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1. Ring Theory

1.1 Review of ring theory

Definition 1.1.1 — Commutative Ring with 1. A set R equipped with addition (+) and multiplica-
tion (·) such that:

1. R is an abelian group (under +) with identity 0.
2. Multiplication is commutative and associative. There exists 1 ∈ R, such that ∀r ∈ R, 1r = r
3. For all r, s, t ∈ R, r(s+ t) = rs+ rt

In the following, we use the word ring to mean a commutative ring with 1.

Definition 1.1.2 — Field.
A field F is a ring in which every a ∈ F \ {0} is a unit. i.e. ab = 1 for some b ∈ F

Definition 1.1.3 — Intergral Domain.
A ring R is an integral domain if for a, b ∈ R, ab = 0 implies that a = 0 or b = 0

� Example 1.1 The set of integers Z is an integral domain. The sets Q, R, C and Zp are all fields. �

Proposition 1.1.1
Every subring of a field is an integral domain.

Definition 1.1.4 — Ideal.
An ideal in a ring R is a subset I containing 0 such that for a, b ∈ I and r ∈ R, a = b ∈ I and
ra ∈ I
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� Example 1.2 The only ideals of a field F are {0} and F �

Definition 1.1.5 — Principal Ideal Domains (PID).
An integral domain R is a principal ideal domains(PID) if every ideal is generated by one
element.

In the following two examples, we will list common properties of Z and F[x], the set of polynomials
in x over a field F

� Example 1.3 The set of integers Z is an integral domain and the units of Z are {±1}.
Division Algorithm in Z: for a, b ∈ Z, a 6= 0, we can write b = qa+ r where q, r ∈ Z and 0 ≤ r ≤ |a|.
Using the Division Algorithm in Z, we can prove that an ideal I of Z is of the form I − 〈n〉 = nZ
Thus Z is a PID. Note that if n > 0, then the generator n in unique.
Consider all fields containing Z. Their intersection (the smallest field containing Z) is the set of
rational numbers

Q =
{a
b

: a, b ∈ Z and b 6= 0
}

�

� Example 1.4 Let F be a field. Define

F[x] = {f(x) = a0 + a1x+ . . .+ amx
m, ai ∈ F ∀ 0 ≤ i ≤ m}

If am = 1, we say f(x) is monic
If am 6= 0, the degree of f(x) is m, also deg(0) = −∞
For f(x), g(x) ∈ F[x], deg(fg) = deg(f) + deg(g) (to preserve this degree formula we define deg(0) =
±∞)
The set F[x] is an n integral domain and the units of F[x] are F∗ = F \ {0}
Division Algorithm in F[x]: for f(x), g(x) ∈ F[x], f(x) 6= 0, we can write g(x) = q(x)f(x)+r(x) where
q(x), r(x) ∈ F[x] and deg(r) < deg(f). (to preserve this degree formula we define deg(0) = ±∞)
Using the Division Algorithm in F[x], we can prove that an ideal I of F[x] is of the form I = 〈f(x)〉 =
f(x)F[x]. Thus F[x] is a PID. Note that if f(x) is monic, then the generator f(x) is unique.
Consider all fields containing F[x], their Their intersection (the smallest field containing F[x]) is the
set of rational functions �

Definition 1.1.6 — Quotient Ring of R modulo I.
The quotient ring of R modulo I, denoted by R/I, contains elements of the form r+I (r ∈ R).
The addition and multiplication on R/I are defined by

(r1 + I) + (r2 + I) = (r1 + r2) +R and (r1 + I) · (r2 + I) = r1r2 + I

� Example 1.5 For n ∈ Z, we have

Z/〈n〉 = {r = r + 〈n〉, 0 ≤ r ≤ |n|}

For f(x) ∈ F[x], we have

F[x]/〈f(x)〉 = {r(x) = r(x) + 〈f(x)〉,deg(r) < deg(f)}
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�

Theorem 1.1.2 — First Isomorphism Theorem. Let ϕ : R → S be a ring homomorphism. Then
ker(ϕ) is an ideal I. Moreover, there is an isomorphism

R/I −→ im(ϕ), r + I → ϕ(r)

Definition 1.1.7 — Maximal Ideal.
An ideal I in a ring R is maximal if I 6= R and there is no ideal J with I ( J ( R

Definition 1.1.8 — Prime Ideal.
An ideal I in a ring R is prime if I 6= R and ab ∈ I implies that a ∈ I or b ∈ I

Proposition 1.1.3
Every maximal ideal is prime. Moreover, in PID, every prime ideal is maximal.

� Example 1.6 In Z, 〈n〉 is maximal if and only if n is a prime. �

� Example 1.7 In F [x], 〈f(x)〉 is maximal if and only if f(x) is irreducible �

Theorem 1.1.4 — Let I be an ideal of a ring R and I 6= R. Then
(1) I I is a maximal ideal if and only if R/I is a field
(2) I I is a prime ideal if and only if R/I is an integral domain

1.2 Eisenstein’s Criterion
In this section, we will apply Gauss’ Lemma (proved in PMATH 347) to prove Eisenstein’s Criterion.
We will need this criterion in Chapter 2

Lemma 1.2.1 — Gauss’ Lemma. (for Z[x])
Let f(x) ∈ Z[x] with deg(f) ≥ 1. If f(x) is irreducible in Z[x], then it’s irreducible in Q[x]

� Remark 1.1 The converse of the above result is not true. For example, the ploynomial 2x+ 8 is
irreducible in Q[x], but 2x+ 8 = 2(x+ 4) is reducible in Z[x] �

Theorem 1.2.2 — Eisenstein’s Criterion. (for Z[x])
Let f(x) = anxn + an+1x

n−1 + . . .+ a0 ∈ Z[x] with n ≥ 1. Let p ∈ Z be a prime. If p - an, p | ai
for all 0 ≤ i ≤ (n− 1) and p2 - a0, then f(x) is irreducible in Q[x]

Proof. Consider The map Z[x] −→ Zp[x] defined by

f(x) 7−→ f(x) = anx
n + an−1x

n−1 + . . .+ a0 (mod p)

where ai ∈ Zp with ai ≡ ai (mod p) for 0 ≤ i ≤ n. Since p - ai for all 0 ≤ i ≤ (n − 1), we have
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f(x) = anx
n with an 6= 0. If f(x) is reducible in Q[x], by Lemma 1.2.1-Gasuss’ Lemma for

Z[x] for Z[x], f(x) = g(x)h(x) with g(x), h(x) ∈ Z[x] and deg(g),deg(h) ≥ 1. It follows that
anx

n = g(x)h(x). Since Zp is a unique factorization domain, from which we see that g(x) = bxm

and h(x) = cxk for some b, c ∈ Zp. In other words, g(x) and h(x) have 0 constant in Zp. Since
the constants of both g(x) and h(x) are divisible by p, this implies that p2 | a0, which leads to a
contradiction. Thus f(x) is irreducible in Q[x] �

� Example 1.8 The polynomial 2x7+3x4+6x2+12 is irreducible inQ[x], as we can apply Eisenstein’s
Criterion with p = 3 �

Definition 1.2.1 — Primitive. (in ring theory)
A polynomial is primitive if its coefficients are coprime

Fact 1.2.3 f(x) is irreducible in Q[x] ⇐⇒ f(x+ 1) is irreducible in Q[x]

� Example 1.9 Let p be a prime and

ζp = e
2πi
p = cos

2π

p
+ i sin

2π

p

be a p−th root of 1. It’s a root of the p−th cyclotomic polynomial

Φp(x) =
xp − 1

x− 1
= xp−1 + xp−2 + . . .+ x+ 1

Eisenstein’s Criterion does not imply the irreducibility of Φp(x) immediately. However, we can
consider

Φp(x+ 1) =
(x+ 1)p − 1

x
= xp−1 +

(
p

1

)
xp−2 +

(
p

2

)
xp−3 + . . .+

(
p

p− 2

)
x+

(
p

p− 1

)
∈ Z[x]

Since p is a prime, p - 1, p |
(
p

i

)
for all 1 ≤ i ≤ (p − 1) and p2 -

(
p

p− 1

)
. Thus by Eisenstein’s

Criterion for Z[x], Φp(x+ 1) is irreducible in Q[x]. This implies that Φp(x) is also irreducible in
Q[x]. Since Φp(x) is primitive, so Φp(x) is also irreducible in Z[x] �

� Remark 1.2 The above results can be generalized to unique factorization domains �

Lemma 1.2.4 — Gauss’ Lemma. (for PID)
Let R be a unique factorization domain with the field of fractions F. Let g(x) ∈ R[x] with
deg(g) ≥ 1. If g(x) is irrducible in R[x], then it is irreducible in F[x]. Applying the same proof in
Theorem 1.2.1 for Z[x], we can prove the following result.

Theorem 1.2.5 — Eisenstein’s Criterion. (for PID)
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Let R be a unique factorization domain with the field of F and

f(x) = bnx
n + bn−1x

n−1 + . . .+ b1x+ b0 ∈ R[x]

with n ≥ 1. Let l ∈ R be an irreducible element. If l - bn, l | bi for all 0 ≤ i ≤ (n− 1) and l2 - b0,
then f(x) is irreducible in F[x].

� Remark 1.3 The above results also can be generalized to unique factorization domains, but the
proof need to be modified. �

Lemma 1.2.6 — Gauss’ Lemma. (for UFD)
Let S be a unique factorization with the field of fractions E. Let h(x) ∈ S[x] with deg(h) ≥ 1. If
h(x) is irreducible in S[x], then it is irreducible in E[x]

Theorem 1.2.7 — Eisenstein’s Criterion. (for UFD) Let S be a unique factorization domain with
the field of fractions E. Let h(x) = cnx

n + cn−1x
n−1 + . . .+ c1x+ c0 ∈ S[x] with n ≥ 1. Let l ∈ S

be an irreducible element. If l - cn, l | ci for all 0 ≤ i ≤ (n− 1) and l2 - c0, then h(x) is irreucible
in E[x]

Proof. We prove by contradiction. If h(x0 is reducible in E[x], by Gauss’ Lemma for UFD,
there exists s(x), r(x) ∈ S[x] of degree ≥ 1 such that h(x) = s(x)r(s). We write

s(x) = a0 + a1x+ . . .+ amx
m and r(x) = b0 + b1x+ . . .+ bkx

k

where 1 ≤ m, k < n. Since h(x) = s(x)r(x), we have

c0 = a0b0 c1 = a0b1 + a1b0 c2 = a0b2 + a1b1 + a2b2, . . .

