors det(A;;) will all have a row of zeros

(so will equal 0), except for the minor at row 7. Thus det(A) = (—1)""! det(A;;) in Case 1.
Case 2: 7 > 1. Let B be the matrix obtained from A by cyclically shifting the first j columns. Thus

a1 Q2 -+ Arj-1 Ay o Qip a1; A @12 o Q1i—1 0 Qip
Q21 Q22 -+ dg45-1 Q25 - (QA2p Q25 G21 Q22 -+ dA245-1 - (Q2pn
A= B =
0 0 0 1 0 ’ 1 0 0 0 0
Gp1 Ap2 *°° Apj—1 Anpj - Qpp Qpj Gp1 Ap2 - Apj—1 - Qpp
We have:
(1) det( (—1)7~! det(B) by the “column” version of Lemma 4.17.

A) =
(2) det(B) = (—1)"*"det(Bi1) by the proof of Case 1.
(3) Bi1 = A;; (easily seen).
Hence det(A) = (—1)7~1(—1)"*" det(Bi1) = (—1)"* det(A;;) in Case 2. O
Now we are ready for the biggest theorem.

Theorem 4.19. det(—) can be evaluated by expansion by cofactors on any row, or any column.

That is, if A € M,y (F), then

o Foranyi=1,...,n, det(A) =37 (=1)"ay - det(A;;).  (Expansion on row i)
e Forany j=1,...,n, det(A) =>" (=1)Hq,; - det(ﬁij). (Expansion on column j)

Proof. T'll prove the claim for expansion on a row. Fix ¢ and consider a matrix

A= —_— T, —
—_— rn —_—
Write r, = (CLﬂ, a2, ... ,am) = a;1€1 + a;9€q + -+ + ajney. Then
. n .
det(A) = det | aper+ -+ aimen = Z a;jdet | —e; — by linearity in row ¢
. jzl .
n ~
— Z aij(—1)"* det(A;5) by Lemma 4.18.

7j=1
Look at that! This is the formula for the expansion by cofactors on row 1.
The claim for columns can be obtained from the claim from rows by taking transposes. 0

Theorem 4.19 can make the calculation of some determinants quite easy.
2



2 0 -1 3

3 =2 40 .
Example. Let A = 6 1 30 | By Theorem 4.19, we can calculate det(A) by cofactor expansion

7 2 05

along any row or column. The 4th column conveniently has 2 zeros, so let’s use it. Recalling that the +
pattern in column 4 starts with —, we get

3 =2 4 2 0 -1
det(A) =(=3)det | 6 1 3 | +4(0)(something) — (0)(something) + (5)det | 3 —2 4
7 20 6 1 3

-B =C

To compute det(B), we might note that B has a zero in row 3, so we decide to use cofactor expansion on
the 3rd row:

det(B) = (7)det ( 1 > — (2) det ( o ) + (0)(something)
= 7(—6—4)—(2)(9—24)
= —40.
Similarly, to compute det(C') we might note that C' has a zero in row 1, so we decide to use cofactor
expansion on the 1st row:
-2 4 . 3 =2
det(C) = (2)det L3 )~ (0)(something) + (—1) det 6 1
= 2(-6—-4)+(-1)(3+12)
= —35.

Then
det(A) = (—3)(—40) + (5)(—35) = —55.
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Announcement

e Before reading these notes, read the Tutorial on “Permutations and Determinants”

Definition. Let A € M,,,,(IF). An eigenvector of A is any nonzero vector v € F" satisfying Av € span(v).
The (unique) scalar A € F satisfying Av = Av is the eigenvalue of A corresponding to v.

Definition. Suppose A € M, «,,(F). If A € F is an eigenvalue of A, the set
Ey = {vel": Av=)v}
= {eigenvectors of A corresponding to A} U {0}.

is called the eigenspace of A corresponding to A.

