PMATH 348 WINTER 2021

Fields and Galois Theory

Instructor: Yu-Ru Liu

Lecture Notes

by Justin Li




1.1
1.2

2.1
2.2

3.1
3.2
3.3

4.1
4.2
4.3
4.4

5.1

Ring Theory

Review of ring theory
Eisenstein’s Criterion

Field Extensions

Degree of Extensions

Algebraic and Transcendental Extensions

Splitting Fields

Existence of Splitting Fields
Uniqueness of Splitting Fields
Degrees of Splitting Fields

More Field Theory

Prime Field

Formal Derivatives and Repeated Roots
Finite Fields

Separable Polynomials

The Sylow Theorems

Review of Group Actions

16
18
19

20
21
22
24

26



5.2

7.1
7.2
7.3

8.1
8.2

9.1
9.2

11.1
11.2

The Sylow Theorems
Solvable Group

Automorphism Groups

General Automorphism Groups
Automorphism Groups of Splitting Fields
Fixed Fields

Separable Extensions Normal Extensions
Separable Extensions
Normal Extensions

Galois Correspondence
Galois Extensions
The Fundamental Theorem

Cyclic Extensions

Solvability by Radicals
Radical Extensions
Radical Solutions

27

36
37
38

40
42

46
49

56
57



1.1

Review of ring theory

Definition 1.1.1 — Commutative Ring with 1. A set R equipped with addition (+) and multiplica-
tion (-) such that:

1. R is an abelian group (under 4) with identity 0.
2. Multiplication is commutative and associative. There exists 1 € R, such that Vr € R, 1r =7
3. Forallr,s,t e R, r(s+t)=rs+rt

In the following, we use the word ring to mean a commutative ring with 1.

Definition 1.1.2 — Field.
A field F is a ring in which every a € F\ {0} is a unit. i.e. ab=1 for some b € F

Definition 1.1.3 — Intergral Domain.
A ring R is an integral domain if for a, b € R, ab = 0 implies that a =0 or b =0

m Example 1.1 The set of integers Z is an integral domain. The sets Q, R, C and Z, are all fields. m

Proposition 1.1.1
Every subring of a field is an integral domain.

Definition 1.1.4 — Ideal.
An ideal in a ring R is a subset I containing 0 such that for a,b €l and r € R, a=0b € I and
ra €1
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m Example 1.2 The only ideals of a field F are {0} and F "

Definition 1.1.5 — Principal Ideal Domains (PID).
An integral domain R is a principal ideal domains(PID) if every ideal is generated by one
element.

In the following two examples, we will list common properties of Z and F[x], the set of polynomials
in x over a field F

m Example 1.3 The set of integers Z is an integral domain and the units of Z are {£1}.

Division Algorithm in Z: for a, b € Z, a # 0, we can write b = qa + r where ¢, € Z and 0 < r < |a|.
Using the Division Algorithm in Z, we can prove that an ideal I of 7Z is of the form I — (n) = nZ
Thus Z is a PID. Note that if n > 0, then the generator n in unique.

Consider all fields containing Z. Their intersection (the smallest field containing Z) is the set of
rational numbers

@:{%; a, beZandb#O}

m Example 1.4 Let F be a field. Define
Flz] ={f(z) =ao+ a1z + ... +apz™, a; € F V0 <i<m}

If a,, =1, we say f(x) is monic

If a,, # 0, the degree of f(x) is m, also deg(0) = —

For f(x),g(z) € Flz], deg(fg) = deg(f) + deg(g) (to preserve this degree formula we define deg(0) =
+00)

The set Flz] is an n integral domain and the units of F[z] are F* = F \ {0}

Division Algorithm in Flz]: for f(x), g(z) € Flz], f(z) # 0, we can write g(z) = ¢(z) f(x)+r(z) where
q(z),r(z) € F[z] and deg(r) < deg(f). (to preserve this degree formula we define deg(0) = +00)
Using the Division Algorithm in Flx], we can prove that an ideal I of F[z] is of the form I = (f(z)) =
f(x)F[x]. Thus F[x] is a PID. Note that if f(x) is monic, then the generator f(x) is unique.
Consider all fields containing F[x], their Their intersection (the smallest field containing F[z]) is the
set of rational functions L]

Definition 1.1.6 — Quotient Ring of R modulo I.
The quotient ring of R modulo I, denoted by R/I, contains elements of the form r+1 (r € R).
The addition and multiplication on R/I are defined by

(rm+D)+@re+I)=(r1+re)+R and (ri+1)-(ro+1)=riro+1

m Example 1.5 For n € Z, we have
Z[(n) ={r=r+(n),0 <r <|nf}
For f(z) € F[z], we have

Fla]/(f(2)) = {r(z) = r(z) + {f(2)), deg(r) < deg(f)}
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Theorem 1.1.2 — First Isomorphism Theorem. Let ¢ : R — S be a ring homomorphism. Then
ker(y) is an ideal I. Moreover, there is an isomorphism

R/I — im(p), r+ 1 — ¢(r)

Definition 1.1.7 — Maximal Ideall.
An ideal I in a ring R is maximal if I # R and there is no ideal J with I C J C R

Definition 1.1.8 — Prime Ideal.
An ideal I in a ring R is prime if I # R and ab € [ implies that a € T or b e [

Proposition 1.1.3
Every maximal ideal is prime. Moreover, in PID, every prime ideal is maximal.

m Example 1.6 In Z, (n) is maximal if and only if n is a prime. "

m Example 1.7 In Flz], (f(z)) is maximal if and only if f(x) is irreducible "

Theorem 1.1.4 — Let | be an ideal of aring R and 7 # R. Then
(1) I Tis a maximal ideal if and only if R/I is a field
(2) I Iis a prime ideal if and only if R/I is an integral domain

Eisenstein’s Criterion

In this section, we will apply Gauss’ Lemma (proved in PMATH 347) to prove Eisenstein’s Criterion.
We will need this criterion in Chapter 2

Lemnma 1.2.1 — Gauss’ Lemma. (for Z[x])
Let f(x) € Z[z] with deg(f) > 1. If f(x) is irreducible in Z[z], then it’s irreducible in Q[z]

m Remark 1.1 The converse of the above result is not true. For example, the ploynomial 2z + 8 is
irreducible in Q[z], but 2z + 8 = 2(x + 4) is reducible in Z[z] "

Theorem 1.2.2 — Eisenstein’s Criterion. (for Z[z])
Let f(7) = anTn + apy12™ 1 + ...+ ag € Z[z] with n > 1. Let p € Z be a prime. If p{a,, p | a;
for all 0 <4 < (n — 1) and p? { ao, then f(z) is irreducible in Q[z]

Proof. Consider The map Z[z] — Zy[z] defined by
f(z) — f(z) =apz" + @1zt +...+a (mod p)

where @; € Z, with @; = a; (mod p) for 0 < i < n. Since p{a; for all 0 < i < (n — 1), we have
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f(z) = @,a™ with @, # 0. If f(x) is reducible in Q[z], by Lemma 1.2.1-Gasuss’ Lemma for

Zlz] for Z[z], f(z) = g(z)h(z) with g(z), h(z) € Z[z] and deg(g),deg(h) > 1. It follows that
@pz" = g(x)h(z). Since Z,, is a unique factorization domain, from which we see that g(z) = ba™
and h( ) = cx¥ for some b, ¢ € Zy. In other words, g(z) and h(x) have 0 constant in Z,. Since
the constants of both g(x) and h(z) are divisible by p, this implies that p? | ag, which leads to a
contradiction. Thus f(x) is irreducible in Q[x] [ |

» Example 1.8 The polynomial 227+ 3244622 +12 is irreducible in Q[z], as we can apply Eisenstein’s
Criterion with p = 3 n

Definition 1.2.1 — Primitive. (in ring theory)
A polynomial is primitive if its coefficients are coprime

Fact 1.2.3 f(z) is irreducible in Q[z] <= f(x + 1) is irreducible in Q[x]

m Example 1.9 Let p be a prime and

2mi 20 .. 27
Cp:ep = COS — + 2S1In —
p p

be a p—th root of 1. It’s a root of the p—th cyclotomic polynomial

P —1
Pp(w) = —— R |

Eisenstein’s Criterion does not imply the irreducibility of ®,(z) immediately. However, we can
consider

<I>p(x+1)—($ﬂx)p_1—xp1+<11)>;cp2+<§>x1’3+...+<pf2>x+(pfl) € Za]

Since p is a prime, p{ 1, p | ( ) forall 1 <i < (p—1)and p?¢ ( b 1). Thus by Eisenstein’s
p —

Criterion for Z[z], ®,(x + 1) is irreducible in Q[z]. This implies that ®,(x) is also irreducible in
Qlz]. Since ®,(z) is primitive, so ®,(x) is also irreducible in Z[z] "

m Remark 1.2 The above results can be generalized to unique factorization domains [

Llemma 1.2.4 — Gauss’ Lemma. (for PID)

Let R be a unique factorization domain with the field of fractions F. Let g(x) € R[x] with
deg(g) > 1. If g(x) is irrducible in R[], then it is irreducible in F[x]. Applying the same proof in
Theorem 1.2.1 for Z[z], we can prove the following result.

Theorem 1.2.5 — Eisenstein’s Criterion. (for PID)
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Let R be a unique factorization domain with the field of F' and
f(x) = bpz™ + by12™ ' + ...+ bz + by € Rlz]

with n > 1. Let [ € R be an irreducible element. If [ { by, I | b; for all 0 <i < (n — 1) and 2 { by,
then f(z) is irreducible in Flz].

m Remark 1.3 The above results also can be generalized to unique factorization domains, but the
proof need to be modified. [

Lemma 1.2.6 — Gauss’ Lemma. (for UFD)
Let S be a unique factorization with the field of fractions E. Let h(x) € S[z] with deg(h) > 1. If
h(z) is irreducible in S[z], then it is irreducible in E[z]

Theorem 1.2.7 — Eisenstein’s Criterion. (for UFD) Let S be a unique factorization domain with
the field of fractions E. Let h(z) = cpa™ +cp12™ ' +...+c1x+co € S[w] withn > 1. Let [ € S
be an irreducible element. If [ { ¢, [ | ¢; for all 0 < i < (n — 1) and I { cg, then h(z) is irreucible
in Ex]

Proof. We prove by contradiction. If h(z0 is reducible in E[z]|, by Gauss’ Lemma for UFD,
there exists s(z),r(z) € S[z] of degree > 1 such that h(z) = s(x)r(s). We write

s(@)=ao+ a1z + ... +amz™ and  r(z) =byg+ bz + ...+ bpa®
where 1 < m, k < n. Since h(z) = s(x)r(x), we have
co = apbo c1 = agby + a1by co = agby + a1b1 + a2b27

Consider the constant term. Since [ | ¢p, we have [ | agbg. Since [ is irreducible, I | ag or [ | by.
WLOG we suppose [ | ag. Since 12 | co we have [ | by. If we consider the coefficient of z, since [ | ¢1,
we have [ | (agby +a1bo). Since l | ag, we have [ | a1bg. Since [ | by so we have [ | a; By repeating the
above argument, the conditions on coefficient of h(x) imply that [ | a; for all 0 <7 < (m — 1) and
l | @m. Consider the reduction h(x) = 3(z)7(x) € S/(l)[z]. By the assunmption on the coefficients
of h, h(x) = ¢,2". However, since 3(z) = @,z™ and [ { by,5(x)7(z) contain the term a,,byz™,
which leads to a contradiction, Som h(z) is irreducible in E[x] which completes the proof. [
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Degree of Extensions

Definition 2.1.1 — Field Extension.
If E is a field containing another field F', we say E is a field extension of F, denoted by E/F

Note: the notation E/F is not used to denote a quotient ring as the field E has no ideals
other than {0} and E.

If E/F is a field extension, we can view E as a vector space over F:
(1) Addition: for ej,es € E, e1 + e2 = e1 + e2 (addition of E)
(2) Scalar multiplication: For ¢ € F, e € E, ce := ce (multiplication of E)

Definition 2.1.2 — Degree Finite Extension.