Consider the constant term. Since l | c0, we have l | a0b0. Since l is irreducible, l | a0 or l | b0.
WLOG we suppose l | a0. Since l2 | c0 we have l | b0. If we consider the coefficient of x, since l | c1,
we have l | (a0b1+a1b0). Since l | a0, we have l | a1b0. Since l | b0 so we have l | a1 By repeating the
above argument, the conditions on coefficient of h(x) imply that l | ai for all 0 ≤ i ≤ (m− 1) and
l | am. Consider the reduction h(x) = s(x)r(x) ∈ S/〈l〉[x]. By the assunmption on the coefficients
of h, h(x) = cnx

n. However, since s(x) = amx
m and l - b0,s(x)r(x) contain the term amb0x

m,
which leads to a contradiction, Som h(x) is irreducible in E[x] which completes the proof. �



2. Field Extensions

2.1 Degree of Extensions

Definition 2.1.1 — Field Extension.
If E is a field containing another field F , we say E is a field extension of F , denoted by E/F

Note: the notation E/F is not used to denote a quotient ring as the field E has no ideals
other than {0} and E.

If E/F is a field extension, we can view E as a vector space over F :
(1) Addition: for e1, e2 ∈ E, e1 + e2 := e1 + e2 (addition of E)
(2) Scalar multiplication: For c ∈ F , e ∈ E, ce := ce (multiplication of E)

Definition 2.1.2 — Degree Finite Extension.
The dimension of E over F (viewed as a vector space) is called the degree of E over F , denoted
by [E : F ]. If [E : F ] < ∞, we say E/F is a finite extension. Otherwise, E/F is an infinite
extension

� Example 2.1 [C : R] = 2 is a finite extension since C ∼= R + Ri where i2 = −1 �

� Example 2.2 Let F be a field. Let

F [x] = {f(x) = a0 + a1x+ . . .+ anx
n where a0, a1, . . . an ∈ F and n ∈ N ∪ {0}}

and
F (x) =

{
f(x)

g(x)
: f(x), g(x) ∈ F [x] and g(x) 6= 0

}
Then [F (x) : F ] is ∞ since

{
1, x, x2, . . .

}
are linearly independent over F �
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Theorem 2.1.1
If E/K and K/F are finite field extensions, then E/F is a finite field extension and

[E : F ] = [E : K] · [K : F ]

In particular, if K is an intermediate field of a finite extension E/F , then [K : F ] | [E : F ]

Proof: Suppose [E : K] = m and [K : F ] = n. Let {a1, a2, . . . , am} be a basis of E/K
and {b1, b2, . . . , bn} be a basis of K/F . It suffices to show {aibj , 1 ≤ i ≤ m, 1 ≤ j ≤ n} is a basis
of E/F

Claim: Every element of E is a linear combination of {aibj} over F
For e ∈ E, we have

e =
m∑
i=1

kiai where ki ∈ K

For ki ∈ K, we have

ki =
n∑
j=1

cijbj where cij ∈ K

Thus we have

e =
m∑
i=1

n∑
j=1

cijbjai

Claim: The set {aibj , 1 ≤ i ≤ m, 1 ≤ j ≤ n} is linearly independent over F
Suppose that

m∑
i=1

n∑
j=1

cijbjai = 0 where cij ∈ F

Since
n∑
j=1

cijbj ∈ K and {a1, a2, . . . , am} is independent over K, we have

n∑
j=1

cijbj = 0

Since {b1, b2, . . . , bn} is independent over F , so we have cij = 0.
Thus {aibj , 1 ≤ i ≤ m, 1 ≤ j ≤ n} is a basis of E/F and we have

[E : F ] = [E : K] · [K : F ]

which completes the proof of the theorem.
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2.2 Algebraic and Transcendental Extensions

Definition 2.2.1 — Algebraic Over & Transcendental Over.
Let E/F be a field extension and α ∈ E. We say α is algebraic over F if there exists
f(x) ∈ F [x] \ {0} with f(α) = 0. Otherwise, α is transcendental over F .

� Example 2.3 c
d ∈ Q,

√
2,
√

2 +
√
−2 are algebraic over Q (See Assignment 2), but e and π are

transcendental over Q �

� Remark 2.1 Let E/F be a field extension and α ∈ E. Let F [α] denote the smallest subring of E
containning F and α and F (α) is the smallest subfield of E containnig F and α. For α, β ∈ E, we
define F [α, β] and F (α, β) similarly. �

Definition 2.2.2 — Simple Extension.
If E = F (α) for some α ∈ E, we say E is a simple extension of F .

Note: The degree of simple extension F (α)/F is either infinite of finite. In this section, we
will show that this depends on if α in transcendental of algebraic

Definition 2.2.3 — F -homomorphism.
Let R and R1 be two rings which contain a field F . A ring homomorphism ψ : R→ R1 is said
anF -homomorphism if ψ|F = 1F

Theorem 2.2.1
Let E/F be a field extension and α ∈ E. If α is transcendental over F , then

F [a] ∼= F [x] and F (α) ∼= F (x)

In particular, F [α] 6= F (α)

Proof: Let ψ : F (x) → F (α) be unique F -homomorphism defined by ψ(x) = α. Thus, for
f(x), g(x) ∈ F [x], g(x) 6= 0, we have

ψ(f/g) = f(α)/g(α) ∈ F (α)

Note that since α is transcendental, we have g(α) 6= 0. Thus the map is well-defined. Since F [x] is
a field and kerψ is an ideal of F (x), we have ker(ψ) = F (x) or 0. Thus ψ = 0 or ψ is injective.
Since ψ(x) = α 6= 0, ψ is injective. Also, since F (x) is a field, Imψ contains a field generated
by F amd α. i.e. F (α) ⊆ Imψ. Thus Imψ = F (α) and ψ is surjective. It follows that ψ is an
isomorphism and we have

F [a] ∼= F [x] and F (α) ∼= F (x)

as desired.
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Theorem 2.2.2
Let E/F be a field extension and α ∈ E. If α is algebraic over F , there exists a unique monic
irreducible polynomial p(x) ∈ F [x] such that there exists a F -isomorphism

ψ : F [x]/〈p(x)〉 → F [α] with ψ(x) = a

From which we conclude F [α] = F (α)

Proof: We first remark that since α is algebraic, the map in the proof of Theorem 2.2.1
f/g 7→ f(α)/g(α) is not defined. Consider the unique F -homorphism ψ : F [x]→ F (α) defined by
ψ(x) = α. Thus for f(x) ∈ F [x], we have ψ(f) = f(α) ∈ F [a]. Since F [x] is a ring, Imψ contains
a ring generated by F and α. i.e. F [a] ⊆ Imψm, thus Imψ = F [a]. Let

I = kerψ = {f(x) ∈ F [x], f(α) = 0}

Since α is algebraic, I 6= {0}. We have F [x]/I ∼= Imψ, a subring of a field F (α). Thus F [x]/I/ is
an integral domain and I is prime ideal. It follows that I = 〈p(x)〉 where p(x) is irreducible. If we
assume that p(x) is monic, then it’s unique. It follows that

F [x]/〈p(x) ∼= F [α]

Since p(x) is irreducible, F [x]/〈p(x)〉 is a field. Thus F [a] is a field. Also, since the F (α) is the
smallest field containing F [α], we have

F [α] = F (α)

which completes the proof.

Definition 2.2.4 — Minimal Polynomial.
If α is algebraic over a field F , the unique monic irreducible polynomial p(x) in Theorem 2.2.2
is called the minimial polynomial of α over F . From the proof of Theorem 2.2.2, we see
that If f(x) ∈ F [x] with f(α) = 0, then p(x) | f(x)

As a direct consequence of Theorem 2.2.1 and 2.2.2. we have

Theorem 2.2.3
Let E/F be a field extension and α ∈ E
(1) α is transcendental over F ⇐⇒ [F (α) : F ] =∞
(2) α is algebraic over F ⇐⇒ [F (α) : F ] <∞

Moreover, if p(x) is the minimal polynomial of α over F , we have [F (α) : F ] = deg(p) and{
1, α, α2, . . . , αdeg(p)−1} is a basis of F (α)/F (This is why we call [F (α) : F ] the degree of field

extension)

Proof: It suffices to show (=⇒) for (1) and (2) (since (⇐=) of (1) is (=⇒) of (2) and vice
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versa.)

For (1) =⇒, by Theorem 2.2.1 if α is transcendental over F , F (α) ∼= F (x). In F (x), the
elements

{
1, x, x2, . . .

}
are linearly independent over F , thus we have [F (α) : F ] =∞

For (2) =⇒, by Theorem 2.2.2, if α is algebraic over F , F (α) ∼= F [x]/〈p(x)〉 with x 7→ α.
Note that

F [x]/〈p(x)〉 = {r(x) ∈ F [x] : deg(r) < deg(p)}

Thus
{

1, x, x2, . . . , xdeg(p)−1
}
forms a basis of F [x]/〈p(x)〉. It follows that [F (α) : F ] = deg(p) and{

1, α, α2, . . . , αdeg(p)−1} is a basis of F (α) over F

� Example 2.4 Let p be prime and ζp = e
2πi
p , a p-th root of 1. We have seen in Chapter 1 that ζp

is a root of the p-th cyclotomic polynomial Φp(x), which is irreducible. Thus, by Theorem 2.2.3
Φp(x) is the minimal polynomial of ζp over Q and

[Q(ζp) : Q] = p− 1

The field Q(ζp) is called the p-th cyclotomic extension of Q �

Theorem 2.2.4
Let E/F be a field extension. If [E : F ] <∞, there exists α1, α2, . . . , αn ∈ E such that

F ( F (α1) ( F (α1, α2) ( . . . ( F (α1, α2, . . . , αn) = E

Thus, to understand a finite extension, it suffices to understand a finite simple extension.