1/2 0 2
Hence v; and vy are eigenvectors of A corresponding to the eigenvalues % and 1. We'll see later that these
are the only eigenvalues of A. Calculations show

E: = {veR?: Av=1v} = {(a,a) : a € R} = span({v1})
B, = {veR?: Av=v} = {(2a,a) : a € R} = span({ws}).

Example. Let A = ( 3/2 -1 ) If v; = (1,1) and vy = (2,1), then La(v1) = v, and La(ve) = va.

[N

0 -1
1 0
Hence if v € R? and v # 0, then Lg(v) & span(v). Thus B has no eigenvectors, and hence no eigenvalues.

Example. Let B = . We saw on Jan. 27 that Lp rotates vectors in R? 90° counter-clockwise.

There is a nice way to characterize the eigenvalues of a matrix. Suppose A € M,,«,(F) and A € F. Then

Jv € F", v # 0, such that Av = \v

Jv € F", v # 0, such that Av — \v =0
Jv € F", v # 0, such that (A — A,,)v =0
N(A—=AL,) #{0}

nullity(A — A\[,,) > 0

rank(A — A,,) <n

det(A — AI,,) = 0.

A is an eigenvalue of A

[ A A

We have proved:
Theorem 5.1. Let A € M,,,,,(F) and A € F. X is an eigenvalue of A iff det(A — \I,,) = 0.

Note also that if A is an eigenvalue of A, then E\ = N(A — AI,). This proves that E) is a subspace of
F™. We also get dim(E)) = nullity(A — AI,) > 0.

If we view A as a variable ranging over IF, then the expression det(A — A[,,) defines a function F — F
(sending A +— det(A — AI,)). This function will turn out to be a polynomial function in A\. To make this



a formal polynomial, we replace A with an indeterminate (formal variable), ¢, and consider the matrix

aijn Qa2 - Ay t 0 - 0 a;;—t  ap e Q1p
o1 Q22 -+ Aoy ot - 0 a1 gy —1t - Qo
Anp1 Ap2 - Ann O O e t an1 %) e Appn — t

Definition. Let A € M,,,,(F). The characteristic polynomial of A is the formal expression det(A—t1,,).
It is denoted pa(t).

(32 -1
Example. If A = ( /2 0 ), then
3/2—-1t —1
pa) = der (VR0 T = -0t - 4
= -3+ = (t-Hi-1).
The roots of pa(t) are 1/2 and 1, which are the eigenvalues of A.

For any A € M, «,(F), the eigenvalues of A are the scalars A € F which make det(A — \I,,) = 0, i.e.,
pa(A) = 0. Hence | the eigenvalues of A are the roots of pa(t) which belong to the scalar field F.

Definition. Given a square matrix A € M, «,(F), the trace of A, denoted tr(A), is the sum of the diagonal
entries of A.

Theorem 5.2. Let A € M, (F). Then pa(t) is a polynomial in F[t] of degree n. Moreover,
(1) The leading coefficient of pa(t) is (—1)".
(2) The coefficient of t"' in pa(t) is (—1)" " 1tr(A).
(3) The constant coefficient is det(A).
That 1is,
pa(t) = (=1)"(t" —tr(A) - t" 1) + - + det(A).

Proof sketch. In the tutorial notes on “Permutations and Determinants,” you learned that the determinant
of a square matrix can be written as the alternating sum of all possible products consisting of one entry
from each row and each column of the matrix. (This is the complete expansion of the determinant.) Thus
the complete expansion of det(A — t1,,) is an alternating sum of products of n entries from A — ¢, one
from each row and each column. Each entry of A — tI,, is a polynomial in F[t] of degree < 1. Hence each
product of n entries is a polynomial in F[t] of degree < n. As p4(t) is an alternating sum of such entries,
pa(t) is also a polynomial in F[t] of degree < n. It remains to prove that the coefficients of t"* and t"~!
and the constant coefficient are as claimed in the theorem.