The dimension of E over F' (viewed as a vector space) is called the degree of F over F', denoted
by [E: F]. If [E: F] < oo, we say E/F is a finite extension. Otherwise, F/F is an infinite
extension

m Example 2.1 [C: R] = 2 is a finite extension since C 2 R + Ri where i2 = —1 "

m Example 2.2 Let F be a field. Let
Flz] ={f(z) = ap + a1z + ... + apz™ where ag,ai,...a, € F and n € NU{0}}

and

Fo) = {120 f@).9t0) € Fla) and g(a) 2 0}

Then [F(z) : F] is oo since {1, r, 2%, .. } are linearly independent over F L]
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Theorem 2.1.1
If E/K and K/F are finite field extensions, then E/F is a finite field extension and

[E:F)=[FE: K] [K:F]
In particular, if K is an intermediate field of a finite extension E/F, then [K : F| | [E : F]

Proof: Suppose [E : K| = m and [K : F] = n. Let {a1,a2,...,an} be a basis of E/K
and {b1,b2,...,b,} be a basis of K/F. It suffices to show {a;b;, 1 <i<m, 1 <j <n} is a basis
of E/F

Claim: Every element of E is a linear combination of {a;b;} over F
For e € E, we have

m
e= Z k;a; where k; € K
i=1

For k; € K, we have
n
k; = Zcijbj where Cij € K
Jj=1

Thus we have

m n
e = E E cz-jbjai

i=1 j=1

Claim: The set {a;b;, 1 <i <m, 1 <j < n} is linearly independent over F
Suppose that

m n
Z Z cijbjai =0 where Cij € F
i=1 j—1

n
Since Zcijbj € K and {a1,as,...,an} is independent over K, we have
Jj=1

n
Z Cz'jbj =0
J=1

Since {b1, b2, ...,b,} is independent over F, so we have ¢;; = 0.
Thus {a;bj, 1 <i<m, 1 <j<n}isa basis of E/F and we have
[E:F|=[F:K]-[K:F]

which completes the proof of the theorem.
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2.2 Algebraic and Transcendental Extensions

Definition 2.2.1 — Algebraic Over & Transcendental Over.
Let E/F be a field extension and @ € E. We say « is algebraic over F if there exists
f(z) € Flz] \ {0} with f(a) = 0. Otherwise, « is transcendental over F.

= Example 2.3 ¢ € Q, V2, V/2 4+ /=2 are algebraic over Q (See Assignment 2), but e and 7 are
transcendental over Q [

m Remark 2.1 Let E/F be a field extension and o € E. Let F|a] denote the smallest subring of £
containning F' and « and F(«) is the smallest subfield of E containnig F' and «. For «, 5 € E, we
define F[a, 8] and F(«, 3) similarly. "

Definition 2.2.2 — Simple Extension.
If E = F(«) for some a € E, we say F is a simple extension of F'.

Note: The degree of simple extension F'(«)/F is either infinite of finite. In this section, we
will show that this depends on if « in transcendental of algebraic

Definition 2.2.3 — F-homomorphism.
Let R and R; be two rings which contain a field F. A ring homomorphism 3 : R — R; is said
anF-homomorphism if ¢|p = 1p

Theorem 2.2.1
Let E/F be a field extension and a € E. If « is transcendental over F', then

Fla) =2 F[z] and F(a)= F(z)
In particular, Fa] # F(«)

Proof: Let ¢ : F(z) — F(«) be unique F-homomorphism defined by ¥ (x) = «. Thus, for
f(x),9(z) € Flz], g(x) # 0, we have

Y(f/g9) = f(a)/g9(a) € F(a)

Note that since « is transcendental, we have g(«) # 0. Thus the map is well-defined. Since F[z] is
a field and ker is an ideal of F'(x), we have ker(¢)) = F(z) or 0. Thus ¢ = 0 or % is injective.
Since ¥(z) = a # 0, v is injective. Also, since F(x) is a field, Im ¢ contains a field generated
by F amd «a. i.e. F(a) C Imt. Thus Imy = F(«) and 9 is surjective. It follows that 1 is an
isomorphism and we have

Fla) =2 Flz] and F(a)Z F(x)

as desired.
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Theorem 2.2.2
Let E/F be a field extension and a € E. If « is algebraic over F, there exists a unique monic
irreducible polynomial p(z) € F[z] such that there exists a F-isomorphism

b Fla]/(p(x)) = Flo]  with  ¢(z) = a

From which we conclude F[a] = F(«)

Proof: We first remark that since « is algebraic, the map in the proof of Theorem 2.2.1
f/g— f(a)/g(a) is not defined. Consider the unique F-homorphism v : F[x] — F(«) defined by
Y(z) = . Thus for f(x) € Flx], we have (f) = f(a) € F[a]. Since F[z] is a ring, Im contains
a ring generated by F' and «. i.e. Fla] C Imm, thus Im = Fla]. Let

I'=kery ={f(z) € Fla], f(e) =0}

Since « is algebraic, I # {0}. We have F[z]/I = Im 1, a subring of a field F'(«). Thus Flz|/I/ is
an integral domain and I is prime ideal. It follows that I = (p(x)) where p(x) is irreducible. If we
assume that p(z) is monic, then it’s unique. It follows that

Since p(z) is irreducible, F[z]|/(p(x)) is a field. Thus Fa] is a field. Also, since the F(«) is the
smallest field containing F[a], we have

which completes the proof.

Definition 2.2.4 — Minimal Polynomiail.
If «v is algebraic over a field F', the unique monic irreducible polynomial p(z) in Theorem 2.2.2
is called the minimial polynomial of « over F. From the proof of Theorem 2.2.2, we see

that If f(z) € F[z] with f(«) = 0, then p(x) | f(x)

As a direct consequence of Theorem 2.2.1 and 2.2.2. we have

Theorem 2.2.3

Let E/F be a field extension and a € E

(1) « is transcendental over F' <= [F(«a) : F] = o
(2) a is algebraic over F' <= [F(a): F] < o0

Moreover, if p(z) is the minimal polynomial of « over F, we have [F(«) : F| = deg(p) and
{1, a,a?, ... ,adeg(p)*l} is a basis of F(a))/F (This is why we call [F(«) : F] the degree of field

extension)

Proof: It suffices to show (=) for (1) and (2) (since (<=) of (1) is (=) of (2) and vice
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versa.)

For (1) =, by Theorem 2.2.1 if « is transcendental over F', F(a) = F(x). In F(z), the
elements {1,z,?%, ...} are linearly independent over F, thus we have [F(a) : F] = oo

For (2) =, by Theorem 2.2.2, if « is algebraic over F', F(«a) = F[z]/(p(z)) with = — a.
Note that

Flz]/{p(x)) = {r(z) € Fla] : deg(r) < deg(p)}
Thus {1,z,22,...,298®) =11 forms a basis of F[z]/(p(z)). It follows that [F(a) : F] = deg(p) and
{1, a,a’, ... ,adeg(p)_l} is a basis of F'(«) over F

27
m Example 2.4 Let p be prime and {, = e » , a p-th root of 1. We have seen in Chapter 1 that (,
is a root of the p-th cyclotomic polynomial ®,(z), which is irreducible. Thus, by Theorem 2.2.3
®,,(x) is the minimal polynomial of (, over Q and

Q&) :Ql=p-1
The field Q((p) is called the p-th cyclotomic extension of Q n

Theorem 2.2.4
Let E/F be a field extension. If [E : F] < oo, there exists aj,as,...,a, € E such that

FCF(y)CFlaj,a0) ... C Flan,ag,...,a,) =FE
Thus, to understand a finite extension, it suffices to understand a finite simple extension.

Proof: We will prove this theorem by induction on [E : F]]. If [E : F] = 1, s0 E = F
we are done. Suppose [E : F] > 1 and the statement holds for all field extension E/F with
[E:F]<[E:F]. Let oy € E/F, by Theorem 2.1.1

[E:F|=[E:F(a)][F(a1): F]

Since [F' : F(a1)] > 1, we have [E : F(a1)] < [E : F]. By induction hypothesis, there exist
a9, a3, ...,0, such that

F(a1) € Flag)(ae) € F(a1)(ag,a3) € ... € Flag)(ag,...,an) = E=F(a1,ag,...,0p)
Therefore, we have

FCF(w) € Flag,a2) ... C F(ag,00,...,a4) = F

which completes the proof.

Definition 2.2.5 — Algebraic Extension & Transcendental Extension.
A field extension E/F is algebraic if every a € F is a algebraic over F. Otherwise, it is
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I transcendental

Theorem 2.2.5
Let E/F be a field extension, if [E : F] < oo, then E/F is algebraic

Proof: Suppose [E : F] = n. for a € E, the elements {1,a,a2,...,a"} are not linearly
independent over F'. Thus there exist ¢; € F' (0 < i < n) is not 0, such that

n
g ca'=0
i=1

n
Thus « is a root of the polynomial Z ciz’ € F[z], thus it is algebraic over F
=0

Theorem 2.2.6
Let E/F be a field extension, we define

L={a€E: [F(a): F] <o}
Then L is an intermediate field of E/F

Proof: If o, € L, we need to show a + 3, af, %(6 # 0) are in L. By definition of L, we
have [F(a) : F|] < oo and [F(B) : F] < oo. Consider the field F(«, ). Since the minimal
polynomial of « over F(f3) divides the minimal polynomial of o over F' (the minimal polynomial
of a over F, say p(x) € F[z], it is also a polynomial over F(3) i.e. p(z) € F(B)[z] such that
p(a) = 0), we have [F(a, ) : F(8)] < [F(«) : F]. Combining this with Theorem 2.1.1 we have

[F(a,B) : F] = [F(a, 8) : F(B)] - [F(8) : F] < [F() : F] - [F(B) : F] < o0
Since a + f € F(«, 3), it follows that
[F(a+8): F] < [F(a,B) : F] < oo

ie. (o« + ) € L. Similarly, we can show a — f,a/3, %(ﬂ # 0) are in L. Therefore, L is a field,
which completes the proof.
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Definition 2.2.6 — Algebraic Closure.
Let E/F be a field extension, the set

L={a€cFE: [Fla): F] <}

is called algebraic closure of F in

Definition 2.2.7 — Algebraically Closed.
A field F is algebraically closed if for any algebraic extension E/F, we have E = F

= Example 2.5
By fundamental theorem of algebra, C is algebraically closed. Moreover, C is the algebraic closure of
R in C and we have [C: R] =2 "

n Excimple 2.6
Let Q be the algebraic closure of Q in C. i.e.

Q= {a e C: ais algebraic over Q}

Since (p € Q, we have B
[Q: Q] = [Q(¢): Q=p—1

As p — oo, we have [Q : Q] — oo. We have seen in Theorem 2.2.5 that if E/F is finite, then E/F
is algebraic. However, this example shows that the converse of Theorem 2.2.5 is false. [
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Existence of Splitting Fields

Definition 3.1.1
Let E/F be a field extension. We say f(z) € F[z] splits over E if E contains all roots for f(x).
i.e. f(x) is a product of linear factors in E|x]

Definition 3.1.2 B
Let E/F be a field extension, f(z) € F[z], and F C E C E. If

(1) f(x) splits over E;
(2) There is no proper subfield of E such that f(z) splits over;
then we say E is a splitting field of f(z) € Flz] in E

To show the existence of a splitting field of f(z), we first find a field extension of F' which contains
at least one root of f(x)

Theorem 3.1.1
Let p(xz) € Flz] be irreducible. The quotient ring F[z]/(p(x)) is a field containing F' and a
root of f(x)

Proof: Since p(z) is irreducible the ideal I = (p(x)) is maximal. Thus E = F[z]/I is a field. We
consider the map
v F—F, a—a+l

Since F is a field and ¢ # 0, so ¢ is injective. Thus, by identifying F' with ¢(F'), F' can be viewed
as a subfield of E.
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Claim: Let « =z + [ € E, then « is a root of p(z). Write

p(x) =ag+ a1z + - + apz”
=(a+ )+ (@ +DNx+--+ (ay+1)x"
€ E[z]

Then we have

pla) = (ao +I) + (a1 + Na+ - + (an + )"

=@+ +@a+D+I)+ -+ (an+H(z+I)"

=(ap+ax+- - +apx")+1 since (z4+ 1) =2'+Tfor 0<i<n
p(x) +1
0+1
1

Thus, we have o = x + I € E is a root of p(z).

Theorem 3.1.2 — Kronecker Theorem.
Let f(x) € F[z], there exist a field E containing F' such that f(x) splits over E

Proof: We prove this theorem by induction on deg(f). If deg(f) = 1, we let £ = F and
we are done. Suppose deg(f) > 1 and the statement holds for all g(x) with deg(g) < deg(f) (g9(z)
is not necessarily in F[z] ). Write f(x) = p(x)h(z), where p(x), h(z) € F[z]| and p(zx) is irreducible.
By Theorem 3.1.1, there exists a field K such that K containing a root of p(z), say a. Then we
have

p@) = (@ —a)gl@) and  f(@) = (2 - a)h(x)q()

where ¢(z) € K[z]. Since deg(hq) < deg(f), by induction, there exist a field F containing K over
which h(z)q(x) splits. It follows that f(z) splits over E.

Theorem 3.1.3
Every f(z) € F[x] has a splitting field, which is a finite extension of F

Proof: For f(z) € F[z], by Theorem 3.1.2 there exists a field extension E/F over which
f(z) splits. We say ai,aq,.....,a, are roots of f(z) in E. Consider F(ay,ag,....., ) This is
the smallest subfield of E containing all roots of f(x). So f(x) does not split over any proper
subfield of it. Thus F(aq, @, ....., ) is the splitting field of f(x) in E. In addition, since a; are
all algebraic, so F'(a1, g, .....,ap)/F' is finite.
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Uniqueness of Splitting Fields

We have seen from Theorem 3.1.3 that for a fixed field extension E/F', a splitting field of f(x) € F[z]
in E is of the form F(aq,aq, .....,a,) where «; are roots of f(x) in E. Thus, it’s unique within E
Question: If we change E/F to a different field extension, say Fj/F, what’s the relation between

the splitting field of f(x) in E and the one in E;?