Proof: We will prove this theorem by induction on [E : F ]]. If [E : F ] = 1, so E = F
we are done. Suppose [E : F ] > 1 and the statement holds for all field extension Ẽ/F̃ with
[Ẽ : F̃ ] < [E : F ]. Let α1 ∈ E/F , by Theorem 2.1.1

[E : F ] = [E : F (α1)] · [F (α1) : F ]

Since [F : F (α1)] > 1, we have [E : F (α1)] < [E : F ]. By induction hypothesis, there exist
α2, α3, . . . , αn such that

F (α1) ( F (α1)(α2) ( F (α1)(α2, α3) ( . . . ( F (α1)(α2, . . . , αn) = E = F (α1, α2, . . . , αn)

Therefore, we have

F ( F (α1) ( F (α1, α2) ( . . . ( F (α1, α2, . . . , αn) = E

which completes the proof.

Definition 2.2.5 — Algebraic Extension & Transcendental Extension.
A field extension E/F is algebraic if every α ∈ E is a algebraic over F . Otherwise, it is
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transcendental

Theorem 2.2.5
Let E/F be a field extension, if [E : F ] <∞, then E/F is algebraic

Proof: Suppose [E : F ] = n. for α ∈ E, the elements
{

1, α, α2, . . . , αn
}

are not linearly
independent over F . Thus there exist ci ∈ F (0 ≤ i ≤ n) is not 0, such that

n∑
i=1

ciα
i = 0

Thus α is a root of the polynomial
n∑
i=0

cix
i ∈ F [x], thus it is algebraic over F

Theorem 2.2.6
Let E/F be a field extension, we define

L = {α ∈ E : [F (α) : F ] <∞}

Then L is an intermediate field of E/F

Proof: If α, β ∈ L, we need to show α ± β, αβ, α
β (β 6= 0) are in L. By definition of L, we

have [F (α) : F ] < ∞ and [F (β) : F ] < ∞. Consider the field F (α, β). Since the minimal
polynomial of α over F (β) divides the minimal polynomial of α over F (the minimal polynomial
of α over F , say p(x) ∈ F [x], it is also a polynomial over F (β) i.e. p(x) ∈ F (β)[x] such that
p(α) = 0), we have [F (α, β) : F (β)] ≤ [F (α) : F ]. Combining this with Theorem 2.1.1 we have

[F (α, β) : F ] = [F (α, β) : F (β)] · [F (β) : F ] ≤ [F (α) : F ] · [F (β) : F ] <∞

Since α+ β ∈ F (α, β), it follows that

[F (α+ β) : F ] ≤ [F (α, β) : F ] <∞

i.e. (α + β) ∈ L. Similarly, we can show α − β,αβ, α
β (β 6= 0) are in L. Therefore, L is a field,

which completes the proof.
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Definition 2.2.6 — Algebraic Closure.
Let E/F be a field extension, the set

L = {α ∈ E : [F (α) : F ] <∞}

is called algebraic closure of F in E

Definition 2.2.7 — Algebraically Closed.
A field F is algebraically closed if for any algebraic extension E/F , we have E = F

� Example 2.5
By fundamental theorem of algebra, C is algebraically closed. Moreover, C is the algebraic closure of
R in C and we have [C : R] = 2 �

� Example 2.6
Let Q be the algebraic closure of Q in C. i.e.

Q = {α ∈ C : α is algebraic over Q}

Since ζp ∈ Q, we have
[Q : Q] ≥ [Q(ζp) : Q] = p− 1

As p→∞, we have [Q : Q]→∞. We have seen in Theorem 2.2.5 that if E/F is finite, then E/F
is algebraic. However, this example shows that the converse of Theorem 2.2.5 is false. �



3. Splitting Fields

3.1 Existence of Splitting Fields

Definition 3.1.1
Let E/F be a field extension. We say f(x) ∈ F [x] splits over E if E contains all roots for f(x).
i.e. f(x) is a product of linear factors in E[x]

Definition 3.1.2
Let Ẽ/F be a field extension, f(x) ∈ F [x], and F ⊆ E ⊆ Ẽ. If

(1) f(x) splits over E;
(2) There is no proper subfield of E such that f(x) splits over;
then we say E is a splitting field of f(x) ∈ F [x] in E

To show the existence of a splitting field of f(x), we first find a field extension of F which contains
at least one root of f(x)

Theorem 3.1.1
Let p(x) ∈ F [x] be irreducible. The quotient ring F [x]/〈p(x)〉 is a field containing F and a
root of f(x)

Proof: Since p(x) is irreducible the ideal I = 〈p(x)〉 is maximal. Thus E = F [x]/I is a field. We
consider the map

ψ : F → F, a 7→ a+ I

Since F is a field and ψ 6= 0, so ψ is injective. Thus, by identifying F with ψ(F ), F can be viewed
as a subfield of E.
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Claim: Let α = x+ I ∈ E, then α is a root of p(x). Write

p(x) = a0 + a1x+ · · ·+ anx
n

= (a0 + I) + (a1 + I)x+ · · ·+ (an + I)xn

∈ E[x]

Then we have

p(α) = (a0 + I) + (a1 + I)α+ · · ·+ (an + I)αn

= (a0 + I) + (a1 + I)(x+ I) + · · ·+ (an + I)(x+ I)n

= (a0 + a1x+ · · ·+ anx
n) + I since (x+ I)i = xi + I for 0 ≤ i ≤ n

= p(x) + I

= 0 + I

= I

Thus, we have α = x+ I ∈ E is a root of p(x).

Theorem 3.1.2 — Kronecker Theorem.
Let f(x) ∈ F [x], there exist a field E containing F such that f(x) splits over E

Proof: We prove this theorem by induction on deg(f). If deg(f) = 1, we let E = F and
we are done. Suppose deg(f) > 1 and the statement holds for all g(x) with deg(g) < deg(f) (g(x)
is not necessarily in F [x] ). Write f(x) = p(x)h(x), where p(x), h(x) ∈ F [x] and p(x) is irreducible.
By Theorem 3.1.1, there exists a field K such that K containing a root of p(x), say α. Then we
have

p(x) = (x− α)q(x) and f(x) = (x− α)h(x)q(x)

where q(x) ∈ K[x]. Since deg(hq) < deg(f), by induction, there exist a field E containing K over
which h(x)q(x) splits. It follows that f(x) splits over E.

Theorem 3.1.3
Every f(x) ∈ F [x] has a splitting field, which is a finite extension of F

Proof: For f(x) ∈ F [x], by Theorem 3.1.2 there exists a field extension E/F over which
f(x) splits. We say α1, α2, ....., αn are roots of f(x) in E. Consider F (α1, α2, ....., αn) This is
the smallest subfield of E containing all roots of f(x). So f(x) does not split over any proper
subfield of it. Thus F (α1, α2, ....., αn) is the splitting field of f(x) in E. In addition, since αi are
all algebraic, so F (α1, α2, ....., αn)/F is finite.
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3.2 Uniqueness of Splitting Fields

We have seen fromTheorem 3.1.3 that for a fixed field extension E/F , a splitting field of f(x) ∈ F [x]
in E is of the form F (α1, α2, ....., αn) where αi are roots of f(x) in E. Thus, it’s unique within E
Question: If we change E/F to a different field extension, say E1/F , what’s the relation between

the splitting field of f(x) in E and the one in E1?

Definition 3.2.1 Let φ : R → R1 be a ring homomorphism, and Φ : R[x] → R1[x] be the unique
ring homomorphism satisfying Φ |R= φ and Φ(x) = x. In this case, we say Φ extends φ. More
generally, if R ⊆ S, R1 ⊆ S1 and Φ : S → S1 is a ring homomorphism with Φ |R= φ, we say Φ
extends φ.

Theorem 3.2.1
Let φ : F → F1 be an isomorphism of fields and f(x) ∈ F [x]. Let Φ : F [x]→ F1[x] be unique ring
isomorphism which extends φ. Let f1(x) = Φ(f(x)) and E/F and E1/F1 be splitting fields of f(x)
and f1(x) respectively. Then there exists an isomorphism ψ : E → E1 which extends φ.

Proof: We prove this theorem by induction on [E : F ]. If [E : F ] = 1, then f(x) is a product of
linear factors in F [x], and so f1(x) ∈ F1[x]. Thus, we have E = F and E1 = F1. Take ψ = φ and
we are done.
Now suppose [E : F ] > 1 and the statement is true for all field extensions Ẽ/F̃ with [Ẽ : F̃ ] <
[E : F ]. Let p(x) ∈ F [x] be an irreducible factor of f(x) with deg(p) ≥ 2 and let p1(x) = Φ(p(x))
(such p(x) exists as if all irreducible factors of f(x) are degree 1. Then [E : F ] = 1) Let α ∈ E and
α1 ∈ E1 be roots of p(x) and p1(x) respectively. From Theorem 2.2.2, we have an F−isomorphism

F (α) ∼= F [x]/〈p(x)〉 α 7→ x+ 〈p(x)〉

Similarly, there is an F1−isomorphism

F1(α1) ∼= F1[x]/〈p1(x)〉 α1 7→ x+ 〈p1(x)〉

Consider the isomorphism Φ : F [x]→ F1[x] which extends φ. Since p1(x) = Φ(p(x)), there exists
a field isomorphism

Φ̃ : F [x]/〈p(x)〉 → F1[x]/〈p1(x)〉 x+ 〈p(x)〉 7→ x+ 〈p1(x)〉

which extends φ. It follows that there exists a field isomorphism

φ̃ : F (α)→ F1(α1) α→ α1

which extends φ. Note that since deg(p) ≥ 2, [E : F (α)] < [E : F ]. Since E (resp E1) is the
splitting field of f(x) ∈ F (α)[x] (resp f1(x) ∈ F1(α1)[x]) over F (α) (resp F1(α1)) By induction,
there exists ψ : E → E1 which extends φ. Thus, ψ also extends φ.
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Corollary 3.2.2
Any two splitting fields of f(x) ∈ F [x] over F are F−isomorphic. Then, we can now say "the"
splitting field of f(x) over F .

Proof: Let φ : F → F be the identity map and apply Theorem 3.2.1

3.3 Degrees of Splitting Fields

Theorem 3.3.1
Let F be a field and f(x) ∈ F [x] with deg(f) = n ≥ 1. If E/F is the splitting field of f(x), then
[E : F ] | n!