The only contributions of ¢ to p4(t) come from the diagonal entries of A—tI,,. A product in the complete
expansion either has all the diagonal entries, or at most n — 2 of them. Hence the t" term and the t"~!
term of pa(t) come entirely from

(a1 —t)(aga —t) -+ (apn — 1) = (=) + (=t)" (a1, + - + apn) + (lower degree terms)
(=)™t + (=1)"tr(A) - t"1 + (lower degree terms).
This proves (1) and (2). (3) follows by setting ¢t = 0 in the definition of p(t). O

Corollary. If A € M,x,(F), then A has at most n eigenvalues.

Proof. A polynomial of degree n has at most n roots in any field. O
2



Definition. Suppose A, B € M,,,,,(F). We say that B is similar to A (over F) if there exists an invertible
Q € M,,5,,(F) such that B = Q1 AQ.

“Exercise 12.” If B is similar to A, then pg(t) = pa(t).
Proof. We can write tI, = tQ'1,Q = Q'(tI,)Q. Hence
B —tl, = Q_IAQ - Q_l(t]n)Q = Q_I(A - t]n)Q

So
pe(t) = det(B —tl,) = det(Q (A —tl,)Q))
= det(Q ") det(A — t1,,) det(Q) as det(AB) = det(A) det(B)
= det(A —tI,)det(Q ") det(Q) as multiplication in F is commutative
= det(A —tI,)det(Q'Q)
= pa(t). l
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Definition. Let V' be a vector space over F. A linear transformation 7" : V' — V is called a linear
operator on V.

L(V') denotes the set of all linear operators on V.

Definition. Let V' be a vector space over F and let T € L(V'). An eigenvector of T is any nonzero vector
v € V satisfying T'(v) € span(v). The (unique) scalar A € F satisfying T'(v) = Av is the eigenvalue of T
corresponding to v.

Definition. Suppose T' € L(V'). Given an eigenvalue X\ of T', the set
E, = {veV :T@) =M}
= {eigenvectors of T corresponding to A} U {0}.

is called the eigenspace of T' corresponding to A.

Example. Consider D : C*(R) — C*(R) given by D(f) = f’. Every A € R is an eigenvalue of D, since
D(e*®) = Nel.

For the rest of this term we focus on the case when V' is finite-dimensional. In this case, can we define
the characteristic polynomial of a linear operator T' € L(V)? We could pick an ordered basis « for V,
define A = [T, and take p4(t). But what if we picked a different ordered basis ; would that give us a
different characteristic polynomial?

Lemma 5.3. Suppose V is finite-dimensional and T' € L(V'). Let a and 8 be two ordered bases for V' and
let A=[T], and B = [T)g. Then pa(t) = pp(t).

Proof. Let Q = [Iy]? be the change-of-coordinates matrix from « to 3. By the last Theorem from Feb 14,
A=Q 'BQ.
Thus A is similar to B, so pa(t) = pp(t) by “Exercise 12.” O
This lemma justifies the following definition.

Definition. Let T € L(V) where V is finite-dimensional. The characteristic polynomial of 7" is the
characteristic polynomial of [T, for any ordered basis « for V. We denote the polynomial by pr(t).

If T'e L(V) and V is a vector space over F, then pr(t) € F[t]. We are interested in the eigenvalues of T’
(the roots of pr(t) which belong to F). We can also ask about how pr(t) factors in F[t]. These issues are
related: A is a root iff £ — A is a factor. Both issues depend sensitively on F.

Example. Suppose pa(t) =t + 3 + >+t + 1.
o If F =Q, then pa(t) does not factor. (It is irreducible.) A has no eigenvalues.

o If F =R, then
5+1 5-1
pa(t) = <t2+\/_2+ t+1> <t2—\/_2 t+1>

A again has no eigenvalues.
1



o If F = C, then
pa(t) = (t — ar)(t — az)(t — as)(t — a4)
where ay, = cis(2kn/5) = cos(2kn/5) + isin(2knw/5) € C for k = 1,...,4. A has 4 eigenvalues. In
this case we say that pa(t) splits.
o It F = Z;, then

pat) = (=1 = (t -t -1t -1t - 1).
pa(t) again splits. A has one eigenvalue, of multiplicity 4.