Definition 3.2.1 Let ¢ : R — R; be a ring homomorphism, and ® : R[x] — R;[z] be the unique
ring homomorphism satisfying ® |g= ¢ and ®(x) = x. In this case, we say ® extends ¢. More
generally, if RC S, Ry C S; and ®: S — S is a ring homomorphism with ® |gp= ¢, we say
extends ¢.

Theorem 3.2.1

Let ¢ : F — F; be an isomorphism of fields and f(z) € F[z]. Let ® : F|x] — Fi[x] be unique ring
isomorphism which extends ¢. Let fi(x) = ®(f(x)) and E/F and E;/F; be splitting fields of f(x)
and fi(x) respectively. Then there exists an isomorphism ¢ : E — Fj which extends ¢.

Proof: We prove this theorem by induction on [E : F]. If [E : F| =1, then f(z) is a product of
linear factors in F[z], and so fi(z) € Fi[z]. Thus, we have E = F and E; = F;. Take ¢ = ¢ and
we are done.

Now suppose [E : F] > 1 and the statement is true for all field extensions E/F with [E : F] <
[E : F]. Let p(x) € Fx] be an irreducible factor of f(z) with deg(p) > 2 and let pi(z) = ®(p(x))
(such p(x) exists as if all irreducible factors of f(x) are degree 1. Then [E : F| =1) Let a € E and
a1 € Eq beroots of p(x) and p; (z) respectively. From Theorem 2.2.2, we have an F'—isomorphism

F(a) = Flz]/(p(z))  a—z+(p(z))
Similarly, there is an Fj—isomorphism
Fi(o) = Filz]/(pi(z)) o1z + (pi())

Consider the isomorphism & : F[x] — Fj[z] which extends ¢. Since p;(x) = ®(p(x)), there exists
a field isomorphism

® : Fla]/(p(z)) = Filz]/(p1(2)) @+ (p(x)) = =+ (p1(2))
which extends ¢. It follows that there exists a field isomorphism
q~5:F(a)—>F1(a1) a— ay

which extends ¢. Note that since deg(p) > 2, [E : F(a)] < [E : F]. Since E (resp Ej) is the
splitting field of f(x) € F(a)[z] (resp fi(x) € Fi(aq)[z]) over F(«) (resp Fi(aq)) By induction,
there exists v : F — Fq which extends ¢. Thus, ¥ also extends ¢.
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Corollary 3.2.2
Any two splitting fields of f(x) € F|x] over F' are F—isomorphic. Then, we can now say "the"
splitting field of f(x) over F.

Proof: Let ¢ : FF — F be the identity map and apply Theorem 3.2.1

3.3 Degrees of Splitting Fields

Theorem 3.3.1
Let F be a field and f(z) € F[z] with deg(f) =n > 1. If E/F is the splitting field of f(z), then
[E: F]|n!

Proof: We prove this theorem by induction on deg(f). If deg(f) = 1, choose E = F and
we have [E : F] | 1!. Suppose we have deg(f) > 1 and the statement holds for all g(x) with
deg(g) < deg(f) (g(x) is not necessarily in F[z]), there are two cases:

Case 1: If f(z) € F[z] is irreducible and o € E is a root of f(x), by Theorem 2.2.2

Fla) = Flal/(f(z)) and  [F(a): F] =deg(f) =n

Write f(z) = (z — a)g(z) € F(a)[z] with g(z) € F(a)[z]. Since E is the splitting field of g(z) over
F(a) and deg(g) = n— 1. By induction, [E : F(a)] | (n—1)!. Since [E : F| = [E : F(o)][F(a) : F],
it follows that [E : F] | nl.

Case 2: If f(x) is not irreducible, write f(z) = g(x)h(z) with g(x),h(x) € F[z], deg(g) = m,
deg(h) = k. m+k =nand 1 < m,k <n. Let K be the splitting field of g(z) over K and
deg(g) = m. By induction, [K : F] | m!. Since F is the splitting field of h(x) over K and
deg(h) = k, by induction [E : K| | k!, thus we have [E : F] | m!k!, which is a factor of n! (since
nl/mlk! = () € Z)

n
m




4.1

Prime Field

Definition 4.1.1 — Prime Field.
The prime field of a field F' is the intersection of all subfields of F'

Theorem 4.1.1
If F' is a field, then its prime field is isomorphic to either Q or Z, for some prime p

Proof: Let Fj be a subfield of F', we consider the ring map
X:Z—F n—n-1 whereleF; CF

Let I = ker X be the kernel of X, since Z/I = Im X (by the first isomorphism theorem), a subring
of F1, it is an integral domain. Thus, I is a prime ideal. Now, we have two cases:
(1) If I = (0), then Z C F1, since F} is a field, then

Q =Frac(Z) C Fy
(2) If I = (p), by the first isomorphism theorem we have
Zp=17Z/(p) =ImX C F;

this completes our proof.
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4.2 Formal Derivatives and Repeated Roots

Definition 4.2.1 — Formal Derivative.
If F is a field, the monomials {1, x, x>, } form an F-basis of F[z|. Define the linear operator
D: Flz] = F[z] by D(1) = 0 and D(2%) = iz"~! (i € N). Thus, for

f(x) =ao+ a1z + asx + ..... +apz", a;€F

we have
D(f)(z) = a1 + 2a9x + ..... + na,z" !

Note that

(1) D(f +g) = D(f) + D(g)

(2) Leibniz Rule: D(fg) = D(f)-g+ f - D(g)

We call D(f) = f’ for the formal derivative of f.

Theorem 4.2.1

Let F be a field and f(z) € F[x]

(1) If ch(F) = 0, then f’(z) = 0 if and only if f(x) = ¢ for some ¢ € F

(2) If ch(F) = p, then f'(z) = 0 if and only if f(x) = g(aP) for some g(z) € F|x]

Proof (1): < is clear.
= For f(x) = ap + a1z +asz? +..... +anz™, f'(z) = a1 + 2022 + .... + na,z™ ! = 0 implies that
ia; = 0for 1 <i < n. Since ch(F) =0, i # 0, thus a; = 0 for all ¢ > 1. Then we have f(z) = ap € F

Proof (2): <= We write g(x) = by + b1z + ....... + by a™, then
f(z) = g(zP) = by + byaP + boz®? + ...... + b aP™

Then
f'(x) = pbyaP~t 4 2pboa®? 1 + ... + pmby,zP™ 1

Since ch(F) = p, we have f'(x) =0
= For f(x) = ap + a1z + azx?® + ..... +anz™, f'(x) = a1 + 2a27 + .... + na,z" ! = 0 implies that
ia; =0 for 1 < i < n. Since ch(F) = p, ia; = 0 implies that a; = 0 unless p | 7, then

f(@) = aop + apaP + agyr® + ... + apmpr"™ = g(aP)

where g(x) = ag + apz + agpz? + ... + ampz™ € Flz].

Definition 4.2.2 — Repeated Root.
Let E/F be a field extension and f(x) € F|x], we say o € E is a repeated root of f(z) if and
only if f(x) = (z — a)?g(z) for some g(r) € E[z]

Theorem 4.2.2
Let E/F be a field extension, f(z) € Flz] and a € E. Then « is a repeated root of f(x) if and
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only if (z — «) divides both f and f’ ie. (z — «) | ged(f, f')
Proof: = Suppose f(z) = (z — a)?g(x), then

fl(@) =2(z — a)g(2) + (z — a)*¢'(z) = (z — @) - (29(2) + (z — @)g'(2))

Then (x — «) divides both f and f’

<—: Suppose that (z — a) divides both f and f’. Write f(z) = (x — «)h(z) where h(x) € E|x],
then

f'(x) = h(z) + (z — a)k'(z)
Since f(a) = 0 we have h(a) = 0. Then (z — a) is a factor of h(z) and f(z) = (z — a)?g(x) for
some g(z) € E[x]

Corollary 4.2.3
Let F be a field and f(x) € F[z], then f(z) has no repeated root in any extension of F' if and only

if ged(f, /') = 1

Proof: Note that ged(f, f/) # 1 if and only if (x — «) | ged(f, f') for a in some extensions
of F. By Theorem 4.2.2 the result follows.

m Remark 4.1 We notice that the condition of repeated roots depends on the extensions of F' while
the ged condition involves only F ]

Finite Fields

Given a field F', let F* = F'\ {0} be the multiplicative group of nonzero elements of F’

Proposition 4.3.1
Since F'is a finite field, by Theorem 4.1.1, its prime field is Z,. Since F' is a finite dimensional
vector space over Zy,, we have F' = 7, X Zj, X ..... X Zp (n summands), then [F| = p"

Theorem 4.3.2
Let F be a field and G be a finite subgroup of F*, Then G is a cyclic group. In particular, if F' is
a finite field, then F* is a cyclic group

Proof: WLOG we can assume that G # {1}. Since G is a finite abelian group, G =
Z)miZ X Z/noZ X ... X Z/n.Z where ny > 1 and n; | nj for 1 <1i < j <r. Since n.(Z/mZ x
Z/noZ X ...... X Z/nyZ) = 0, it follows that every u € G is a root of "™ — 1 € Fz]. Since the
polynomial has at most n, distinct roots in F', we have r =1 and G = Z/n,Z




4.3 Finite Fields 23

By taking u to be a generator of the multiplicative group of F'*, we have

Corollary 4.3.3
If F is a finite field, then F' is a simple extension of Z,. i.e. F' = Z,(u) for some u € F

Theorem 4.3.4

1. F is a finite field with |F| = p™ if and only if F is a splitting field of 27" — z over Z,

2. Let F be a finite field with |F'| = p”, let m € N with m | n. Then F' contains a unique subfield
K with |K| =p™

Proof (1) : = If |F| = p", then |F*| = p" — 1. Then every u € F* satisfies u?" = 1
and it’s a root of z (2" ! —1) = 2" — x € Zy[x], Since 0 € F is also a root of " — =, the
polynomial 2" — x has p™ distinct roots in F. i.e. it splits over F. Then F is a splitting field of
xP" — x over Ly,

<= Suppose that F is a splitting field of f(z) = 2P" — x over Z,. Since ch(F) = p, we have
f'(x) = —1. Since ged(f, f') = 1, by Corollary 4.2.3 f(x) has p™ distinct roots in F. Let E be
the set of all roots of f(z) in F and ¢ : F — F be given by u + uP". For u € F, u is a root of
f(z) if division, the set E is a subfield of F' of order p”, which contains Z,, (since all u € Z, satisfy
uP = p and thus uP" = u). Since F is a splitting field, it’s generated over Z, by the roots of f(z).
i.e. the elements of F, then F = Z,(E) = FE

Proof (2): We recall that
2% —1=(2%-1)(@® 4+ 2% 22 4 4+27+1)

Then if n = mk, we have

3 7

¥ —x = :v(:cpn_l -1) = m(ajpm_l —1)g(z) = (2P

—x)g(z)
for some g(z) € Z,[x]. Since (.CL'pn - l‘) splits over F', so does (wpm - w) Let
K:{uerupm—uzo}

Then |K| = p’ since roots of (xpm - :U) are distinct. Also, by (1) K is a field. Note that if KCF
be any subfield with ’IN( ’ = p", then K C K. It follows that K = K , then we see that a subfield
K of F with |K| = p™ is unique.

A direct consequence of Theorem 4.3.4 and Corollary 3.2.2, we have

Corollary 4.3.5 — E.H. Moore.
Let p be a prime and n € N, then any two finite field of order p™ are isomophic. We denote such a
field by Fpn
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Separable Polynomials

Definition 4.4.1

Let F be a field and f(z) € F[z] \ {0}. If f(z) is irreducible, we say f(z) is separable over F' if
it has no repeated root in any extension of F. In general we say f(x) is separable over F' if each
irreducible factor of f(z) is separable over F.

m Example 4.1 f(z) = (z — 4)? is separable in Q[z] .

m Example 4.2 Consider the polynomial f(x) = 2" —a € F[z] with n > 2

We recall Corollary 4.2.3 which states that if ged(f, f’) = 1, then f(x) has no repeated root in any
extension of F'. i.e. f(x) is separable.

Note that if a = 0, the only irreducible factor of f(x) is x. Since ged(z,2’) =1, f(x) is separable.

Now we assume a # 0, note that f/'(z) = nz"~!. Thus, the only irreducible factor of f'(z) is ,

provided that n # 0
(1) If ch(F') = 0, since x 1 f(z), we have ged(f, f') = 1, then f(z) is separable.

(2) If ch(F) = p and ged(n,p) = 1, since = { f(x), then ged(f, f/) = 1. Hence f(x) is separa-
ble.