Proof: We prove this theorem by induction on deg(f). If deg(f) = 1, choose E = F and
we have [E : F ] | 1!. Suppose we have deg(f) > 1 and the statement holds for all g(x) with
deg(g) < deg(f) (g(x) is not necessarily in F [x]), there are two cases:
Case 1: If f(x) ∈ F [x] is irreducible and α ∈ E is a root of f(x), by Theorem 2.2.2

F (α) ∼= F [x]/〈f(x)〉 and [F (α) : F ] = deg(f) = n

Write f(x) = (x−α)g(x) ∈ F (α)[x] with g(x) ∈ F (α)[x]. Since E is the splitting field of g(x) over
F (α) and deg(g) = n− 1. By induction, [E : F (α)] | (n− 1)!. Since [E : F ] = [E : F (α)][F (α) : F ],
it follows that [E : F ] | n!.
Case 2: If f(x) is not irreducible, write f(x) = g(x)h(x) with g(x), h(x) ∈ F [x], deg(g) = m,
deg(h) = k. m + k = n and 1 ≤ m, k ≤ n. Let K be the splitting field of g(x) over K and
deg(g) = m. By induction, [K : F ] | m!. Since E is the splitting field of h(x) over K and
deg(h) = k, by induction [E : K] | k!, thus we have [E : F ] | m!k!, which is a factor of n! (since
n!/m!k! =

(
n
m

)
∈ Z)



4. More Field Theory

4.1 Prime Field

Definition 4.1.1 — Prime Field.
The prime field of a field F is the intersection of all subfields of F

Theorem 4.1.1
If F is a field, then its prime field is isomorphic to either Q or Zp for some prime p

Proof: Let F1 be a subfield of F , we consider the ring map

X : Z→ F1 n→ n · 1 where 1 ∈ F1 ⊆ F

Let I = kerX be the kernel of X , since Z/I ∼= ImX (by the first isomorphism theorem), a subring
of F1, it is an integral domain. Thus, I is a prime ideal. Now, we have two cases:
(1) If I = 〈0〉, then Z ⊆ F1, since F1 is a field, then

Q = Frac(Z) ⊆ F1

(2) If I = 〈p〉, by the first isomorphism theorem we have

Zp = Z/〈p〉 ∼= ImX ⊆ F1

this completes our proof.
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4.2 Formal Derivatives and Repeated Roots

Definition 4.2.1 — Formal Derivative.
If F is a field, the monomials

{
1, x, x2, ...

}
form an F -basis of F [x]. Define the linear operator

D : F [x]→ F [x] by D(1) = 0 and D(xi) = ixi−1 (i ∈ N). Thus, for

f(x) = a0 + a1x+ a2x+ .....+ anx
n , ai ∈ F

we have
D(f)(x) = a1 + 2a2x+ .....+ nanx

n−1

Note that
(1) D(f + g) = D(f) +D(g)
(2) Leibniz Rule: D(fg) = D(f) · g + f ·D(g)
We call D(f) = f ′ for the formal derivative of f .

Theorem 4.2.1
Let F be a field and f(x) ∈ F [x]
(1) If ch(F ) = 0, then f ′(x) = 0 if and only if f(x) = c for some c ∈ F
(2) If ch(F ) = p, then f ′(x) = 0 if and only if f(x) = g(xp) for some g(x) ∈ F [x]

Proof (1): ⇐= is clear.
=⇒: For f(x) = a0 + a1x+ a2x

2 + .....+ anx
n, f ′(x) = a1 + 2a2x+ ....+nanx

n−1 = 0 implies that
iai = 0 for 1 ≤ i ≤ n. Since ch(F ) = 0, i 6= 0, thus ai = 0 for all i ≥ 1. Then we have f(x) = a0 ∈ F

Proof (2): ⇐= We write g(x) = b0 + b1x+ .......+ bmx
m, then

f(x) = g(xp) = b0 + b1x
p + b2x

2p + ......+ bmx
pm

Then
f ′(x) = pb1x

p−1 + 2pb2x
2p−1 + ......+ pmbmx

pm−1

Since ch(F ) = p, we have f ′(x) = 0
=⇒ For f(x) = a0 + a1x+ a2x

2 + .....+ anx
n, f ′(x) = a1 + 2a2x+ ....+ nanx

n−1 = 0 implies that
iai = 0 for 1 ≤ i ≤ n. Since ch(F ) = p, iai = 0 implies that ai = 0 unless p | i, then

f(x) = a0 + apx
p + a2px

2p + ...........+ ampx
mp = g(xp)

where g(x) = a0 + apx+ a2px
2 + ..........+ ampx

m ∈ F [x].

Definition 4.2.2 — Repeated Root.
Let E/F be a field extension and f(x) ∈ F [x], we say α ∈ E is a repeated root of f(x) if and
only if f(x) = (x− α)2g(x) for some g(x) ∈ E[x]

Theorem 4.2.2
Let E/F be a field extension, f(x) ∈ F [x] and α ∈ E. Then α is a repeated root of f(x) if and
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only if (x− α) divides both f and f ′ i.e. (x− α) | gcd(f, f ′)

Proof: =⇒ Suppose f(x) = (x− α)2g(x), then

f ′(x) = 2(x− α)g(x) + (x− α)2g′(x) = (x− α) · (2g(x) + (x− α)g′(x))

Then (x− α) divides both f and f ′

⇐=: Suppose that (x− α) divides both f and f ′. Write f(x) = (x− α)h(x) where h(x) ∈ E[x],
then

f ′(x) = h(x) + (x− α)h′(x)

Since f(α) = 0 we have h(α) = 0. Then (x− α) is a factor of h(x) and f(x) = (x− α)2g(x) for
some g(x) ∈ E[x]

Corollary 4.2.3
Let F be a field and f(x) ∈ F [x], then f(x) has no repeated root in any extension of F if and only
if gcd(f, f ′) = 1

Proof: Note that gcd(f, f ′) 6= 1 if and only if (x − α) | gcd(f, f ′) for α in some extensions
of F . By Theorem 4.2.2 the result follows.

� Remark 4.1 We notice that the condition of repeated roots depends on the extensions of F while
the gcd condition involves only F �

4.3 Finite Fields

Given a field F , let F ∗ = F \ {0} be the multiplicative group of nonzero elements of F

Proposition 4.3.1
Since F is a finite field, by Theorem 4.1.1, its prime field is Zp. Since F is a finite dimensional
vector space over Zp, we have F ∼= Zp × Zp × .....× Zp (n summands), then |F | = pn

Theorem 4.3.2
Let F be a field and G be a finite subgroup of F ∗, Then G is a cyclic group. In particular, if F is
a finite field, then F ∗ is a cyclic group

Proof: WLOG we can assume that G 6= {1}. Since G is a finite abelian group, G ∼=
Z/n1Z × Z/n2Z × ...... × Z/nrZ where n1 > 1 and ni | nj for 1 ≤ i ≤ j ≤ r. Since nr(Z/n1Z ×
Z/n2Z × ...... × Z/nrZ) = 0, it follows that every u ∈ G is a root of xnr − 1 ∈ F [x]. Since the
polynomial has at most nr distinct roots in F , we have r = 1 and G ∼= Z/nrZ
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By taking u to be a generator of the multiplicative group of F ∗, we have

Corollary 4.3.3
If F is a finite field, then F is a simple extension of Zp. i.e. F = Zp(u) for some u ∈ F

Theorem 4.3.4
1. F is a finite field with |F | = pn if and only if F is a splitting field of xpn − x over Zp
2. Let F be a finite field with |F | = pn, let m ∈ N with m | n. Then F contains a unique subfield
K with |K| = pm

Proof (1) : =⇒ If |F | = pn, then |F ∗| = pn − 1. Then every u ∈ F ∗ satisfies upn = 1
and it’s a root of x

(
xp

n−1 − 1
)

= xp
n − x ∈ Zp[x], Since 0 ∈ F is also a root of xpn − x, the

polynomial xpn − x has pn distinct roots in F . i.e. it splits over F . Then F is a splitting field of
xp

n − x over Zp
⇐= Suppose that F is a splitting field of f(x) = xp

n − x over Zp. Since ch(F ) = p, we have
f ′(x) = −1. Since gcd(f, f ′) = 1, by Corollary 4.2.3 f(x) has pn distinct roots in F . Let E be
the set of all roots of f(x) in F and ϕ : F → F be given by u 7→ up

n . For u ∈ F , u is a root of
f(x) if division, the set E is a subfield of F of order pn, which contains Zp (since all u ∈ Zp satisfy
up = p and thus upn = u). Since F is a splitting field, it’s generated over Zp by the roots of f(x).
i.e. the elements of E, then F = Zp(E) = E

Proof (2): We recall that

xab − 1 = (xa − 1)(xab−a + xab−2a + ....+ xa + 1)

Then if n = mk, we have

xp
n − x = x

(
xp

n−1 − 1
)

= x
(
xp

m−1 − 1
)
g(x) =

(
xp

m − x
)
g(x)

for some g(x) ∈ Zp[x]. Since
(
xp

n − x
)
splits over F , so does

(
xp

m − x
)
. Let

K =
{
u ∈ F : up

m − u = 0
}

Then |K| = p, since roots of
(
xp

m − x
)
are distinct. Also, by (1) K is a field. Note that if K̃ ⊆ F

be any subfield with
∣∣∣K̃∣∣∣ = pm, then K̃ ⊆ K. It follows that K̃ = K, then we see that a subfield

K of F with |K| = pm is unique.

A direct consequence of Theorem 4.3.4 and Corollary 3.2.2, we have

Corollary 4.3.5 — E.H. Moore.
Let p be a prime and n ∈ N, then any two finite field of order pn are isomophic. We denote such a
field by Fpn
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4.4 Separable Polynomials

Definition 4.4.1
Let F be a field and f(x) ∈ F [x] \ {0}. If f(x) is irreducible, we say f(x) is separable over F if
it has no repeated root in any extension of F . In general we say f(x) is separable over F if each
irreducible factor of f(x) is separable over F .