Definition. A polynomial f(t) € F[t] splits over F if there exist scalars ¢, ay, ..., a, € F (not necessarily
distinct) such that

f)=c(t—a)(t—az) - (t —ay).

Definition. Suppose V is finite-dimensional, 7' € L(V'), and A is an eigenvalue of 7. The multiplicity
of A is the maximum value k such that (t — \)* is a factor of pp(t).

Theorem 5.4. Suppose V' is finite-dimensional, T € L(V'), X is an eigenvalue of T, and m is the multi-
plicity of \. Then dim(E,) < m.

Proof. Let d = dim(E)). Let a = (vy,...,v4) be an ordered basis for E\. Extend « to an ordered basis
B=(v1,...,0d, Va1, ...,0,) for V. Let A = [Tg, so pr(t) = pa(t).
Observe that for i =1,...,d,

T(v;) = My (because v; € E))
= 0vy 4+ 0vi—1 + Av; + 0vigq + - - - 0vg + 0vgg1 + -+ - + Ovy,.

Hence
A0 - 0%
0 X - 0
: *
A= oo A _ (Aéd g)
0 0 0

for some matrices of the appropriate dimensions. Thus

B B (A —1)14 B
pr(t) = det(A—tl,) = det ( 0 C—tl .

= det((A—t)1y) - det(C —tl,_q) by A5Q6
(A — )4 det(1y) - det(C — t1,_4) since det(cA) = ¢"det(A) if Aisn xn
= (A=) polt).

This proves that (¢t — A\)¢ divides pr(t). Since m, the multiplicity of ), is by definition the largest value
such that (¢ — A\)™ divides pr(t), we have proved that d < m, i.e., dim(E)) < m. d
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4 01
Example. Let A= | 2 3 2 |, considered as a real matrix (i.e., over R).
1 0 4
4—t 01 PP
pa(t) = det(A—tl3) = det 2 3—-t 2 = (S—t)det( )
1 4t
1 0 4-—-1
= B-1)((d-t)°-1) = B-t)F =8t+15) = —(t—3)*(t—5).

Thus pa(t) splits over R, and has two real eigenvalues A = 3,5 of multiplicities m = 2, 1 respectively. Let’s
find the corresponding eigenspaces, their dimensions, and a basis for each.

A=3

Fs=N(A—-3;)=N

—_— N
o O O

1
2
1

By inspection, rank(A — 3I3) = 1, so dim(F3) = nullity(A — 3I3) = 2. To get a basis for Ej, solve the
system (A — 3I3)x = 0. The augmented matrix for this system is

1 0 10 1 010
2 0 2|0 ~ 00 00 in RREF.
1 010 00 0]0

Writing « = (21, 29, x3) and introducing parameters s,¢ for the non-leading variables x5, x3, we solve the
above system to find

T 0 —1
xo | =s| 1 | +t 0], s telR.
XT3 0 1
Thus a basis for the solution set is {vq, v9} where v; = (0, 1,0), v, = (—1,0,1).
A=5
-1 0 1
1 0 —1

By inspection, rank(A — 513) = 2, so dim(Fs5) = nullity(A — 513) = 1.
(Note that dim(FEs5) automatically equals 1, since 1 < dim(Fs) < (multiplicity of 5) = 1.)

To get a basis for Ej, solve the system (A — 5I3)x = 0. The augmented matrix for this system is

-1 0 110 10 —-11]0
2 =2 2|0 ~ 01 =20 in RREF.
1 0 —-11]0 00 010

By solving, we find that a basis for the solution set is {v3} where vy = (1,2, 1).