(3) If ch(F) = p, consider f(xz) = 2P — a, since f'(x) = pzP~! = 0, we have ged(f, f) = 1.
However, it’s still possible that all irreducible factors I(x) of f(x) has property that ged(l,1") = 1. To
decide if f(x) is separable, we need to find its irreducible factors first. Define

FP={b’:be F}
which is a subfield of F'.
(3.1) If a € FP, say a = bP for some b € F, then
f(z) =2 =P = (x — b)P € Flz]

which is irreducible. Since each irreducible factor of f(z) is linear it’s separable. Thus, f(x) is
separable.

(3.2) Suppose a ¢ FP

Claim: f(z) = 2P — a is irreducible in F[z].

Write aP — a = g(z)h(x) where g(z), h(x) € F|x] are monic polynomials. Let E/F be an extension
where 2P — a has a root. We say 8 € E (f? —a =0). Note that a = P ¢ FP, § ¢ F. We have

P a=a? = (o )
Thus, g(z) = (x — B)" and h(z) = (z — 8)* for some r,s € NU {0} and r + s = p. Write
g(x) =" —rBa 1 ..

then 73 € F. Since B ¢ F, as an element of F, we have r = 0 (if » # 0, then 7~! € F and
r~lrB3 = B € F, a contradiction). Then, as an integer, we have r = 0 or = p. It follows that either
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g(z) =1or h(x) =1 in Flx]. Then f(x) is irreducible.
Since f(z) is irreducible and f(x) = (x — )P € E[x], it’s not separable. In this case, since all roots
of f(x) are the same, we say f(x) is purely inseparable. "

Definition 4.4.2 — Perfect.
A field F is perfect if every (irreducible) polynomial r(z) € F|x] is separable over F'

Theorem 4.4.1

Let F' be a field.

(1) If ch(F') = 0, then F is perfect.

(2) If ch(F') = p and FP = F, then F is perfect.

Proof: Let r(z) € F|[z] be irreducible, then

1, ifr#0

d(r, ) =
) {7“, if ' = 0

Suppose that 7(z) is not separable, then by Corollary 4.2.3, ged(r, ') # 1 so that r'(z) =0
For (1): If ch(F) = 0, from Theorem 4.2.1 (1), /() = 0 implies that r(z) = ¢ € F, a
contradiction since deg(r) > 1. Then r(x) is separable and F' is perfect

For (2): If ch(F) = p, from Theorem 4.2.1 (2), r/(z) = 0 implies that

r(z) = ag + a12P + agx® + ........ + amz™, a; € F

Since F = FP, we can write a; = b with b; € F, then

a contradiction since r(z) is irreducible, then r(x) is separable and F' is perfect.

m Remark 4.2 Let ch(F) = p and FP # F (e.g.

=F ( )) If we take @ € F'\ FP, then the
polynomial zP — a is purely inseparable. Then if ch( ) =

F is perfect if and only if FP =F =

Corollary 4.4.2
Every finite field is perfect

Proof: Every finite field F' = Fyn is the splitting field of 2?" — z over F, for some prime p
and n € N, then for any a € F' we have

n n—1\P
a=aP :<ap )

Since a”" ' € F and F = F?, then by Theorem 4.4.1 (2), F is perfect.
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Review of Group Actions

Definition 5.1.1
An action of a group G on a set S is a function G x S — S, (g,x) — gz such that for all z € §
and g1, g2 € G we have

ex=z and (g192)x = g1(g27)

where e is the identity element of the group G. If G acts on S for x € S, we denote by G - x the

orbit of x. i.e.
G-x={gr:9€G}

Also, we denote by G, the stabilizer of z i.e.
Gy ={9€G:gx=uzx}

which is a subgroup of G. We have |G - z| = |G : G|

m Example 5.1
Let G be a group acting on itself by conjugation i.e. (g,2) +~ gxg~!. Then for x € G

Calz) =G, ={g€q: grgl = z}
is the centralizer of x. Let Z(G) be the center of G i.e.
Z(G) = {g €G:grg ' =x forall z G}

Note that for x € G, we have |G - z| = 1 if and only if x € Z(G). Thus, we have the following class
equations of G:

Gl =12(G)| + Y |G : Calay)]

=1
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where z; € G\ Z(G), the orbits G - z; = {g:c,-g_1 1g € G} are distinct conjugacy classes of G and
|G - zi| = |G : Cg(z;)| > 1 for each i "

Lemma 5.1.1
Given a prime p, let G be a group of order p™ which acts on a finite set S. Let

So={zx € S:gx=xa for all g€ G}

Then we have |S| = |Sp| (mod p)

Proof: For z € S, |G-z| = 1 if and only if z € Sp. Thus S can be written as a disjoint

union.
S=5UG- -z1U... UG-z,

with |G - x;| > 1 for all 4, thus
|S| = 1S0| + |G - z1| + ... + |G - T

Since |G - z;| > 1 and |G - ;| = |G : G4,| divides |G| = p", we have p | |G - x;| for all 7. It follows
that |S| = |So| (mod p)

Theorem 5.1.2 — Cauchy.
Let p be a prime and G and finite group. If p | |G|, then G contains an element of order p

Proof: (by J.Mckay) Define
S ={(a1,a2,.....,ap) :a; € G and ajaz....ap = e}

Since a, is uniquely determined by ay, ....,a,_1, if |G| = n we have |S| = nP~L. Since p | n we have
|S| =0 (mod p). Let the group Z, act on S by cyclic permutation. i.e. for k € Z,

k(ai,....,ap) = (ag+1, Gkt2, -, Ok)

One can verify that this action is well-defined (ex). Also (a1, as,..ap) € Sp if and only if a1 = ap =
.... = ap. Clearly, (e, e,e,....,e) € Sp and hence |Sy| > 1. By LEmma 5.1.1 we have |Sp| = |S| =0
(mod p). Since |Sp| > 1 and |Sp| = 0 (mod p), we have |Sp| > p. Thus there exists a # e such that
(a,a,a.....,a) € Sy, which implies that a? = e. Since p is a prime, the order of a is p

5.2 The Sylow Theorems

Definition 5.2.1 — p-group.
Let p be a prime. A group in which every element has order of a non-negative power of p is called

a p-group

As a direct corollary of Theorem 5.1.2 we have
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Corollary 5.2.1
A finite group G is a p-group if and only if |G| is a power of p

Lemma 5.2.2
The center Z(G) of a non-trivial finite p-group G contains more than one element.

Proof: Since G is a p-group, by Corollary 5.2.1 |G| is a power of p. We recall the class
equation of

Gl =1Z(G)| + ) _ |G : Ca(xs)

i=1
where |G : Cg(z;)| > 1. Since |G| is a power of p, |G : Ca(z;)| | |G| and |G : Ca(x;)| > 1, we see
that p | |G : Cq(x;)|. It follows that p | |Z(G)|. Since |Z(G)| > 1, Z(G) has at least p elements.

We recall that if H is a subgroup of G, then
Ng(H)={9€eG:gHg ' =H}

is the normalizer of H in G. In particular, we have H < Ng(H)

Lemma 5.2.3
If H is a p-subgroup of a finite group G, then |[Ng(H) : H| = |G : H| (mod p).

Proof: Let S be a set of all left cosets of H in G and let H acts on S by left multiplication. Then
|S| = |G : H|. For xz € G, we have

tHeSy <= haxH=zH forall he H
<~ gz 'haH=H forall he H

<= 2 'Hz = H this holds since the above equality holds for all h € H
< z€ Ng(H)

Thus |Sp| is the number of cosets zH with x € Ng(H), and since |Sy| = |[Ng(H) : H|. By LEmma
5.1.1°
[N (H) : H| = |Sol

S| = |G : H| (mod p)

Corollary 5.2.4
Let H be a p-subgroup of a finite group G. If p | |G : H|, then p | |[Ng(H) : H| and Ng(H) # H

Proof: Since p | |G : H|, by Lemma 5.2.3 we have

INc(H): H =|G:H|=0 (mod p)

Since p | [Ng(H) : H| and |Ng(H) : H| > 1, we have |[Nq(H) : H| > p, thus Nq(H) # H
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We recall Cauchy’s theorem states that if p | |G|, then |G| contains an element « of order
p. Thus |(a)| = p. The following First Sylow Theorem can be viewed as a generalizations
of Cauchy’s Theorem

Theorem 5.2.5 — First Sylow Theorem.

Let G be a group of order p"m,where p is a prime, n > 1 and ged(p,m) = 1. Then G contains a
subgroup of order p’ for all 1 < i < n. Moreover, every subgroup of G of order p’ (i < n) is normal
in some subgroup of order p**!

Proof: We prove this theorem by induction. For ¢ = 1, since p | |G|, by Theorem 5.1.2
G contains an element a of order p. Suppose that the statement holds for some 1 < i < n, we
say H is a subgroup of G order p’. Then p | |G : H|. We have seen in the proof of Corollary
5.2.4 that p | [Ng(H) : H| and |[Ng(H) : H| > p. Then by Theorem 5.1.2 Ng(H)/H contains a
subgroup of order p. Such a group is the form H;/H where H; is a subgroup of Ng(H) containing
H. Since H <t Ng(H), we have H < Hy. Finally, |Hy| = |H| - |H,/H| =p' - p = p'*!

Definition 5.2.2 — Sylow p-subgroup.
A subgroup P of group G is called a Sylow p-subgroup of G if P is a maximal p-group of G.
ie. If PC H C G with H is a p-group, then P = H

As a direct consequence of Theorem 5.2.5 we have

Corollary 5.2.6
Let G be a group of order p™m, where p is a prime, n > 1 and ged(p,m) = 1. Let H be a
p-subgroup of G

(1) H is a Sylow p-subgroup if and only if |H| = p”
(2) Every conjugate of a Sylow p-subgroup is a Sylow p-subgroup.
(3) If there is only one Sylow p-subgroup P, then P <G

Theorem 5.2.7 — Second Sylow Theorem.
If H is a p-subgroup of a finite group G, and P is any Sylow p-subgroup of G, then there exists
g € G such that H C gPg~'. In particularm any two Sylow p-subgroup of G are conjugate.

Proof: Let S be the set of all left cosets of P in GG, and let H act on S be left multiplica-
tion. By Lemma 5.1.1 we have |Sy| = |S| = |G : P| (mod p). Since p 1 |G : P|, we have |Sy| # 0.
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Then there exists x P € Sy for some z € G. Note that

P € 5y hxP = xP for all he H
z 'haP =P for all he H
r 'HxCP

H C rPz !

rree

If H is Sylow p-subgroup, then |H| = |P| = |$Paj_1 , then H = 2Px~!

Theorem 5.2.8 — Third Sylow Theorem.
If G is a finite group and p is a prime with p | |G|, then the number of Sylow p-subgroup of G
divides G and is of the form kp + 1 for some k € NU {0}

Proof: By Theorem 5.2.7, the number of Sylow p-subgroup of G is the number of conju-
gates of any one of them, say P. This number is |G : Ng(P)|, which is a divisor of |G|. Let S be
the set of all Sylow p-subgroup of G and let P act on S by conjugation. Then @ € Sy if and only
if zQx~! = Q for all z € P. The latter condition holds if and only if P C Ng(Q). Both P and @Q
are Sylow p-subgroup of G' and hence of Ng(@). Thus by Corollary 5.2.6, they are conjugate in
N¢g(Q). Since Q < Ng(Q), this can only occur if @ = P. Thus, Sy = {P} and by Lemma 5.1.1
|S| = |So| =1 (mod p). Thus |S| = kp+ 1 for some £k € NU {0}

m Remark 5.1 Suppose that G is a group with |G| = p"m and ged(p,m) = 1. Let n, be the number
of Sylow p-subgroup of G. By the Theorem 5.2.8, we see that n, | p"m and n, =1 (mod p). Since
ptnp, we have n, | m "

m Example 5.2 Claim: Every group of order 15 is cyclic.