� Example 4.1 f(x) = (x− 4)9 is separable in Q[x] �

� Example 4.2 Consider the polynomial f(x) = xn − a ∈ F [x] with n ≥ 2
We recall Corollary 4.2.3 which states that if gcd(f, f ′) = 1, then f(x) has no repeated root in any
extension of F . i.e. f(x) is separable.
Note that if a = 0, the only irreducible factor of f(x) is x. Since gcd(x, x′) = 1, f(x) is separable.
Now we assume a 6= 0, note that f ′(x) = nxn−1. Thus, the only irreducible factor of f ′(x) is x,
provided that n 6= 0
(1) If ch(F ) = 0, since x - f(x), we have gcd(f, f ′) = 1, then f(x) is separable.

(2) If ch(F ) = p and gcd(n, p) = 1, since x - f(x), then gcd(f, f ′) = 1. Hence f(x) is separa-
ble.

(3) If ch(F ) = p, consider f(x) = xp − a, since f ′(x) = pxp−1 = 0, we have gcd(f, f ′) = 1.
However, it’s still possible that all irreducible factors l(x) of f(x) has property that gcd(l, l′) = 1. To
decide if f(x) is separable, we need to find its irreducible factors first. Define

F p = {bp : b ∈ F}

which is a subfield of F .

(3.1) If a ∈ F p, say a = bp for some b ∈ F , then

f(x) = xp − bp = (x− b)p ∈ F [x]

which is irreducible. Since each irreducible factor of f(x) is linear it’s separable. Thus, f(x) is
separable.

(3.2) Suppose a /∈ F p
Claim: f(x) = xp − a is irreducible in F [x].
Write xp − a = g(x)h(x) where g(x), h(x) ∈ F [x] are monic polynomials. Let E/F be an extension
where xp − a has a root. We say β ∈ E (βp − a = 0). Note that a = βp /∈ F p, β /∈ F . We have

xp − a = xp − βp = (x− β)p

Thus, g(x) = (x− β)r and h(x) = (x− β)s for some r, s ∈ N ∪ {0} and r + s = p. Write

g(x) = xr − rβxr−1 + ....

then rβ ∈ F . Since β /∈ F , as an element of F , we have r = 0 (if r 6= 0, then r−1 ∈ F and
r−1rβ = β ∈ F , a contradiction). Then, as an integer, we have r = 0 or r = p. It follows that either
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g(x) = 1 or h(x) = 1 in F [x]. Then f(x) is irreducible.
Since f(x) is irreducible and f(x) = (x− β)p ∈ E[x], it’s not separable. In this case, since all roots
of f(x) are the same, we say f(x) is purely inseparable. �

Definition 4.4.2 — Perfect.
A field F is perfect if every (irreducible) polynomial r(x) ∈ F [x] is separable over F

Theorem 4.4.1
Let F be a field.
(1) If ch(F ) = 0, then F is perfect.
(2) If ch(F ) = p and F p = F , then F is perfect.

Proof: Let r(x) ∈ F [x] be irreducible, then

gcd(r, r′) =

{
1, if r′ 6= 0

r, if r′ = 0

Suppose that r(x) is not separable, then by Corollary 4.2.3, gcd(r, r′) 6= 1 so that r′(x) = 0
For (1): If ch(F ) = 0, from Theorem 4.2.1 (1), r′(x) = 0 implies that r(x) = c ∈ F , a
contradiction since deg(r) ≥ 1. Then r(x) is separable and F is perfect
For (2): If ch(F ) = p, from Theorem 4.2.1 (2), r′(x) = 0 implies that

r(x) = a0 + a1x
p + a2x

2p + ........+ amx
mp, ai ∈ F

Since F = F p, we can write ai = bpi with bi ∈ F , then

r(x) = bp0 + bp1x
p + ...........+ bpmx

mp = (b0 + b1x+ ......+ bmx
m)p

a contradiction since r(x) is irreducible, then r(x) is separable and F is perfect.

� Remark 4.2 Let ch(F ) = p and F p 6= F (e.g. F = Fp(x)). If we take a ∈ F \ F p, then the
polynomial xp − a is purely inseparable. Then if ch(F ) = p, F is perfect if and only if F p = F �

Corollary 4.4.2
Every finite field is perfect

Proof: Every finite field F = Fpn is the splitting field of xpn − x over Fp for some prime p
and n ∈ N, then for any a ∈ F we have

a = ap
n

=
(
ap

n−1
)p

Since apn−1 ∈ F and F = F p, then by Theorem 4.4.1 (2), F is perfect.
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5.1 Review of Group Actions

Definition 5.1.1
An action of a group G on a set S is a function G× S → S, (g, x)→ gx such that for all x ∈ S
and g1, g2 ∈ G we have

ex = x and (g1g2)x = g1(g2x)

where e is the identity element of the group G. If G acts on S for x ∈ S, we denote by G · x the
orbit of x. i.e.

G · x = {gx : g ∈ G}

Also, we denote by Gx the stabilizer of x i.e.

Gx = {g ∈ G : gx = x}

which is a subgroup of G. We have |G · x| = |G : Gx|

� Example 5.1
Let G be a group acting on itself by conjugation i.e. (g, x) 7→ gxg−1. Then for x ∈ G

CG(x) := Gx =
{
g ∈ G : gxg−1 = x

}
is the centralizer of x. Let Z(G) be the center of G i.e.

Z(G) =
{
g ∈ G : gxg−1 = x for all x ∈ G

}
Note that for x ∈ G, we have |G · x| = 1 if and only if x ∈ Z(G). Thus, we have the following class
equations of G:

|G| = |Z(G)|+
m∑
i=1

|G : CG(xi)|
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where xi ∈ G \ Z(G), the orbits G · xi =
{
gxig

−1 : g ∈ G
}
are distinct conjugacy classes of G and

|G · xi| = |G : CG(xi)| > 1 for each i �

Lemma 5.1.1
Given a prime p, let G be a group of order pn which acts on a finite set S. Let

S0 = {x ∈ S : gx = x for all g ∈ G}

Then we have |S| ≡ |S0| (mod p)

Proof: For x ∈ S, |G · x| = 1 if and only if x ∈ S0. Thus S can be written as a disjoint
union.

S = S0 ∪G · x1 ∪ ..... ∪G · xm
with |G · xi| > 1 for all i, thus

|S| = |S0|+ |G · x1|+ ....+ |G · xm|

Since |G · xi| > 1 and |G · xi| = |G : Gxi | divides |G| = pn, we have p | |G · xi| for all i. It follows
that |S| ≡ |S0| (mod p)

Theorem 5.1.2 — Cauchy.
Let p be a prime and G and finite group. If p | |G|, then G contains an element of order p

Proof: (by J.Mckay) Define

S = {(a1, a2, ...., ap) : ai ∈ G and a1a2....ap = e}

Since ap is uniquely determined by a1, ...., ap−1, if |G| = n we have |S| = np−1. Since p | n we have
|S| ≡ 0 (mod p). Let the group Zp act on S by cyclic permutation. i.e. for k ∈ Zp

k(a1, ...., ap) = (ak+1, ak+2, ...., ak)

One can verify that this action is well-defined (ex). Also (a1, a2, ..ap) ∈ S0 if and only if a1 = a2 =
.... = ap. Clearly, (e, e, e, ...., e) ∈ S0 and hence |S0| ≥ 1. By LEmma 5.1.1 we have |S0| ≡ |S| ≡ 0
(mod p). Since |S0| ≥ 1 and |S0| = 0 (mod p), we have |S0| ≥ p. Thus there exists a 6= e such that
(a, a, a....., a) ∈ S0, which implies that ap = e. Since p is a prime, the order of a is p

5.2 The Sylow Theorems
Definition 5.2.1 — p-group.
Let p be a prime. A group in which every element has order of a non-negative power of p is called
a p-group

As a direct corollary of Theorem 5.1.2 we have
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Corollary 5.2.1
A finite group G is a p-group if and only if |G| is a power of p

Lemma 5.2.2
The center Z(G) of a non-trivial finite p-group G contains more than one element.

Proof: Since G is a p-group, by Corollary 5.2.1 |G| is a power of p. We recall the class
equation of

|G| = |Z(G)|+
m∑
i=1

|G : CG(xi)|

where |G : CG(xi)| > 1. Since |G| is a power of p, |G : CG(xi)| | |G| and |G : CG(xi)| > 1, we see
that p | |G : CG(xi)|. It follows that p | |Z(G)|. Since |Z(G)| ≥ 1, Z(G) has at least p elements.

We recall that if H is a subgroup of G, then

NG(H) =
{
g ∈ G : gHg−1 = H

}
is the normalizer of H in G. In particular, we have H CNG(H)

Lemma 5.2.3
If H is a p-subgroup of a finite group G, then |NG(H) : H| ≡ |G : H| (mod p).

Proof: Let S be a set of all left cosets of H in G and let H acts on S by left multiplication. Then
|S| = |G : H|. For x ∈ G, we have

xH ∈ S0 ⇐⇒ hxH = xH for all h ∈ H
⇐⇒ x−1hxH = H for all h ∈ H
⇐⇒ x−1Hx = H this holds since the above equality holds for all h ∈ H
⇐⇒ x ∈ NG(H)

Thus |S0| is the number of cosets xH with x ∈ NG(H), and since |S0| = |NG(H) : H|. By LEmma
5.1.1’

|NG(H) : H| = |S0| ≡ |S| = |G : H| (mod p)

Corollary 5.2.4
Let H be a p-subgroup of a finite group G. If p | |G : H|, then p | |NG(H) : H| and NG(H) 6= H

Proof: Since p | |G : H|, by Lemma 5.2.3 we have

|NG(H) : H| ≡ |G : H| ≡ 0 (mod p)

Since p | |NG(H) : H| and |NG(H) : H| ≥ 1, we have |NG(H) : H| ≥ p, thus NG(H) 6= H
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We recall Cauchy’s theorem states that if p | |G|, then |G| contains an element a of order
p. Thus |〈a〉| = p. The following First Sylow Theorem can be viewed as a generalizations
of Cauchy’s Theorem

Theorem 5.2.5 — First Sylow Theorem.
Let G be a group of order pnm,where p is a prime, n ≥ 1 and gcd(p,m) = 1. Then G contains a
subgroup of order pi for all 1 ≤ i ≤ n. Moreover, every subgroup of G of order pi (i < n) is normal
in some subgroup of order pi+1

Proof: We prove this theorem by induction. For i = 1, since p | |G|, by Theorem 5.1.2
G contains an element a of order p. Suppose that the statement holds for some 1 ≤ i ≤ n, we
say H is a subgroup of G order pi. Then p | |G : H|. We have seen in the proof of Corollary
5.2.4 that p | |NG(H) : H| and |NG(H) : H| ≥ p. Then by Theorem 5.1.2 NG(H)/H contains a
subgroup of order p. Such a group is the form H1/H where H1 is a subgroup of NG(H) containing
H. Since H CNG(H), we have H CH1. Finally, |H1| = |H| · |H1/H| = pi · p = pi+1

Definition 5.2.2 — Sylow p-subgroup.
A subgroup P of group G is called a Sylow p-subgroup of G if P is a maximal p-group of G.
i.e. If P ⊆ H ⊆ G with H is a p-group, then P = H

As a direct consequence of Theorem 5.2.5 we have

Corollary 5.2.6
Let G be a group of order pnm, where p is a prime, n ≥ 1 and gcd(p,m) = 1. Let H be a
p-subgroup of G

(1) H is a Sylow p-subgroup if and only if |H| = pn

(2) Every conjugate of a Sylow p-subgroup is a Sylow p-subgroup.
(3) If there is only one Sylow p-subgroup P , then P CG

Theorem 5.2.7 — Second Sylow Theorem.
If H is a p-subgroup of a finite group G, and P is any Sylow p-subgroup of G, then there exists
g ∈ G such that H ⊆ gPg−1. In particularm any two Sylow p-subgroup of G are conjugate.