In this example, we can see that vs ¢ span(vy,vy), since v; and vy both lie in the plane defined by
x + z = 0 but vy does not. Hence vy, vq,v3 are linearly independent and so f = (v, ve,v3) is an ordered
basis for R?. I will prove on Wednesday that, more generally, whenever we combine bases for different

eigenspaces, the resulting set is linearly independent.
1



Example. Let’s do the same thing for the matrix B =

3

0

0

3—t 1 0

pp(t) = det(B — tI3) = det 0 3—-t 0 )(3—t)2(5—t)—(t—3)2(t—5).
0 0 5—t

The same as pa(t); hence the same eigenvalues, with the same multiplicities. Let’s find the eigenspaces
and their dimensions.

A=3

E;=N(B-3I3) =N

o o O
o O =

0
0
2
) =

By inspection, rank(B — 3/3) = 2, so dim(FEs5) = nullity(B — 3[3) = 1. To get a basis for Ej, solve the
system (B — 31I3)x = 0. A basis for the solution set is {v;} where v; = (1,0,0).

Since 5 has multiplicity 1, we know that dim(Es5) = 1. By inspection, vs = (0,0, 1) is an eigenvector for
5, so {ve} is a basis for Es.

Note that in the second example, the bases for the two eigenspaces, when merged, do NOT form a basis
for R®. But their union is at least linearly independent. As mentioned before, this is always true. As
preparation for this Theorem (which I will prove on Wednesday), we need the following Lemma.

Lemma 5.5. Suppose V' is finite-dimensional, T € L(V'), and Ay, ..., \x are distinct eigenvalues of T. If
x1,..., T are eigenvectors corresponding to Ay, ..., g, then {x1,..., 2} is linearly independent.

Proof. By induction on k. When k& = 1 the claim is obvious. Suppose k > 1 and the claim is true for lower
values. In particular, {x1,...,z;_1} is linearly independent. Now let’s prove that {x1,..., 2z} is linearly
independent. Assume

(%) a1, + oo + -+ + ap_1Tp_1 + apxr = 0.
Apply T to both sides to get

a1 T(z1) + agT(x2) + -+ + ag_1T (k1) + axT(x) =0
which simplifies to
(%) 1A T1 + AoAoXo + -+ + Qg1 Ap_1Tk_1 + ap i = 0.
Subtract Ay times (k) from (xx) to get

a1 (A1 — Ap)xy + ag( Ay — Ag)xe + - -+ + ap—1 (A1 — Ag)xp—1 = 0.

Since {x1,...,zx_1} is linearly independent, we get

a1(N — Xg) = as( Ao — Ag) = - = ap_1(M\p_1 — Ax) = 0.

Since \; # \;, for @ < k, we get

alzagz---:ak_lz().
Thus (%) implies ayzry = 0. Since z;, # 0 (it is an eigenvector), it follows that ay = 0. So we've proved
a; = ag = --- = a, = 0, which proves {x, o, ..., 2z} is linearly independent. O
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Recall from Monday:
Lemma 5.5. Suppose V is finite-dimensional, T € L(V), and Ay, ..., \ are distinct eigenvalues of T. If

x1,..., X are eigenvectors corresponding to A1, ..., \g, then {x1,...,xx} is linearly independent.
Corollary. If V., T Ay, ..., A\, are as in Lemma 5.5 and x; € E, fori=1,... k, then

T+ =0 = 11="=12;,=0.
Proof. The nonzero vectors (if any) among x1, . . . , x; are eigenvectors for distinct eigenvalues, so are linearly
independent by Lemma 5.5, yet they sum to 0. O

Theorem 5.6. Suppose V' is finite-dimensional, T € L(V'), and Ay, ..., \x are distinct eigenvalues of T.
If for each i =1,...,k, B; is a basis for E),, then

(1) BiNB; =@ fori# j, and

(2) B1UByU---U By, is linearly independent.