Let G be a group of order 15 = 3-5. Let n, be the number of Sylow p-subgroup of G. By the
Theorem 5.2.8, we have n3 | 5 and n3 = 1 (mod 3). Thus ug = 1. Similarly, we have ns | 3 and
ns = 1 (mod 5). Thus ns = 1. It follows that there is only one Sylow 3-subgroup and 5-subgroup in
G, say P3 and P; respectively. Thus P3 << G and P; << G. Consider |P3 N Ps|, which divides 3 and 5,
thus |Ps N Ps| = 1. Also, |P3Ps| = 15 = |G|. It follows that

G=Pyx Ps=7/(3) x Z){5) = Z/(15)

m Example 5.3 Claim: There are two isomorphism classes of groups of order 21

Let G be a group of order 21 = 3-7. Let n, be the number of Sylow p-subgroup of G. By Theorem
5.2.8, we have ng | 7 and ng =1 (mod 3). Then ng =1 or 7. Also we have n7 | 3 and ny = 1 (mod
7. Thus ny = 1, it follows that G has a unique Sylow 7-subgroup, say Pr. Note that P; << G and
P; is cyclic, P; = (x) with 7 = 1. Let H be a Sylow 3-subgroup, since |H| = 3, H is cyclic and
H = (y) with > = 1. Since P; <t G, we have yxy~!' = 2 for 0 <i < 6. It follows that

z=Pry 3 = yaly 2 = yl,izyfl —
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Since zi° = z and 27 = 1, we have i3 — 1 =0 (mod p) Since 0 < i < 6, we have i = 1,2,4
(1) If i = 1, then yxy~! = x i.e. yz = 2y, then G is an abelian group and G = Z(21)

(2) If i = 2, then yaxy ! = 22, then G = {xiyj 0<i<6,0<5<2 yry = a:z}

(3) If i = 4, then yry~! = z*. Note that

1 16 2

Q:yx4y_ =2 =2

yiry~

Note that y? is also a generator of H. Thus by replacing y by y?, we get back to case (2). It follows
that there are two isomorphism classes of groups of order 21. [



Definition 6.0.1 — Solvable Group.
A group G is solvable if there exists a tower

G=GyDG1 DGy GCy.c. DGy = {1}

with Gj+1 < G and G;/Gj41 abelian for all 0 <i < (m — 1)

m Remark 6.1 G, is not necessarily a normal subgroup of GG. However, if G;41 is a normal subgroup
of G, we get G;+1 < G; for free. n

m Example 6.1 Consider a symmetric group Sy. Let A4 be the alternating subgroup of S; and
V = 7Z/(2) x Z/(2) the Klein 4 group. Note that A4 and V' are normal subgroup of Sy. We have

S4 DA DV D{l}
Since Sy/Ay = 7Z/(2) and Ay/V = Z(3), Sy is solvable. "
Before we consider properties of solvable groups, we recall the theorems from Pmath 347

Theorem (Second Isomorphism Theorem) If H and N are subgroup of G with N < G, then
H/HNN = NH/N. (If either H or N is normal subgroup of G, then NH = HN and it’s a subgroup
of G)

Theorem (Third Isomorphism Theorem) If H and N are normal subgroup of a group G
s.t. N C H, then H/N is a normal subgroup of G/N and (G/N)/(H/N) = G/H
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Theorem 6.0.1
Let G be a solvable group

(1) If H is a subgroup of G, then H is solvable.
(2) Let N be a normal subgroup of G. Then the quotient group G/N is solvable.

Proof: Since G is a solvable group, there exists a tower
G=Gy2G; 2G2 2 Gs...... 2Gn,={1}

with G411 < G; and G;/Gj41 abelian for all 0 <i < (m — 1)

For (1): Define H; = H N G}, since G;11 < G;, we have a tower

H=Hy2Hy 2 Hy 2 Hs..... 2 Hp, = {1}

with H; 1 <1 H;. Note that both H; and G;;1 are subgroup of G; and H;11 = HNG;41 = H;NG;41.

Applying the second isomorphism theorem to G;, we have
Hi/Hit1 = Hi/(H; N Git1) = HiGi11/Giv1 € Gi/Gita
Since G;/G;41 is abelian, so is H;/H;y1, it follows that H is solvable.
For (2): Consider the towers:
G =GoN 2 G1N D GaN D G3N...... ODGnwN =N

and
G/N = GoN/N D> G1N/N 2 GoN/N 2 GsN/N...... 2 Gn,N/N ={1}

Since G411 < G; and N <1 G, we have
Gi+1N < G;N  which implies that G;;1N/N <1G;N/N
By third isomorphism theorem, we have
(GiN/N)/(Gi41N/N) = GiN/Gita N
By the second isomorphism theorem, we have

GiN/GH_lN = Gz/(Gz N Gi+1N)

Consider the natural quotient map G; — G;/(G; N G;4+1N) which is surjective. Since G;y; C
(Gi N Gj+1N), it induces a surjective map G;/G;+1 — G;/(G; N Gi31N) (Universal Property
of Groups: Let G,G’ be groups and let f : G — G’ be a group homomorphism. If N < G
satisfies N C ker(f), then there exists a unique map f : G/N — G’ st. f = fonm where
7 : G — G/N is the natural quotient map.) Since G;/Gi41 is abelian, so is G;/(G; N Git1N. Thus

(GiN/N)/(Gi+1N/N) is abelian. It follows that G/N is solvable.
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The following theorem goes in the opposite direction from Theorem 6.0.1

Theorem 6.0.2
Let N be a normal subfroup of group G. If both N and G/N are solvable, then G is solvable. In
particular, a direct product of any finitely many solvable groups is solvable.

Proof: Since N is solvable, we have a tower
N =Ny D Ny D Ny D Ns...... DN, ={1}

with V; 11 << N; and N;/N; 1 abelian. For a subgroup H C G with N C H, we denote by H = H/N.
Since G/N is solvable, we have a tower

G/N=G=Gy2G12G22Gs..... 2 G, = {1}

with Gi41 < G; and G;/G;4+1 abelian. Let Suby(G) denote the subgroups of G' which contains N.
Consider the map
o : Suby(G) = Sub(G/N), Hw— H/N

for all i = 0,1,2,.....,7. Define G; = 071 (G;). Since N < G and G,y < G;, we have
Git1 <Gy
Moreover, by third isomorphism theorem we have
Gi/Giy1 2 Gi/Gipr
It follows that we have the tower

G =GyD G DGy D Gs...... OG- =N=NygDN; DNy D Ns...... O N, ={1}

with Gj+1 < Gy, Nit1 < N; and G; /G411, N;/Ni+1 are all abelian. Thus, G is solvable.

m Example 6.2 S, contains subgroup isomorphic to S3 and S5. Since Sy is solvable, by Theorem
6.0.1 S3 and Sy are solvable. [

Definition 6.0.2 — Simple Group.
A group G is simple if it is not trivial and has no normal subgroups except {1} and G.

m Example 6.3 One can show that the alternating group As is simple. Since As D {1} is the only
tower and As/{1} is not ableian. Ay is not solvable. Thus by Theorem 6.0.1, S5 is also not solvable.
Moreover, since for all .S, with n > 5, it contains a subgroup isomorphic to S5 which is not solvable.
By Theorem 6.0.1 S,, are not solvable for n > 5. L]
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Corollary 6.0.3
Let G be a finite solvable group. Then there exists a tower

G=Gy2DG1 DG DGs...... 2Gn={1}
with Gj+1 < G; and G;/Gj4+1 a cyclic group.

Proof: If G is solvable, there exists a tower
G=Gy2 G 2G2 2 Gs...... O Gn=A{1}

with G;41 < G; and G;/Gji41 abelian for 0 < i < (n — 1). Consider A = G;/G;+1 a finite abelian
group. We have
A= Ckl X Ck2 XK oooo XK Ckr

where C}, is a cyclic group of order k. Since each G;/Gj4+1 can be rewritten as a product of cyclic
groups, the result follows.

m Remark 6.2 In the above proof, given a finite cyclic group C, by Chinese Remainder Theorem,
we have

O =~ Z/(p?) % Z/<p52> X oeeeanns X Z/(p?r>

where p; are distinct primes. Alsom for a cyclic group whose order is prime powerm say Z/(p®), we
have a tower of subgroups

ZIp") 22/ ") 22/ (p"?).... 2/ (p) 2 {1}

so we can further require the quotient G;/G;+1 in the above corollary to the cyclic group of prime
order. [
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General Automorphism Groups

Definition 7.1.1 — F-automorphism.
Let E//F be a field extension, if ¢ is an automorphism of E, i.e. ¢ : E — E is an isomorphism
and ¢ |p= 1p, we say v is an F-automorphism of E. By maps composition, the set

{¢Y : E— E | ¢ is an F-automorphism}

is a group. We call it automorphism group of E/F and denote by Autp(FE)

Lemma 7.1.1
Let E/F be field extensions, f(z) € Flz]| and ¢ € Autp(E). If & € E a root of f(x), then ¢(«) is
also a root of f(x).

Proof: We write f(x) = ag + a1 + agx? + .... + anaz™ € F[z], we have

F(¥(a)) = a0 + a19p(a) + a2p()® + ..o. + antp(e)"
=9 (a0) +¥(ar)t(e) + ¥(a2)(@)® + ... + Y(an)y(@)"
=Y(ag + a1 + asa® + ... + apa™)
=1¢(0) =0 since « is a root

Thus ¥ («) is a root of f(z)
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Lemma 7.1.2
Let E = F(aq, g, ...,ap) be a field extension of F. For ¢1,v9 € Autp(E), if 11 (a;) = ¥(«;) for
all a; (1 <i<mn), then ¢; = 1y

Proof: Note that for o € F, « is of the form

flag, ag, .y )
glag, g, ...y )
where f(a1, g, ..., ), g(a1, a2, .....,an) € Flx1,....., Ty], then the lemma follows

Corollary 7.1.3
If E/F is a finite extension, then Autp(E) is a finite group

Proof: Since E/F is a finite extension, by Theorem 2.2.4 we have E = F(aj, a9, ...,ap)
where «; (1 < i < n) are algebraic over F. For ¢ € Autp(F), by Lemma 7.1.1 ¢(«;) for
(1 < i< n)is aroot of the minimal polynomial of c;. Thus it has only finitely many choices. By
Lemma 7.1.2 since ¢ € Autp(E) is completely determined by (), there are only finitely many
choices for 1. Thus Autp(FE) is finite.

m Remark 7.1 The converse if the above Corollary is FALSE. For example, R/Q is an finite extension,
but Autg(R) = 1. Indeed, we will show in Assignment 7 that Aut(R) = {1} as ¢ € Aut(R) with
(1) =1 will imply that ¢ |p= 1g "

Automorphism Groups of Splitting Fields

Definition 7.2.1
Let F be a field and f(x) € F[z]. The automorphism group of f(z) over F is defined to be
group Autp(E) where E is the splitting field of f(x) over F

We recall Theorem 3.2.1: Let ¢ : F — F; be an isomorphism of fields and f(z) € Fl[z].
Let @ : Flx] — Fi[z] be the unique ring isomorphism which extends ¢ and maps x to z. Let
fi(x) = ®(f(z)) and E/F and E;/F; be splitting fields of f(z) and f;(z) respectively. Then there
exists an isomorphism ¢ : F — E; which extends ¢.

In Assignment 3, we prove that the number of such ¢’s is < [F : F] and equality holds if and
only if f(x) is separable over F'. As a direct consequence of this result, we have

Theorem 7.2.1
Let E/F be the splitting field of a non-zero polynomial f(z) = F[x], we have |Autp(E)| < [E : F]
and equality holds if and only if f(z) is separable.




38 Chapter 7. Automorphism Groups

Theorem 7.2.2
If f(x) € Flx] has n distinct roots in the splitting field E, then Autp(E) is isomorphic to a
subgroup of the symmetric group S,,. In particular, |Autp(E)| divides n!

Proof: Let X = {a1,ag, ....., a,} be distinct roots of f(z) in E. By Lemma 7.1.1if ¢ € Autp(FE),
then (X ) = X. Let ¢ |x be the restriction of ¢ in X and Sx the permutation group of X. The
map

Autp(E) = Sx =2 Sp, v |x

is a group homomorphism. Moreover, by Lemma 7.1.2 it is injective. Thusm Autp(F) is
isomorphic to a subgroup of .S,

= Example 7.1 Let f(z) = 23 — 2 € Q[z] and E/Q the splitting field of f(z). Thus E = Q(v/2,(3)
and [E : F] = 6. Since ch(Q) =0, f(z) is separable. By Theorem 7.2.1

|Autg(E)| = |E : F| =6

Also, since f(z) has 3 distinct roots in E, by Theorem 7.2.2, Autg(E) is a subgroup of S3. Since
the only subgroup of S3 which is of order 6 is S3, we have

Ath(E) =~ S

m Example 7.2 Let F be a field with ch(F) = p, FP # F and f(x) = 2P — a with a € F'\ FP. Let
E/F be the splitting field of f(z). We have seen in Section 4.4 that f(x) = (z — )P for some
B € E\F. Then E = F(B). Since 8 can only map to 8, Autp(FE) is trivial. Note that

|Autp(E)| =1 while |E:F|=p

We have |Autp(FE)| # |E : F|. Notice that f(x) is not separable "

7.3 Fixed Fields

Definition 7.3.1 — Fixed Field.
Let E/F be a field extension and ¢ € Autp(FE). Define

EY={a€cE:y(a)=a}

which is a subfield of E containing F. We call E¥ be the fixed field of 1.
If G C Autp(F), the fixed field of G is defined by

ES= () EY={ac E:y(a)=a for all ¢ € G}
PelG
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Theorem 7.3.1
Let f(x) € F[z] be a separable polynomial and E/F its splitting field. If G = Autr(F), then
EC=F

Proof: Set S = EY. Since F C L, we have Auty(F) C Autr(E). On the other hand, if
¥ € Autp(F), by the definition of L, we have ¥ (a) = a. This implies that ¢ € Autr(E). Then

Autp(E) = Autp(E)

Note that since f(x) is separable over F' splits over E, f(x) is also separable over L and has E as
its splitting field over L. Then by Theorem 7.2.1 we have

|Autp(E)| = |E: F| and |Autp(E)|=|E: L]

It follows that [E : F| = [E : L], since [E : F| = [E : L|[L : F], we have [L : F] = 1. then L = F.
e, EGS=F
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8. Separable Extensions Normal Extensions

8.1 Separable Extensions

Definition 8.1.1 Let E/F be an algebraic field extension. For a € E, let p(z) € F[z]| be the
minimal polynomial of a. We say « is separable over F' if p(z) is separable. If for all a € F, «
is separable, we say E/F is separable

m Example 8.1 If ch(F) = 0, by Theorem 4.4.1, F is perfect and every polynomial f(z) € F[z] is
separable. Thus, if ch(F') = 0, any algebraic extension E/F is separable. n

Theorem 8.1.1
Let E/F be the splitting field of f(x) € F[z]. If f(z) is separable, then E/F is separable.