Proof: Let S be the set of all left cosets of P in G, and let H act on S be left multiplica-
tion. By Lemma 5.1.1 we have |S0| ≡ |S| = |G : P | (mod p). Since p - |G : P |, we have |S0| 6= 0.
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Then there exists xP ∈ S0 for some x ∈ G. Note that

xP ∈ S0 ⇐⇒ hxP = xP for all h ∈ H
⇐⇒ x−1hxP = P for all h ∈ H
⇐⇒ x−1Hx ⊆ P
⇐⇒ H ⊆ xPx−1

If H is Sylow p-subgroup, then |H| = |P | =
∣∣xPx−1∣∣, then H = xPx−1

Theorem 5.2.8 — Third Sylow Theorem.
If G is a finite group and p is a prime with p | |G|, then the number of Sylow p-subgroup of G
divides G and is of the form kp+ 1 for some k ∈ N ∪ {0}

Proof: By Theorem 5.2.7, the number of Sylow p-subgroup of G is the number of conju-
gates of any one of them, say P . This number is |G : NG(P )|, which is a divisor of |G|. Let S be
the set of all Sylow p-subgroup of G and let P act on S by conjugation. Then Q ∈ S0 if and only
if xQx−1 = Q for all x ∈ P . The latter condition holds if and only if P ⊆ NG(Q). Both P and Q
are Sylow p-subgroup of G and hence of NG(Q). Thus by Corollary 5.2.6, they are conjugate in
NG(Q). Since QCNG(Q), this can only occur if Q = P . Thus, S0 = {P} and by Lemma 5.1.1
|S| ≡ |S0| ≡ 1 (mod p). Thus |S| = kp+ 1 for some k ∈ N ∪ {0}

� Remark 5.1 Suppose that G is a group with |G| = prm and gcd(p,m) = 1. Let np be the number
of Sylow p-subgroup of G. By the Theorem 5.2.8, we see that np | prm and np ≡ 1 (mod p). Since
p - np, we have np | m �

� Example 5.2 Claim: Every group of order 15 is cyclic.
Let G be a group of order 15 = 3 · 5. Let np be the number of Sylow p-subgroup of G. By the
Theorem 5.2.8, we have n3 | 5 and n3 ≡ 1 (mod 3). Thus u3 = 1. Similarly, we have n5 | 3 and
n5 ≡ 1 (mod 5). Thus n5 = 1. It follows that there is only one Sylow 3-subgroup and 5-subgroup in
G, say P3 and P5 respectively. Thus P3 CG and P5 CG. Consider |P3 ∩ P5|, which divides 3 and 5,
thus |P3 ∩ P5| = 1. Also, |P3P5| = 15 = |G|. It follows that

G ∼= P3 × P5
∼= Z/〈3〉 × Z/〈5〉 ∼= Z/〈15〉

�

� Example 5.3 Claim: There are two isomorphism classes of groups of order 21
Let G be a group of order 21 = 3 · 7. Let np be the number of Sylow p-subgroup of G. By Theorem
5.2.8, we have n3 | 7 and n3 ≡ 1 (mod 3). Then n3 = 1 or 7. Also we have n7 | 3 and n7 ≡ 1 (mod
7. Thus n7 = 1, it follows that G has a unique Sylow 7-subgroup, say P7. Note that P7 C G and
P7 is cyclic, P7 = 〈x〉 with x7 = 1. Let H be a Sylow 3-subgroup, since |H| = 3, H is cyclic and
H = 〈y〉 with y3 = 1. Since P7 CG, we have yxy−1 = xi for 0 ≤ i ≤ 6. It follows that

x = y3xy−3 = y2xiy−2 = yxi
2
y−1 = xi

3
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Since xi3 = x and x7 = 1, we have i3 − 1 ≡ 0 (mod p) Since 0 ≤ i ≤ 6, we have i = 1, 2, 4
(1) If i = 1, then yxy−1 = x i.e. yx = xy, then G is an abelian group and G ∼= Z〈21〉
(2) If i = 2, then yxy−1 = x2, then G =

{
xiyj : 0 ≤ i ≤ 6, 0 ≤ j ≤ 2, yxy−1 = x2

}
(3) If i = 4, then yxy−1 = x4. Note that

y2xy−2 = yx4y−1 = x16 = x2

Note that y2 is also a generator of H. Thus by replacing y by y2, we get back to case (2). It follows
that there are two isomorphism classes of groups of order 21. �



6. Solvable Group

Definition 6.0.1 — Solvable Group.
A group G is solvable if there exists a tower

G = G0 ⊇ G1 ⊇ G2 ⊇ G3...... ⊇ Gm = {1}

with Gi+1 CGi and Gi/Gi+1 abelian for all 0 ≤ i ≤ (m− 1)

� Remark 6.1 Gi+1 is not necessarily a normal subgroup of G. However, if Gi+1 is a normal subgroup
of G, we get Gi+1 CGi for free. �

� Example 6.1 Consider a symmetric group S4. Let A4 be the alternating subgroup of S4 and
V ∼= Z/〈2〉 × Z/〈2〉 the Klein 4 group. Note that A4 and V are normal subgroup of S4. We have

S4 ⊇ A4 ⊇ V ⊇ {1}

Since S4/A4
∼= Z/〈2〉 and A4/V ∼= Z〈3〉, S4 is solvable. �

Before we consider properties of solvable groups, we recall the theorems from Pmath 347

Theorem (Second Isomorphism Theorem) If H and N are subgroup of G with N CG, then
H/H∩N ∼= NH/N . (If either H or N is normal subgroup of G, then NH = HN and it’s a subgroup
of G)

Theorem (Third Isomorphism Theorem) If H and N are normal subgroup of a group G
s.t. N ⊆ H, then H/N is a normal subgroup of G/N and (G/N)/(H/N) ∼= G/H
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Theorem 6.0.1
Let G be a solvable group

(1) If H is a subgroup of G, then H is solvable.
(2) Let N be a normal subgroup of G. Then the quotient group G/N is solvable.

Proof: Since G is a solvable group, there exists a tower

G = G0 ⊇ G1 ⊇ G2 ⊇ G3...... ⊇ Gm = {1}

with Gi+1 CGi and Gi/Gi+1 abelian for all 0 ≤ i ≤ (m− 1)

For (1): Define Hi = H ∩Gi, since Gi+1 CGi, we have a tower

H = H0 ⊇ H1 ⊇ H2 ⊇ H3...... ⊇ Hm = {1}

with Hi+1CHi. Note that both Hi and Gi+1 are subgroup of Gi and Hi+1 = H∩Gi+1 = Hi∩Gi+1.
Applying the second isomorphism theorem to Gi, we have

Hi/Hi+1 = Hi/(Hi ∩Gi+1) ∼= HiGi+1/Gi+1 ⊆ Gi/Gi+1

Since Gi/Gi+1 is abelian, so is Hi/Hi+1, it follows that H is solvable.

For (2): Consider the towers:

G = G0N ⊇ G1N ⊇ G2N ⊇ G3N...... ⊇ GmN = N

and
G/N = G0N/N ⊇ G1N/N ⊇ G2N/N ⊇ G3N/N...... ⊇ GmN/N = {1}

Since Gi+1 CGi and N CG, we have

Gi+1N CGiN which implies that Gi+1N/N CGiN/N

By third isomorphism theorem, we have

(GiN/N)/(Gi+1N/N) ∼= GiN/Gi+1N

By the second isomorphism theorem, we have

GiN/Gi+1N ∼= Gi/(Gi ∩Gi+1N)

Consider the natural quotient map Gi → Gi/(Gi ∩ Gi+1N) which is surjective. Since Gi+1 ⊆
(Gi ∩ Gi+1N), it induces a surjective map Gi/Gi+1 → Gi/(Gi ∩ Gi+1N) (Universal Property
of Groups: Let G,G′ be groups and let f : G → G′ be a group homomorphism. If N C G
satisfies N ⊆ ker(f), then there exists a unique map f : G/N → G′ s.t. f = f ◦ π where
π : G→ G/N is the natural quotient map.) Since Gi/Gi+1 is abelian, so is Gi/(Gi ∩Gi+1N . Thus
(GiN/N)/(Gi+1N/N) is abelian. It follows that G/N is solvable.
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The following theorem goes in the opposite direction from Theorem 6.0.1

Theorem 6.0.2
Let N be a normal subfroup of group G. If both N and G/N are solvable, then G is solvable. In
particular, a direct product of any finitely many solvable groups is solvable.