Proof. (1) is easy: a nonzero vector cannot be an eigenvector for two different eigenvalues.
(2) For each i let d; = dim(E),) and write B; = {v},v3,...,vy }. Then let

B=B U---UBy = {Zji,v%,...,vél,zjf,vg,...,Uﬁa,...,vlf,vg,...,vgk}.
§r1 79,2 By
Assume
(1) ayv] +ayvy + -+ aihvgllb—l— a3vi +asvy + -+ afbvﬁ%—l— -+ ajvl + aos + - +af vf = 0.
Fori=1,... klet z; = E;l;l a;'-v;? and note that z; € E),. Thus our assumption can be summarized as
1+ a2+ -+ 1 =0.
The Corollary then gives 1 = x5 = --- = 2, = 0. Using linear independence of each B;, we get that all
the coefficients in (1) equal 0. O
Definition.

(1) A square matrix is diagonal if every entry not on the diagonal is 0.

(2) Suppose V is finite-dimensional and 7" € L(V). T is diagonalizable if there exists an ordered
basis # for V such that [Tz is a diagonal matrix.

(3) Suppose A € M,,,,(F). A is diagonalizable (over F) if A is similar (over F) to a diagonal matrix
D. ILe., there exists an invertible Q@ € M,,»,,(F) such that Q= 'AQ = D.

Exercise. For any A € M,,.,(F), A is diagonalizable (over ) iff L, is diagonalizable.

How can we tell if an operator (or a matrix) is diagonalizable? The rest of today’s lecture is devoted to
this question. Suppose T € L(V') is diagonalizable. Let 8 = (vq,...,v,) be an ordered basis for V' such
that [T3 is a diagonal matrix, i.e.,

ay 0 -+ 0



This implies that T'(v;) = aq1v1, T(ve) = agva,. .., T'(Vn) = @ppv,. In otherwords, each v; is an eigenvector
of T (and ay; is its corresponding eigenvalue). Conversely, if T has an ordered basis 5 = (v1,...,v,)
consisting of eigenvectors, then it is easy to see that [Tz is a diagonal matrix. This proves

Theorem 5.7. Suppose V' is a finite-dimensional vector space over F and T € L(V'). T is diagonalizable
iff V' has an ordered basis consisting of eigenvectors of T

Here is a more useful theorem:

Theorem 5.8. Suppose V' is finite-dimensional, say dim(V') = n, and T € L(V). Let \i,..., )\, be the
distinct eigenvalues of T and let mq, ..., my be their multiplicities. T is diagonalizable iff

(a) pr(t) splits, i.e., pr(t) = (=1)™(t — A\)™ -+ (t — A\p)™, and

(b) For eachi=1,...,k, dim(E),) =m;.
Proof. (<) Assume that (a) and (b) hold. For each i = 1,...,k let B; be a basis for E) ; thus |B;| = m;
by (b). Let B = ByU---UBy. B is linearly independent by Theorem 5.6(2), and |B| = my+---+m; =n
by Theorem 5.6(1). Hence B is a basis for V' consisting of eigenvectors for 7. Hence T is diagonalizable
by Theorem 5.7.

(=) Assume T is diagonalizable. By Theorem 5.7, T" has a basis B = {vy,...,v,} consisting of eigen-
vectors of T'. Each v; belongs to Ey, U---UE),. Foreach i =1,...,k, let B, = BN E), and n; = |B,|.
Then

(%) ny+---+ng =|B| =n.
For each i let m; be the multiplicity of ;. Hence
(t—= X))t — A)™2 - (E— M)
is a factor of pr(t), which has degree n. So

(%) my+ -+ mg < n.
Finally, for each i = 1,...,k we have
(1) n; < dim(Ey,) < my,

where the first < is due to the fact that B; is linearly independent in E),, while the second < follows from
Theorem 5.4. Combining (), (x*) and () we get n;, = dim(F),) = m; for all i, proving (b), and since
my + - - -+ my = n we must also have (a). O

(The proof also shows that each B; is a basis for Fj,.)
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Recall from Wednesday’s lecture:

Theorem 5.8. Suppose V is finite-dimensional, say dim(V') = n, and T € L(V). Let Ay, ..., \; be the
distinct eigenvalues of T and let myq,...,my be their multiplicities. T is diagonalizable iff