Proof: Let a € E and p(z) € F[z]| be the minimal polynomial of a. Let {a = a1, g, ..., ap, } be
all of the distinct roots of p(z) in E. Define

p(z) = (z—o1)(x — az).....(z — ay)

Claim: p(z) € F[z]
Let G = Autp(FE) and 1 € G. Since 1 is an automorphism, 1(a;) # ¥(a;) for i # j. By Lemma
7.1.1, ¢ permutes a1, aa, ....,ap. Thus by extending ¢ : E — E to ¢ : Elx] — E[z], we have

P(p(@)) = (z = ()@ = P(a2))......(z = Plan)) = (r — a1)(z — ag).....(z — an)

It follows that p(x) € E¥[z]. Since ¢ € G is arbitrary, p(x) € EY[x]. Since E/F is the splitting
field of the separable polynomial f(z), by Theorem 7.3.1 p(z) € E[x]. Then the Claim holds.
Then we have p(z) € F[z] with p(«) = 0. Since p(x) is the minimal polynomial of « over F, we
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have p(x) | p(x). Also, since ai,as, ..., oy, are all distinct roots of p(x), we have p(z) | p(x). Since
both p(z) and p(x) are monic, we have p(x) = p(x). It follows that p(x) is separable.

Corollary 8.1.2
Let E/F be a finite extension and F = F(a1,ag,...,a,). If each «; is separable over F for
(1 <i<mn), then E/F is separable

Proof: Let p;(z) € F[z] be the minimal polynomial of «; for (1 < ¢ < n). Let f(z) =
p1(x)p2(x)....pn(z). Since each p;(z) is separable, so is f(x). Let L be the splitting field of f(x)
over F'. By Theorem 8. 1.1, L/F is separable, Since E = F(a1, a2, ....,ay,) is subfield of L, F is
also separable.

Corollary 8.1.3
Let E/F be an algebraic extension and L the set of all « € E which are separable over F'. Then L
is an intermediate field.

Proof: Let o, € F, then o + 8, aff and a/f (8 # 0) € F(«a,5). By Corollary 8.1.2,
F(a, B) is separable and hence it is contained in L. Then o + 3, a8 and /8 (5 #0) € L

We have seen in Theorem 2.2.4 that finite extension is a composition of simple extensions

Definition 8.1.2 — Primitive Element.
If E = F(v) is a simple extension, we say v is a primitive element of E/F

Theorem 8.1.4 — Primitive Element Theorem.
If E/F is a finite separable extension, then £ = F(v) for some v € E. In particular, if ch(F') = 0,
then any finite extension E/F is a simple extension.

Proof: We have seen in Corollary 4.3.3 that a finite extension of a finite field is always
simple. Then WLOG, we assume that F' is an infinite field. Since £ = F(aq, o, ..., ay,) for some
a1, Qa, ..., a, € E| if suffices to consider the case when F = F(a, ) and the general case can be
done by induction. Let F = F(«a, §) with o, 8 ¢ F.

Claim: There exists A € F such that v = a+ 8 and 8 € F(v)

If the claim holds, then & =y — A8 € F() and we have F(«,3) C F(v). Also, since v = o + Af,
F(7) C F(a, B). Then E = F(a, #) = F(3).

Proof of the Claim: Let a(x) and b(x) be the minimal polynomial of & and  over F' respectively.
Since 8 ¢ F, deg(b) > 1, then there exists a root 3 of b(x) such that 3 # 3. Choose A € F such
that ~

a—«

A

for all roots @& of a(x) and all roots 3 of b(z) with 3 # A in some splitting field of a(z)b(x) over F.
The choice is possible since there are infinite many elements in F', by only finitely many choices of

A #
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& and B, Let v = a + AB. Consider
h(z) = a(y — Ax) € F(7)[z]

then
h(B) = a(y — AB) = a(a) =0

However, for any B # [, since
v—AB:a—F)\(ﬁ—B);&d by the choices of A

We have } 3

h(B) = a(y = AB) # 0
Then, h(z) and b(x) have 8 as a common root, but no other common root in any extension of
F(v). Let by(x) be the minimal polynomial of 5 over F(v), then b;(x) divides both h(z) and b(x).
Since E/F is separable and b(z) € F[x] is irreducible, b(x) has distinct roots, so does by (z). The
roots of by(z) are also common to h(z) and b(z). Since h(x) and b(z) has only 5 as a common
root, by = x — . Since by (z) € F(v)[z], we obtain 8 € F(v) as required.

8.2 Normal Extensions

Definition 8.2.1 Normal Extension

Let E/F be an algebraic extension. We say E/F is a normal extension if for any irreducible
polynomial p(z) € Flz], either p(z) has no root in E or p(x) has all roots in E. In other words, if
p(z) has a root in E, p(z) splits over E

m Example 8.2 Let a € R satisfy a* = 5. Since the roots of 2% — 5 are +a, +ai and Q(«) is real,
Q(a)/Q is normal, let g = (14 i)«
Claim: Q(3)/Q is also not normal
Note that

8% =2ia® B*=—4a*=-20
Since 43, +if3 all satisfy 2* = —20, to show Q(3) is not normal, it suffices to show i ¢ Q(3). Since
the minimal polynomial of 8 over Q is p(x) = z* + 20, we have [Q(3) : Q] = 4. Also, the roots
of p(z) are £8 and 4i3. Since the minimal polynomial of « is z* — 5, we have [Q(a) : Q] = 4.
Note that if o € Q(8), since [Q(«) : Q] = 4 = [Q(B) : Q], it implies that Q(«) = Q(p), which is
impossible since 8 = a + ia ¢ Q(«). Then, a ¢ Q(B) and it implies that i ¢ Q(8) (if i € Q(B), then
a=p/(141) € Q(f), a contradiction.) It follows that the factorization of p(x) over Q(3) is

(x = B)(x + B)(a* + %)
Since p(x) does not split over Q(3), Q(8)/Q is not normal. n

Theorem 8.2.1
A finite extension E/F is normal if and only if it is the splitting field of some f(z) € F|[z]
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Proof: = Suppose that E/F is normal, write E = F(ai,ag,.....,ay). Let pi(z) € F[z] be
the minimal polynomial of «; for 1 < ¢ < n. We now define

f(@) = p1(@)p2(2)....pn(2)

Since E/F' is normal, each p;(z) splits over E. Let a; = a; 1, ®i2,...., 4, for 1 <i < n be the
roots of p;(x) in E. Then

= F(al,lal,Za 000y O[]_7r1,04271, a2,25 00009 an,la 00009 an,rn)

which is the splitting field of f(z) over F'

<=: Let E/F be the splitting field of f(x) € F[z]. Let p(x) € F[z] be irreducible and has
aroot o € E. Let K/FE be the splitting field of p(z) over E. We write

p(z) =clx — a1)(z — ag)...(x — )
where 0 £c € F. a=a; € E, ag, a3, ....,an € K = E(aq, g, ...., o). Since

F(a) = Fla]/(p(z))

1

F(Oég)
WE have the F-isomorphism
0:F(a) = Flaz) 6(a() = ao

Note that p(x) € Flz] C F(«a)[z] and p(x) € F(a2)[z]. Then we can view K as the splitting field
of p(x) over F(«) and F'(aw) respectively. Then, by Theorem 3.2.1, there exists an isomorphism

VK - K

which extends 6. In particular, ¢ € Autp(K). (see the picture below)

Since ¢ € Autp(K), ¢ permutes the roots of f(z). Since F is generated over F' by the roots of
f(z). By Lemma 7.1.1, we have ¢(E) = E. It follows that for a € E, as = ¢(«) € E. Similarly,
we can prove that a; € E for 3 <i <n. Then K = E and p(z) splits over E. It follows that E/F
is normal.

K -

iso extending €

E
F(n)% (cx2) B(a) = g
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m Example 8.3 Claim: Every quadratic extension is normal.
Let E/F be a field extension with [E : F] = 2. For a € E/F, we have E = F(a). Let p(z) = x?+az+b
be the minimal polynomial of a over F. If § is another root of p(z), then

p(a) = (z —a)(z = ) = 2° + (a+ Pz + af
Then = —a—a (8 =0b/a) too is the other root of p(x) and 5 € E. Hence, E/F is normal. "

m Example 8.4 The extension Q(+/2)/Q is not normal since the irreducible polynomial p(x) = z* — 2
has a root in Q(+/2) but p(x) does not split over Q(+/2). Note that the extension Q(+v/2)/Q is made
up of two quadratic extensions. Q(v/2)/Q(v/2) and Q(+/2)/Q, which are normal. Then, if E/K and

K /F are normal extensions, the extension E/F is not always normal. L]

Proposition 8.2.2
If E/F is a normal extension and K an intermediate field, then E/F is normal

Proof: Let p(x) € Klz| be irreducible and has a root a € E. Let f(x) € F[z] C K|[z] be
the minimal polynomial of o over F. Then p(x) | f(x). Since E/F is normal, f(x) splits over E,
so does p(x). Then E/K is normal extension.

m Remark 8.1 In Proposition 8.2.2, K/F is not always normal. For example, let F = Q, K = Q({lﬁ)
and F = Q(v/2,i). Then E/F is the splitting field of z* — 2 and hence normal. Also, F/K is normal
but K/F is not normal. "

Proposition 8.2.3
Let E/F be a finite normal extension and «, 5 € E. The following conditions are equivalent:

(1) There exists ¢ € Autp(E) such that ¢(a) = 3.
(2) The minimal polynomials of & and 8 over F' are the same.
In this case, we say that a and 8 are conjugate over F

Proof:

(1) = (2): Let p(z) be the minimal polynomial of o over F' and ¢ € Autp(E) with ¢(a) = .
By Lemma 7.1.1 3 is also a root of p(x). Since p(z) is monic and irreducible, it is the minimal
polynomial of 8 over F. Hence, a and 8 have the same minimal polynomials

(2) = (1): Suppose that the minimal polynomials of o and § are the same, we say p(x). Since

F(a) = Flz]/(p(z)) = F(B)

we have the F-isomorphism 6 : F(«) — F(f) with 6(a) = . Since E/F is a finite normal
extension, by Theorem 8.2.1, E is the splitting field of some f(z) € F[x] over F. We can also
view E as the splitting field of f(z) over F(a) and F(f) respectively. Then, by Theorem 3.2.1,
there exists an isomorphism 1 : E — E which extends 6. It follows that ¥ € Autp(E) and

P(a) = 6.
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» Example 8.5 The complex numbers /2, v/2¢3 and \3@(% are all conjugate over Q since they are
roots of the irreducible polynomial 3 — 2 € Q[x]. "

We have seen some nice properties about normal extensions. Since not all finite extensions are normal.
It’s attempting to construct normal extensions related to them. Note taht we want to do it in the
"minimal way" so that the associated group Autp(FE) is as small as possible.

Definition 8.2.2 — Normal Closure.

A normal closure of a finite extension E/F is a finite normal extension N/F' satisfying the
following properties:

(1) E is a subfield of N

(2) Let L be an intermediate field of N/E. If L is normal over F, then L = N

m Example 8.6 The normal closure of Q(+v/2)/Q is Q(¥/2,(3)/Q "

Theorem 8.2.4
Every finite extension E/F has a normal closure N/F which is unique up to E-isomorphism

Proof: We write £ = F(ay, ag, ...., )

(Existence): Let p;(z) be the minimal polynomial of a; over F for 1 < i < n. We write
f(z) = p1(z)p2(x)...pn(x) and let N/E be the splitting field of f(x) over E. Since ay, ag, ...., an
are roots of f(x), N is also the splitting field of f(z) over F. By Theorem 8.2.1, N is normal
over F'. Let L C N be a subfield containing E. Then L contains all «;. If L is normal over F,
each p;(z) splits over L. Then, N C L, it follows that L = N

(Uniqueness): Let N/E be the splitting field of f(z) over E defined as above. Let Ni/F be
another normal closure of E/F. Since N; is normal over F' and contains all «;, N; must contains
a splitting field N of f(z) over F, then over E. By Corollary 3.2.2, N and N are E-isomorphic.
Since N is a splitting field of f(x) over F, by Theorem 8.2.1, N is normal over F. Therefore, by
definition of a normal closure, Ny = N. It follows that N and N; are E-isomorphic.