Proof: Since N is solvable, we have a tower

N = N0 ⊇ N1 ⊇ N2 ⊇ N3...... ⊇ Nm = {1}

with Ni+1CNi and Ni/Ni+1 abelian. For a subgroup H ⊆ G with N ⊆ H, we denote by H = H/N .
Since G/N is solvable, we have a tower

G/N = G = G0 ⊇ G1 ⊇ G2 ⊇ G3...... ⊇ Gr = {1}

with Gi+1 CGi and Gi/Gi+1 abelian. Let SubN (G) denote the subgroups of G which contains N .
Consider the map

σ : SubN (G)→ Sub(G/N), H 7→ H/N

for all i = 0, 1, 2, ....., r. Define Gi = σ−1(Gi). Since N CG and Gi+1 CGi, we have

Gi+1 CGi

Moreover, by third isomorphism theorem we have

Gi/Gi+1
∼= Gi/Gi+1

It follows that we have the tower

G = G0 ⊇ G1 ⊇ G2 ⊇ G3...... ⊇ Gr = N = N0 ⊇ N1 ⊇ N2 ⊇ N3...... ⊇ Nm = {1}

with Gi+1 CGi, Ni+1 CNi and Gi/Gi+1, Ni/Ni+1 are all abelian. Thus, G is solvable.

� Example 6.2 S4 contains subgroup isomorphic to S3 and S2. Since S4 is solvable, by Theorem
6.0.1 S3 and S2 are solvable. �

Definition 6.0.2 — Simple Group.
A group G is simple if it is not trivial and has no normal subgroups except {1} and G.

� Example 6.3 One can show that the alternating group A5 is simple. Since A5 ⊇ {1} is the only
tower and A5/{1} is not ableian. A5 is not solvable. Thus by Theorem 6.0.1, S5 is also not solvable.
Moreover, since for all Sn with n ≥ 5, it contains a subgroup isomorphic to S5 which is not solvable.
By Theorem 6.0.1 Sn are not solvable for n ≥ 5. �
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Corollary 6.0.3
Let G be a finite solvable group. Then there exists a tower

G = G0 ⊇ G1 ⊇ G2 ⊇ G3...... ⊇ Gm = {1}

with Gi+1 CGi and Gi/Gi+1 a cyclic group.

Proof: If G is solvable, there exists a tower

G = G0 ⊇ G1 ⊇ G2 ⊇ G3...... ⊇ Gm = {1}

with Gi+1 CGi and Gi/Gi+1 abelian for 0 ≤ i ≤ (n− 1). Consider A = Gi/Gi+1 a finite abelian
group. We have

A ∼= Ck1 × Ck2 × ....× Ckr
where Ck is a cyclic group of order k. Since each Gi/Gi+1 can be rewritten as a product of cyclic
groups, the result follows.

� Remark 6.2 In the above proof, given a finite cyclic group C, by Chinese Remainder Theorem,
we have

C ∼= Z/〈pa11 〉 × Z/〈pa22 〉 × .........× Z/〈parr 〉

where pi are distinct primes. Alsom for a cyclic group whose order is prime powerm say Z/〈pa〉, we
have a tower of subgroups

Z/〈pa〉 ⊇ Z/〈pa−1〉 ⊇ Z/〈pa−2〉.....Z/〈p〉 ⊇ {1}

so we can further require the quotient Gi/Gi+1 in the above corollary to the cyclic group of prime
order. �



7. Automorphism Groups

7.1 General Automorphism Groups

Definition 7.1.1 — F-automorphism.
Let E/F be a field extension, if ψ is an automorphism of E, i.e. ψ : E → E is an isomorphism
and ψ |F= 1F , we say ψ is an F-automorphism of E. By maps composition, the set

{ψ : E → E | ψ is an F-automorphism}

is a group. We call it automorphism group of E/F and denote by AutF (E)

Lemma 7.1.1
Let E/F be field extensions, f(x) ∈ F [x] and ψ ∈ AutF (E). If α ∈ E a root of f(x), then ψ(α) is
also a root of f(x).

Proof: We write f(x) = a0 + a1x+ a2x
2 + ....+ anx

n ∈ F [x], we have

f(ψ(α)) = a0 + a1ψ(α) + a2ψ(α)2 + ....+ anψ(α)n

= ψ(a0) + ψ(a1)ψ(α) + ψ(a2)ψ(α)2 + .......+ ψ(an)ψ(α)n

= ψ(a0 + a1α+ a2α
2 + ......+ anα

n)

= ψ(0) = 0 since α is a root

Thus ψ(α) is a root of f(x)
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Lemma 7.1.2
Let E = F (α1, α2, ..., αn) be a field extension of F . For ψ1, ψ2 ∈ AutF (E), if ψ1(αi) = ψ(αi) for
all αi (1 ≤ i ≤ n), then ψ1 = ψ2

Proof: Note that for α ∈ E, α is of the form

f(α1, α2, ....., αn)

g(α1, α2, ....., αn)

where f(α1, α2, ....., αn), g(α1, α2, ....., αn) ∈ F [x1, ....., xn], then the lemma follows

Corollary 7.1.3
If E/F is a finite extension, then AutF (E) is a finite group

Proof: Since E/F is a finite extension, by Theorem 2.2.4 we have E = F (α1, α2, ..., αn)
where αi (1 ≤ i ≤ n) are algebraic over F . For ψ ∈ AutF (E), by Lemma 7.1.1 ψ(αi) for
(1 ≤ i ≤ n) is a root of the minimal polynomial of αi. Thus it has only finitely many choices. By
Lemma 7.1.2 since ψ ∈ AutF (E) is completely determined by ψ(αi), there are only finitely many
choices for ψ. Thus AutF (E) is finite.

� Remark 7.1 The converse if the above Corollary is FALSE. For example, R/Q is an finite extension,
but AutQ(R) = 1. Indeed, we will show in Assignment 7 that Aut(R) = {1} as ψ ∈ Aut(R) with
ψ(1) = 1 will imply that ψ |Q= 1Q �

7.2 Automorphism Groups of Splitting Fields

Definition 7.2.1
Let F be a field and f(x) ∈ F [x]. The automorphism group of f(x) over F is defined to be
group AutF (E) where E is the splitting field of f(x) over F

We recall Theorem 3.2.1: Let φ : F → F1 be an isomorphism of fields and f(x) ∈ F [x].
Let Φ : F [x] → F1[x] be the unique ring isomorphism which extends φ and maps x to x. Let
f1(x) = Φ(f(x)) and E/F and E1/F1 be splitting fields of f(x) and f1(x) respectively. Then there
exists an isomorphism ψ : E → E1 which extends φ.

In Assignment 3, we prove that the number of such ψ’s is ≤ [E : F ] and equality holds if and
only if f(x) is separable over F . As a direct consequence of this result, we have

Theorem 7.2.1
Let E/F be the splitting field of a non-zero polynomial f(x) = F [x], we have |AutF (E)| ≤ [E : F ]
and equality holds if and only if f(x) is separable.
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Theorem 7.2.2
If f(x) ∈ F [x] has n distinct roots in the splitting field E, then AutF (E) is isomorphic to a
subgroup of the symmetric group Sn. In particular, |AutF (E)| divides n!

Proof: LetX = {α1, α2, ....., αn} be distinct roots of f(x) in E. By Lemma 7.1.1 if ψ ∈ AutF (E),
then ψ(X) = X. Let ψ |X be the restriction of ψ in X and SX the permutation group of X. The
map

AutF (E)→ SX ∼= Sn, ψ 7→ ψ |X
is a group homomorphism. Moreover, by Lemma 7.1.2 it is injective. Thusm AutF (E) is
isomorphic to a subgroup of Sn

� Example 7.1 Let f(x) = x3 − 2 ∈ Q[x] and E/Q the splitting field of f(x). Thus E = Q( 3
√

2, ζ3)
and [E : F ] = 6. Since ch(Q) = 0, f(x) is separable. By Theorem 7.2.1

|AutQ(E)| = |E : F | = 6

Also, since f(x) has 3 distinct roots in E, by Theorem 7.2.2, AutQ(E) is a subgroup of S3. Since
the only subgroup of S3 which is of order 6 is S3, we have

AutQ(E) ∼= S3

�

� Example 7.2 Let F be a field with ch(F ) = p, F p 6= F and f(x) = xp − a with a ∈ F \ F p. Let
E/F be the splitting field of f(x). We have seen in Section 4.4 that f(x) = (x − β)p for some
β ∈ E \ F . Then E = F (β). Since β can only map to β, AutF (E) is trivial. Note that

|AutF (E)| = 1 while |E : F | = p

We have |AutF (E)| 6= |E : F |. Notice that f(x) is not separable �

7.3 Fixed Fields

Definition 7.3.1 — Fixed Field.
Let E/F be a field extension and ψ ∈ AutF (E). Define

Eψ = {a ∈ E : ψ(a) = a}

which is a subfield of E containing F . We call Eψ be the fixed field of ψ.
If G ⊆ AutF (E), the fixed field of G is defined by

EG =
⋂
ψ∈G

Eψ = {a ∈ E : ψ(a) = a for all ψ ∈ G}
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Theorem 7.3.1
Let f(x) ∈ F [x] be a separable polynomial and E/F its splitting field. If G = AutF (E), then
EG = F

Proof: Set S = EG. Since F ⊆ L, we have AutL(E) ⊆ AutL(E). On the other hand, if
ψ ∈ AutF (E), by the definition of L, we have ψ(a) = a. This implies that ψ ∈ AutL(E). Then

AutF (E) = AutL(E)

Note that since f(x) is separable over F splits over E, f(x) is also separable over L and has E as
its splitting field over L. Then by Theorem 7.2.1 we have

|AutF (E)| = |E : F | and |AutL(E)| = |E : L|

It follows that [E : F ] = [E : L], since [E : F ] = [E : L][L : F ], we have [L : F ] = 1. then L = F .
i,e, EG = F



8. Separable Extensions Normal Extensions

8.1 Separable Extensions

Definition 8.1.1 Let E/F be an algebraic field extension. For α ∈ E, let p(x) ∈ F [x] be the
minimal polynomial of α. We say α is separable over F if p(x) is separable. If for all α ∈ E, α
is separable, we say E/F is separable

� Example 8.1 If ch(F ) = 0, by Theorem 4.4.1, F is perfect and every polynomial f(x) ∈ F [x] is
separable. Thus, if ch(F ) = 0, any algebraic extension E/F is separable. �

Theorem 8.1.1
Let E/F be the splitting field of f(x) ∈ F [x]. If f(x) is separable, then E/F is separable.