(a) pr(t) splits, i.e., pr(t) = (=1)™(t — A\)™ -+ (t — A\p)™*, and

(b) For eachi=1,... k, dim(E),) = m;.

k,
0
3 € Msy3(R). On March 30 we saw that pa(t) = —(t — 3)*(t — 5) and
0

= N

4
Example. Let A = | 2
1

dim(FEs5) = 2 and dim(E;5) = 1. Hence A is diagonalizable by Theorem 5.8.
A basis for E3 was {vy,ve} where v; = (0,1,0) and ve = (—1,0,1). A basis for F5 was {v3} where
v3 = (1,2,1). Hence by the proof of Theorem 5.7, 8 = (v, v, v3) is an ordered basis for R? and
300
Lids=|0 3 0| =D
0 0 5

To find an invertible matrix @ such that Q' AQ = D, let o be the standard ordered basis for R3. Note
that D = [Lalg = [I]2 - [Lals - [1]5 = ([1]3)7" - A- [I]3, so we can take Q = [I]§, which is simply the matrix
whose columns are vy, vo, v3 expressed in standard form. That is, if

0 —1 1
Q=11 0 2
0 11

then
300
Q'AQ=D=|0 3 0
005

Example. Let B = € Msy3(R). On March 30 we saw that B has the same characteristic

S O W
o O W
EO"OO

polynomial, eigenvalues, and multiplicities as A. But this time dim(F3) = 1. So B is not diagonalizable

by Theorem 5.8.
Here is a useful observation.

Corollary 5.9. Suppose T' € L(V) with dim(V') = n. If T has n distinct eigenvalues, then T is diagonal-
1zable.

Proof. Let Ay, ..., A, be the eigenvalues. Then pr(t) = (=1)"(t — A1) - -+ (t — \n), so pr(t) splits and each
multiplicity equals 1. Then 1 < dim(F),) <1 by Theorem 5.4; so we have equality for all i. 0

0 -1

Example. Let A = ( 10

) € Msy2(R). Is A diagonalizable? What if we consider A € M, 5(C)?



If a matrix A is diagonalizable, it is easy to explicitly compute A* for any k. Here is how.

M O o 0
0 X --- 0
(1) If D is a diagonal matrix, say D = L , then
0 O An
A)F 0 0
Dk _ 0 (M\)F 0
0 0 - (W)

Indeed, for each i, De; = \e;, so D?e; = D(\e;) = Mi(De;) = ()¢, ete.
(2) If A is diagonalizable, then there exists an invertible @ such that Q7' AQ = D where D is diagonal.
We can rewrite this as A = QDQ~!. So

AP = QDY = (QDQ™)(@QDQ™) - (QDQ™)
= QDQ'Q)DQ'Q)D - (Q'Q)DQ!

= QD*Q".
4 0 1 0 -1 1
Example. Let A= | 2 3 2 |. We've seen that A is diagonalizable, andif @ = [ 1 0 2 | then
1 0 4 0 1 1
300
Q'AQ=1|( 0 3 0 | =D.
005

Thus A = QDQ~! and hence A* = QD*Q~! for any k. To compute A* explicitly, we need to know Q'
0

0 -1 1|1 00 1 2|0 1 0 10 2/ 010
(QI3) = 1 02010 }—=(0-11{100}|—=(01-1{-100
0 1 1|0 01 0 1 1[0 0 1 00 2| 101
100l-11 -1 1 00[-11 —1
- | o010[-20 3 |=— 010—%0 % = (L]Q71).
002 10 1 001 30 3
-1 1 -1
Hence Q! = —% 0 % , SO
3 0 3
0 —1 1 30 0 -1 1 -1
AF = QDFQ7! = 1 0 2 0 3 0 —%o%
0 11 0 0 5 5 0 35
0 —-3F »5F -1 1 -1 (38458 0 3(5F -3k
= (3 0o 2.5 —%o % — 5k —3k 3k 5k _3k
0 3k 5 0 3 s(5"=3% 0 (3845