9.1

Galois Extensions

An algebraic extension F/F is Galois if it is normal and separable. If E/F is a Galois extension,

Definition 9.1.1 — Galois Extension.
the Galois group of E/F, Galp(FE) is defined to be the automorphism group Autr(E).

I Definition 9.1.2 A Galois extension E/F is called abelian, cyclic or solvable if Galr(E) has the
corresponding properties.

= Remark 9.1

(1) By Theorem 8.1.1 and Theorem 8.2.1, a finite Galois extension E/F' is equivalent to the
splitting field of a separable polynomial f(x) € Fx]

(2) If E/F is a finite Galois extension, by Theorem 7.2.1

(Galp(E)] = [E : F]

(3) If E/F is the splitting field of a separable polynomial f(z) € Fx] with deg(f) = n, then by
Theorem 7.2.2, Galp(F) is a subgroup of S, m

m Example 9.1 Let E be the splitting field of (22 —2)(2?—3)(22—5) € Q[z]. Then E = Q(v/2,v3,V5)
and [E : Q] = 8. For ¢ € Galg(FE) we have

D(V2) € {iﬁ} W(V3) € {i\/§} (V) € {i\/g}

Since

(Galg(B)] = [E:Q =8
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we have

Galo(E) = 7)(2) x Z/(2) x 7,/(2)

]
Definition 9.1.3
Let t1,ts,....,t, be variables. We define the elementary symmetric functions in t1,to, ....., 1,
as
s =t1+to+ ...+ 1, 89 == Z tit; Sy = t1tg....Tp
1<i<j<n

Then it follows that

fx)=(z—t)(x —ta)(z —ty) = 2" — 512" 1 + 502" % — ...+ (—1)"s,

Theorem 9.1.1 — E.Artin.
Let FE be a field and G be a finite subgroup of Aut(FE), the automorphism group of F. Let
E¢ ={a€ E: ¢(a)=a Vi € G}. Then E/EC is a finite Galois extension and Galgc(F) = G.
In particular, we have

[E: E°] =G

Proof: Let n = |G| and F = E€. For a € E, consider G-orbit of a. i.e.
{Y(a)| v € G} ={a=aj,a9,....,a,} where q; are distinct

For any ¢ € G, 1) permutes the roots {1, g, ....,am }. Since the coefficient of f(z) are symmetric
with respect to a; (1 < i < m), they are fixed by all ¥» € G. Then

f(z) € E%[z] = Fla]

To show f(z) is actually the minimal polynomial of «, consider a factor g(z) € F[x] of f(x).
WLOG we can write

g(z) = (x —a1)(z — ag)....(x — oq)

If I # m. Since a; (1 <i < m) are in the G-orbit of «, there exists ¢ € G such that

{on, gy ai} # {(an), Y(a2), ooy h(au) }

It follows that
P(g(z)) = (z — ¢(a1))(@ — Y(a2))......(x — Y(an))

Then, if I # m, g(z) ¢ Flz]. It follows that f(z) is the minimal polynomial of o over F. Since
f(z) € F[z] is separable and splits over E, E//F is a Galois extension.

Claim: [E: F|<n

If [E: F] > n = |G|, we can choose f31, 52, ...., Bn+1 € E which are linearly independent over F.
Consider the system

Y(B1)v1 + ... + Y(Bnt1)vnt1 =0 for all p € G




48 Chapter 9. Galois Correspondence

of n linear equations in (n + 1) variables vy, vg, ....vp+1. Then, it has a non-zero solution in E. Let
(V1,72 -----s Yn+1) be such a solution which has the minimal number of non-zero coordinates, we
say r. Clearly, r > 1. WLOG we assume

Y1y Yr 20 and  Ypi1, ., Ynt1 =0

Then we have
V(B + oo +V(Br)yr =0  for all € G

By dividing the solution by ~,, we can assume that 7, = 1. Also, since (f1, 52, ..., ) are
independent over F and (171 + .... + By = 0 (take ¢ = id), there exists at least one 7; ¢ F (if
Y1, Y2, -y Y € F, then B1y1 + .... + By = 0 implies that v = v = ..... =7, = 0 a contradiction).
Since r > 2, WLOG we can assume that v1 ¢ F. Choose ¢ € G such that ¢(y1) # 1. Applying
¢ into (1) we get

(@o)(Br)d(1) + o + (90 ) (Br)o(7r) =0 for all Y € G

Since 1) runs through all elements of G, so does ¢ o 1). Then we can write above equation as

PBYBN) + oo+ $(B)9(1) =0 for all y € G

By subtracting (2) from (1) we get

P(B1)(m — (1)) + o +9(Br)(wr — o)) =0  forall p € G

Since v, = 1, we have 7, — ¢(y,) = 0. Also Since v; ¢ F, we have 1 — ¢(y1) # 0. Then
(71— o(n),v2 — (72)ys oo Yr — &(3) = 0,0,...,0) is a non-zero solution of the system This
contradicts the choices of (71,72, ..., Yn+1) having the minimal number of non-zero coordinates, so
[E : F] <n. We have proved that the E/F is a finite Galois-extension. Then E is the splitting
field of some separable polynomial over F'. Also, since

F=E°={acE: ¢(a)=a for all € G}
G is a subgroup of Galp(FE). By Theorem 7.2.1, we have
n=|G| <|Galp(E)|=[E:F]<n

It follows that
[E:F]=n and Galp(E)=G

This completes the proof.

m Remark 9.2 Let E be a field and G a finite subgroup of Aut(E). For a € E, we let
{Oq = 0,09, ..., am}

be the G-orbit of a. i.e. the set of all conjugates of a.. Then we can see from the proof Theorem
9.1.1 that the minimal polynomial of a over E€ is

(x —a1)(z — ). (z — o) € E%z]



9.2 The Fundamental Theorem 49

m Example 9.2 omit =

The Fundamental Theorem

— Fundamental Theorem of Galois Theory.
Let E/F be a finite Galois extension and G = Galp(FE). There is an order reversing bijection
between the intermediate fields of E/F and the subgroup of G. More precisely, let Int(E/F)
denote the intermediate fields of E/F and Sub(G) the set of subgroups of G. Then, the maps

Int(E/F) — Sub(G), L~ L*:= GalL(E)

and
Sub(G) — Int(E/F), Hw~ H* = E

are inverse of each other and reverse inclusion relation. In particular, for Ly, Ly € Int(E/F) with
Ly C Ly, Hy, Hs € Sub(G) with Hy C Hy, we have

[Ly : Lo] = [L] : L3] and [Hy : Hy] = [H : Hj]

Proof: Let L € Int(E/F) and H € Sub(G). We recall Theorem 7.3.1 which states that if
G1 = Galp,(Ey), then Efl = F1, so we have

(L*)* = (Galy(E))* = EC®) = L

Also by Theorem 9.1.1 states that if G; C Aut(FE7) then GalEc1 (E1) = G1. Then we have
1

(H*)* = (E¥)* = Galgn = H

Then we have
H—-H'—wH"=H and L—L"—L:*=1L

In particular, the maps L — L* and H — H* are inverse of each other. Let L1, Lo € Int(E/F).
Since E/F is the splitting field of some separable polynomial f(z) € F[z], E/L; and E/Lg are
also Galois extensions since E is the splitting field of f(x) over Ly and Lg respectively. We have

L,Cl, = GalLl(E) - GCLZL2<E) 1.€. LI - L;

Also

L BL] [Cdn®)] . .
s Lo} = (Eop ) = (Ga By — ]~ (Ve L

For Hy, Hy € Sub(G) we have

Hy,CH — EMCE™® je H}CH;
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Also
_|Hi| _ [Galgu, (E)] _ [E: E™]

"~ |Hs|  Galgn,(E) — [E: EF2]

which completes the proof.

[H; : Hy] = [EH2 . EF1) = [H} : H}

m Remark 9.3 omit ]

Proposition 9.2.2
Let E/F be a finite Galois extension with G = Galp(E). Let L be an intermediate field. For
1 € G we have

Galyr)(E) = ¢Galy(E)yp™!

Proof: For any a € (L), ™' (a) € L. If ¢ € Galy(E), we have
o) = v~ Ha), thus Yo~ (a) =

It follows that
Yoy~ € Galyy(E) for all ¢ € Galy(E)

SO

YGaly (E)Y ™" C Galyr)(E)

Since

|YGalL(E)y | = |Galy(E)| = |E : L| = |E : ¢(L)| = |Galy(E)|
The third equality above can be seen by considering the basis of E over L. It follows that

Galy1)(E) = $Galy (E)y™

which completes the proof.

The following theorem gives a criterion about when L/F is a Galois extension

Theorem 9.2.3
Let E/F, L, L* be defined as Theorem 9.2.1. Then L/F is a Galois extension if and only if L*
is a normal subgroup of G. In this case

Galp(L) =2 G/L*
Proof: Note that

(L) =L for all ¥ € Galp(E)

Galy)(E) = Galp(E) for all ¥ € Galp(E)

YGal(E)y ™ = Gal(E) for all ¢ € Galp(E) by Prop 9.2.2
L* = Galr(F) is a normal subgroup of G

L/F is normal

1ree
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If L/F is a Galois extension, the restriction map
G:GalF(E) —>GalF(L) 1/H—>1/J|L

is well defined. Moreover, it is surjective and its kernel is GalL(E) = L*, then

Galp(L) =2 G/L*




We recall that if E/F is a Galois extension, we say E/F is cyclic if Galp(E) is cyclic.

Lemma 10.0.1 — Dedekind’s Lemma.
Let K and L be fields and let ¢; : L — K be distinct non-zero homomorphisms (1 < i < n). If
¢; € K and

(@) + catha (@) + evevevenns cnhn(a) =0 VYaeL

then ¢ = cs...... =c, =0

Proof: Suppose the statement is false, i.e. there exists some ¢y, co, ...., ¢, € K, not all 0, such that
ahi(a) + cata(a) + e cnfn(a) =0 VaelL

Let m > 2 be minimal positive integer such that

ahr(a) + cata(a) + oveeneenns cmYm(a) =0 Vael (%)

Since m is minimal, we have ¢; # 0 (1 < i < m). Since 1)1 # 13, we can choose 8 € L such that
P1(B) # 2(B). Moreover, since 1 is surjective, we can assume 1 (8) # 0. By (*), we have

ca1(aB) + catha(af) 4 v cm¥m(af) =0 Vael

By dividing the above equation by ¥(3). We have

In the previous chapter, we see the example of £ being the splitting field of x% — 7 over Q. Then
E = Q(a,(s) with o = v/7 and (5 = e5". We recall that E is a simple extension of Q((5). Moreover,
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its Galois group Galgc,)(F) = Z/(5), which is cyclic. This example is a special case of the following
general theorem.

Theorem 10.0.2
Let F be a field and n € N. Suppose ch(F') = 0 or p with p t n. Assume also that 2™ —1 splits over F’

(1) If the Galois extension E/F is cyclic of degree n, then E = F(«a) for some o € E with
o™ € F. In particular, £™ — ™ is the minimal polynomial of o over F

(2) If E = F(a) with o™ € F, then E/F is a cyclic extension of degree d with d | n and
a® € F. In particular, 2% — o is the minimal polynomial of « over F'

Proof: Let (, € F be primitive n-th root of unity. ie. ¢? = 1 and (¢ # 1 for any
1 < d < n. Note that since ch(F) = 0 or p with pn, 2™ — 1 separable. Then 1,(,,¢?,....(7 ! are
all distinct.

(1) Let G = Galp(E) = () = Cp, the cyclic group of order n. Apply Dedekind’s Lemma
ti K = L = E, 1; all elements of G, and ¢; = 1, ¢ = (1, By = ;(nfl). Since ¢; # 0 for
1 <4 < n, there exists u € F such that

a=u+C W) + .+ P Dy £ 0

we have

lla)=a Y()=at v*(a)=al® .. P Ha) = a¢™ !
Then «, aly, ....., a1, are conjugate to each other. i.e. they have the same minimal polynomial
over I, say p(z). Since a, aly, ..., are all distinct, it follows that deg(p) = n. Also, since
p(z) € Fla],

n(n—1)

p(0) = £a(ady)....... ("N =%+a"¢, 2 €F

Since ¢, € F, a™ € F, since « is a root of 2" — o€ F[z] and deg(p) = n, we have p(z) = 2" — o™.
Moreover, since F(«) C E and [F(«) : F] = deg(p) =n = [E : F|, we have E = F(a).

(2) Suppose o™ € F, let p(x) € Flz] be the minimal polynomial of a over F. Since « is a
root of 2™ — ™ € F[z], p(x) | (z™ — a™). Then the roots of p(x) are of the form a¢’ for some i
and we have

p(0) = +alick for some k € Z and d = the number of roots of p(x) = deg(p)

Since p(0) € F and ¢, € F, it follows that a® € F. Since 2? — a? € F[z] has a as a root.
p(z) | (z% — af). Since deg(p) = d and p(x) is monic, we have p(z) = 2% — a?.
Claim:d | n

Suppose not, we say n = gd 4+ r with ¢ € Z and 0 < r < d. Since a?,a™ € F, we have

o =a" 1% = (a") (a1 e F
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Since o” € F, o is a root of 2" — " € F[z]. It follows that p(x) | (2" — "), a contradiction since

deg(p) = d > r. Thus d | n, write n = md, since p(z) = 2% — o, the roots of p(z) are

2m (d=1)m

m
o, o), aly ", .. ,

Since ¢, € F, E = F(a) is the splitting field of the separable polynomial p(x) over F', then Galois.
If v € G = Galp(F) satisfies ¢ (a) = a(})*, then G = (¢) = Cy. Then, E/F is a cyclic extension
of degree d.

When the degree of the polynomial and the characteristic of the base field are both p, the criterion
for cyclic extension is a bit more complicated.

Theorem 10.0.3
Let F be a field with ch(F) = p, where p is prime.

(1) If 2P — 2 — a € F[x] is irreducible, then its splitting field E/F is a cycylic extension of
degree p

(2) If E/F is a cyclic extension of degree p, then E/F is the splitting field of some irreducible
polynomial zP — x — a € F[z]

Proof:
(1) Let f(x) = 2P —x — a and « a root of f(x). Then since ch(F') = p

fla+l)=(a+1)’—(a+1l)—a=a’+1—-a—-1—-—a= f(a) =0

ie. a+11is also a root of f(x). Similarly, « +2,a+3,....,a+ (p — 1) are roots of f(z). Since
f(z) has at most p distinct roots,

a,a+l,a+2,...,a+(p—1)

are all roots of f(z). It follows that £ = F(a,a+1,,....,a+ (p—1)) = F(a) and [E : F] =
deg(f) = p. Since C), is the only group of order p, we have Galp(E) = C),. Indeed, Galp(E) = (1),
where

Vv E—FE ¢Yp=1p a—a+1

(2) Let G = Galp(FE) = (¢)Cp. Apply Dedekind’s Lemma to K = L = E, 1); all elements of G
and ¢c; = ¢y = ..... = ¢, = 1. Since ¢; # 0 for 1 < i < p, there exists some v € E such that

B=v+ )+ (v) + ... + P Lw) #£0
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Since ¢ (B) = B for all ' € Gfor0<i<p—1, 3 € F. Letu:%, since § € F we have

Set

Then

Then

u+ p(u) + 2 (u) + ... + PP (w)

:;+¢2(;)+ ..... +¢p—1<;>
v+ P(v) + P2(V) + ... + PP71(V)

g
_#B
B
=1
a=0u—1Yu) - 2¢*w) — ... — (p — 1)Y?" Y (w)
P(a) = =9 (w) = 2¢°(u) — ... = (p — )9 (u)

Y(a) = a=(u) + 9% () + o PP (u) + 9P (u) = 1

ie. Y(a) = a+ 1, since ch(F) = p, we have

It follows that

Then of — « is fixed by . Since G = (¢), it follows that a = o — « € F and « is a root of
2P —x —a € Flx]. Since [E : F] = p, [F(«) : F] is a factor of p. Since o ¢ F (as ¢¥(a) = a+ 1)
and p is a prime, we have [F(a) : F] =p and F = F(«). Since [F(a) : F] =p, 2P —x — a € F[z]

b(a?) = (@) = (a+ 1) = a? +1

(@ —a) = P(abp) — () = (@ +1) = (a+1) = o’ —«

is the minimal polynomial of o over F'
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Radical Extensions

Definition 11.1.1
A finite extension F/F is radical if there exists a tower of fields

F=FKCFHCFKHC..C...F,=F

such that F; = F;_1(a;) and af" € F;_1 for some d; € N (1 <i<m)

Lemma 11.1.1
If E/F a finite separable radical extension, then its normal closure N/F is also radical.

Proof: Since E/F is a finite separable extension, by Theorem 8.1.4 E = F(3) for some
B € E. Since E/F is a radical extension, there is a tower

F=FCF CFC..C..F,=E

such that F; = F;_1(c;) and o € F;_; for some d; € N. Let p(z) € Flz] be the minimal
polynomial of 8 and let g = f1, 52, ..., B be roots of p(z). By the definition of normal closure
and Theorem 8.2.1, N = E(f2, 33, ..., Bn) = F(B1, B2, .., Bn). Also, there is an F'—isomorphism

O'jiF(ﬁ)-)F(,Bj), ,3'—>ﬁj, Vj=2,3,....,n

Since N can be viewed as the splitting field of p(x) over F'(f) and F(3;) respective, by Theorem
3.2.1, there exists ¢; : N — N which extends o; (2 < j < n). Then, ¢; € Galp(N) and
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¥ (B) = B;. We have the following tower of fields

F=FRCRCFKC..CF,=E=F(p)=F(81)y:2F)
= F(B1)2(F1) C F(B1)Y2(F2) C ... € F(B1)v2(Fm) = F(B1, B2) = F(B1, B2)v3(Fo)
C F(B, B2)Y3(F1) C ...
C...CF(b1,B2,-,Pn) =N

Note that since F; = F;_1(«;) and agl" i—1, we have

F(B1, B2, ..., Bj—1)¥j(F;) = F(B1, B2, ..., Bj—1)¥j(Fi—1(0s))
= (F(B1, B2, ..., Bi—1)¥j (Fim1)) (¥5(es))

and (1;(a;))% = wj(a?i) € ¥;(Fij—1), then N/F is also radical extension.

m Remark 11.1 By Theorem 11.1.1, to consider a finite separable radical extension, we could
instead consider its normal closure, which is Galois. [

Definition 11.1.2
Let F be a field and f(x) € F[x]. We say f(z) is solvable by radicals if there exists a radical
extension E/F such that f(z) splits over F

m Remark 11.2 It’s possible that f(z) € F[x] is solvable by radicals, but splitting field is not a radical
extension (see Assignment 11, Question 2) L]

m Remark 11.3 We recall that an expression involving only +, —, %, V-, /- Let F' be a field and
f(z) € F[z] be separable. If f(x) is solvable by radicals, by the definition of radical extensions,
f(z) has a radical root. Conversely, if f(x) has a radical root, it’s in some radical extension E/F.
By Lemma 11.1.1, the normal closure N/F of E/F is radical. Since f(x) splits over N, f(x) is
solvable by radicals. [

11.2 Radical Solutions

Lemma 11.2.1

Let E/F be a field extension and let K, L be intermediate fields of E//F. Suppose that K/F is a
finite Galois extension. Then KL is a finite Galois extension of L and Galy (K L) is isomorphic to
a subgroup of Galp(K).

Proof: Since K/F is a finite Galois extension, K is the splitting field of some f(x) € F|x]
over F. Since F' C L, KL is the splitting field of f(z) over L, then Galois. Consider the map

T:Gal(KL) — Galp(K), ¢ — |k
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Note that ¢ € Gal(KL) fixes L, then F. Also, since K is a Galois extension. ¢(K) = K, then I'
is well-defined. Moreover, if ¢ |x= 1k, then v is trivial on K and L. Then, 1) is trivial on KL.
This shows that I' is an injection. Then, Galy(KL) = ImT', a subgroup of Galp(K).

Definition 11.2.1
Let E/F be the splitting field of a separable polynomial f() € F[z]. The Galois group of f(x)
is defined to be Galp(FE), denoted by Gal(f).

Theorem 11.2.2
Let F be a field with ch(F) = 0 and f(z) € Flz]\ {0}. Then f(z) is solvable by radicals if and
only if its Galois group Gal(f) is solvable.

Proof: = Suppose that f(z) is solvable by radicals, i.e. f(z) splits over some extensions
E/F satistying
F=FCF CFC... CF,=FE

with F; = F;_1(«;) and a?i € F;—; for some d; € N. By Lemma 11.1.1, WLOG we can assume
E/F is Galois. Then, E//F is the splitting field of some f(x) € F[x]. Let

Let L/E be the splitting field of 2 — 1 over F and (,, € L a primitive n-th root of unity. Set
K = F((,) and we have L = E((,) = KE. Define

K; = KF; = Fi((n)
Then we have

Since F; = F;_1(«;), we have K; = K;_1(«;). Since afi € F;_1 C K;—q1 and ¢, € K;—1. (thus

Ca;, = C{LTZ;). By Theorem 10.0.2, K;/K;_; is a cyclic Galois extension. Note that L is the splitting
field of f(x)(z™ — 1) over F' (also over K;). Hence, L/F (also L/K;) is Galois. We have

G = Galp(L) 2 Galg,(L) 2 Galk,(L) D .... 2 Galg,, (L) 2 Galk,,(L) = {1}
Since K;/K;_; is Galois extension, by Theorem 9.2.3, Galg,(L) < Galg, ,(L) and we have
Galg, ,(L)/Galk,(L) = Galk, ,(K;)
which is a cyclic group, then abelian. Also we have

Galp(L)/Galy, (L) = Galp(L)/Galg (L) = Galp(K) = (Z/(n))*
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is abelian. Then, Galp(L) is solvable. Let E be the splitting field of f(z), which is a subfield of L.
Since E/F is a Galois extension, by Theorem 9.2.3 we have

Gal(f) = Galp(E) = Galp(L)/Gal (L)

Since Gal(f) is a quotient group of the solvable group Galr(L), by Theorem 6.1, Gal(f) is
solvable.

<= Suppose G = Gal(f) is solvable. Let E/F be the splitting field of f(z) and |G| = n.
Let L/E be the splitting field of 2™ — 1 over E and (, € L a primitive n-th root of unity. Set
K = F({,) and we have L = E((,) = KE. Since L = KFE and E/F is a finite Galois extension, by
Lemma 11.2.1 L/K is a finite Galois extension and H = Galg (L) is isomorphic to a subgroup
of G. By Theorem 6.0.1, H is solvable, we write

H=Hy2H DH;D...2 Hy={1}

where H; <H;_1 and H;_1 /H; = Cy,, a cyclic group of order d; (1 < i < m). Since H is a subgroup
of G, we have d; | n. Let K; = H} = L*i (0 <i < m), then Galk,(L) = H;. We have a tower of
fields

FCF((n)=K=KCKI1CKyC..CKp1CKpn=L=E()

Since H; < H;_1, by Theorem 9.2.3, K;/K;_; is Galois and Galg, ,(K;) = H;_1/H; = Cy. Since
Cn, then (4, = CE, is K;—1. By Theorem 10.0.2, there exists «; € K; s.t.

K, = Ki_l(ai) and afi e K, 4

Moreover, we have
Koy=K=F(¢,) and (' =1€¢F

It follows that L/F' is a radical extension. Since all roots of f(z) are in E, then in L, we conclude
that f(z) is solvable by radicals

Proposition 11.2.3
Let f(z) € Q[z] be an irreducible polynomial of prime degree p. If f(z) contains precisely two
non-real roots in C, then Gal(f) = S,

Proof: We recall that the symmetric group S,, can be generated by cycles (12) and (123....n).
Then, to show Gal(f) = S, it suffices to find a p-cycle and 2-cycle in Gal(f). Since deg(f) = p, by
Theorem 7.2.2, Gal(f) is a subgroup of S,. Let a be a root of f(x). Since f(z) is irreducible of
degree p, we have [Q(«) : Q] = deg(f) = p. Then we have p | |Gal(f)|. By Cauchy’s Theorem,
there exists an element of Gal(f) which is of order p. i.e. a p-cycle. Also, the complex conjugate
map o(a + bi) = a — bi will interchange two non-real roots of f(x) and fixes all real roots. Then, it
is an element of Gal(f) which is of order 2. i.e. a 2-cycle. By changing notetion, if necessary, we
have (12), (12.....p) € Gal(f). It follows that Gal(f) = S,




60 Chapter 11. Solvability by Radicals

= Example 11.1 Consider f(z) = 2% + 223 — 24x — 2 € Q[z] which is irreducible by Eisenstein’s
Criterion with p = 2. Since

f(-1)=19  f(1)=-23 lim f(z) =00  lim f(z)=—o0

T—00 T—r—00

there are at least 3 real roots of f(z). Let ay, aa, ..., as be roots of f(z). i.e. f(z) = (r—aq).....(x—as).
By considering the coefficients of z* and 2? terms of f(x) we have

5

ZO@':O Zaiaj:2

i=1 i<j

From the first sum, we have

5 2 5
<Zai> :Za?+22aiaj:0
i=1

i=1 i<j
It follows that

5
>at= s
=1

Then, not all roots of f(x) are real. It follows that f(z) has 3 real roots and 2 complex root. By Prop
11.2.3, Gal(f) = Ss. Since S5 is not solvable, by Theorem 11.2.2 the polynomial 2° + 223 — 242 — 2
over Q is not solvable by radicals. [

From the above example, we see a polynomial of degree 5 is not always solvable by radicals. Since
S5 C S, for all n > 5, we have

Theorem 11.2.4 — The Abel-Ruffini Theorem.
A general polynomial f(z) with deg(f) > 5 is not solvable by radicals.
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