Proof: Let α ∈ E and p(x) ∈ F [x] be the minimal polynomial of α. Let {α = α1, α2, ..., αn} be
all of the distinct roots of p(x) in E. Define

p̃(x) = (x− α1)(x− α2).....(x− αn)

Claim: p̃(x) ∈ F [x]
Let G = AutF (E) and ψ ∈ G. Since ψ is an automorphism, ψ(αi) 6= ψ(αj) for i 6= j. By Lemma
7.1.1, ψ permutes α1, α2, ...., αn. Thus by extending ψ : E → E to ψ : E[x]→ E[x], we have

ψ(p̃(x)) = (x− ψ(α1))(x− ψ(α2)).......(x− ψ(αn)) = (x− α1)(x− α2).....(x− αn)

It follows that p̃(x) ∈ Eψ[x]. Since ψ ∈ G is arbitrary, p̃(x) ∈ EG[x]. Since E/F is the splitting
field of the separable polynomial f(x), by Theorem 7.3.1 p̃(x) ∈ EG[x]. Then the Claim holds.
Then we have p̃(x) ∈ F [x] with p̃(α) = 0. Since p(x) is the minimal polynomial of α over F , we



8.1 Separable Extensions 41

have p(x) | p̃(x). Also, since α1, α2, ..., αn are all distinct roots of p(x), we have p(x) | p̃(x). Since
both p(x) and p̃(x) are monic, we have p̃(x) = p(x). It follows that p(x) is separable.

Corollary 8.1.2
Let E/F be a finite extension and E = F (α1, α2, ..., αn). If each αi is separable over F for
(1 ≤ i ≤ n), then E/F is separable

Proof: Let pi(x) ∈ F [x] be the minimal polynomial of αi for (1 ≤ i ≤ n). Let f(x) =
p1(x)p2(x)....pn(x). Since each pi(x) is separable, so is f(x). Let L be the splitting field of f(x)
over F . By Theorem 8. 1.1, L/F is separable, Since E = F (α1, α2, ...., αn) is subfield of L, E is
also separable.

Corollary 8.1.3
Let E/F be an algebraic extension and L the set of all α ∈ E which are separable over F . Then L
is an intermediate field.

Proof: Let α, β ∈ F , then α ± β, αβ and α/β (β 6= 0) ∈ F (α, β). By Corollary 8.1.2,
F (α, β) is separable and hence it is contained in L. Then α± β, αβ and α/β (β 6= 0) ∈ L

We have seen in Theorem 2.2.4 that finite extension is a composition of simple extensions

Definition 8.1.2 — Primitive Element.
If E = F (γ) is a simple extension, we say γ is a primitive element of E/F

Theorem 8.1.4 — Primitive Element Theorem.
If E/F is a finite separable extension, then E = F (γ) for some γ ∈ E. In particular, if ch(F ) = 0,
then any finite extension E/F is a simple extension.

Proof: We have seen in Corollary 4.3.3 that a finite extension of a finite field is always
simple. Then WLOG, we assume that F is an infinite field. Since E = F (α1, α2, ..., αn) for some
α1, α2, ..., αn ∈ E, if suffices to consider the case when E = F (α, β) and the general case can be
done by induction. Let E = F (α, β) with α, β /∈ F .
Claim: There exists λ ∈ F such that γ = α+ γβ and β ∈ F (γ)
If the claim holds, then α = γ − λβ ∈ F (γ) and we have F (α, β) ⊆ F (γ). Also, since γ = α+ λβ,
F (γ) ⊆ F (α, β). Then E = F (α, β) = F (γ).
Proof of the Claim: Let a(x) and b(x) be the minimal polynomial of α and β over F respectively.
Since β /∈ F , deg(b) > 1, then there exists a root β̃ of b(x) such that β̃ 6= β. Choose λ ∈ F such
that

λ 6= α̃− α
β − β̃

for all roots α̃ of a(x) and all roots β̃ of b(x) with β̃ 6= β in some splitting field of a(x)b(x) over F .
The choice is possible since there are infinite many elements in F , by only finitely many choices of
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α̃ and β̃, Let γ = α+ λβ. Consider

h(x) = a(γ − λx) ∈ F (γ)[x]

then
h(β) = a(γ − λβ) = a(α) = 0

However, for any β̃ 6= β, since

γ − λβ̃ = a+ λ(β − β̃) 6= α̃ by the choices of λ

We have
h(β̃) = a(γ − λβ̃) 6= 0

Then, h(x) and b(x) have β as a common root, but no other common root in any extension of
F (γ). Let b1(x) be the minimal polynomial of β over F (γ), then b1(x) divides both h(x) and b(x).
Since E/F is separable and b(x) ∈ F [x] is irreducible, b(x) has distinct roots, so does b1(x). The
roots of b1(x) are also common to h(x) and b(x). Since h(x) and b(x) has only β as a common
root, b1 = x− β. Since b1(x) ∈ F (γ)[x], we obtain β ∈ F (γ) as required.

8.2 Normal Extensions

Definition 8.2.1 Normal Extension
Let E/F be an algebraic extension. We say E/F is a normal extension if for any irreducible
polynomial p(x) ∈ F [x], either p(x) has no root in E or p(x) has all roots in E. In other words, if
p(x) has a root in E, p(x) splits over E

� Example 8.2 Let α ∈ R satisfy α4 = 5. Since the roots of x4 − 5 are ±α,±αi and Q(α) is real,
Q(α)/Q is normal, let β = (1 + i)α
Claim: Q(β)/Q is also not normal
Note that

β2 = 2iα2 β4 = −4α4 = −20

Since ±β,±iβ all satisfy x4 = −20, to show Q(β) is not normal, it suffices to show i /∈ Q(β). Since
the minimal polynomial of β over Q is p(x) = x4 + 20, we have [Q(β) : Q] = 4. Also, the roots
of p(x) are ±β and ±iβ. Since the minimal polynomial of α is x4 − 5, we have [Q(α) : Q] = 4.
Note that if α ∈ Q(β), since [Q(α) : Q] = 4 = [Q(β) : Q], it implies that Q(α) = Q(β), which is
impossible since β = α+ iα /∈ Q(α). Then, α /∈ Q(β) and it implies that i /∈ Q(β) (if i ∈ Q(β), then
a = β/(1 + i) ∈ Q(β), a contradiction.) It follows that the factorization of p(x) over Q(β) is

(x− β)(x+ β)(x2 + β2)

Since p(x) does not split over Q(β), Q(β)/Q is not normal. �

Theorem 8.2.1
A finite extension E/F is normal if and only if it is the splitting field of some f(x) ∈ F [x]



8.2 Normal Extensions 43

Proof: =⇒ Suppose that E/F is normal, write E = F (α1, α2, ....., αn). Let pi(x) ∈ F [x] be
the minimal polynomial of αi for 1 ≤ i ≤ n. We now define

f(x) = p1(x)p2(x)....pn(x)

Since E/F is normal, each pi(x) splits over E. Let αi = αi,1, αi,2, ...., αi,ri for 1 ≤ i ≤ n be the
roots of pi(x) in E. Then

E = F (α1, α2, ....., αn)

= F (α1,1α1,2, ..., α1,r1 , α2,1, α2,2, ...., αn,1, ...., αn,rn)

which is the splitting field of f(x) over F

⇐=: Let E/F be the splitting field of f(x) ∈ F [x]. Let p(x) ∈ F [x] be irreducible and has
a root α ∈ E. Let K/E be the splitting field of p(x) over E. We write

p(x) = c(x− α1)(x− α2)...(x− αn)

where 0 6= c ∈ F . α = α1 ∈ E, α2, α3, ...., αn ∈ K = E(α1, α2, ...., αn). Since

F (α) ∼= F [x]/〈p(x)〉 ∼= F (α2)

WE have the F -isomorphism

θ : F (α)→ F (α2) θ(a〈) = α2

Note that p(x) ∈ F [x] ⊆ F (α)[x] and p(x) ∈ F (α2)[x]. Then we can view K as the splitting field
of p(x) over F (α) and F (α2) respectively. Then, by Theorem 3.2.1, there exists an isomorphism

ψ : K → K

which extends θ. In particular, ψ ∈ AutF (K). (see the picture below)
Since ψ ∈ AutF (K), ψ permutes the roots of f(x). Since E is generated over F by the roots of
f(x). By Lemma 7.1.1, we have ψ(E) = E. It follows that for α ∈ E, α2 = ψ(α) ∈ E. Similarly,
we can prove that αi ∈ E for 3 ≤ i ≤ n. Then K = E and p(x) splits over E. It follows that E/F
is normal.
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� Example 8.3 Claim: Every quadratic extension is normal.
Let E/F be a field extension with [E : F ] = 2. For α ∈ E/F , we have E = F (α). Let p(x) = x2+ax+b
be the minimal polynomial of α over F . If β is another root of p(x), then

p(x) = (x− α)(x− β) = x2 + (α+ β)x+ αβ

Then β = −a− α (β = b/a) too is the other root of p(x) and β ∈ E. Hence, E/F is normal. �

� Example 8.4 The extension Q( 4
√

2)/Q is not normal since the irreducible polynomial p(x) = x4 − 2
has a root in Q( 4

√
2) but p(x) does not split over Q( 4

√
2). Note that the extension Q( 4

√
2)/Q is made

up of two quadratic extensions. Q( 4
√

2)/Q(
√

2) and Q(
√

2)/Q, which are normal. Then, if E/K and
K/F are normal extensions, the extension E/F is not always normal. �

Proposition 8.2.2
If E/F is a normal extension and K an intermediate field, then E/F is normal

Proof: Let p(x) ∈ K[x] be irreducible and has a root α ∈ E. Let f(x) ∈ F [x] ⊆ K[x] be
the minimal polynomial of α over F . Then p(x) | f(x). Since E/F is normal, f(x) splits over E,
so does p(x). Then E/K is normal extension.

� Remark 8.1 InProposition 8.2.2,K/F is not always normal. For example, let F = Q,K = Q( 4
√

2)
and E = Q( 4

√
2, i). Then E/F is the splitting field of x4− 2 and hence normal. Also, E/K is normal

but K/F is not normal. �

Proposition 8.2.3
Let E/F be a finite normal extension and α, β ∈ E. The following conditions are equivalent:

(1) There exists ψ ∈ AutF (E) such that ψ(α) = β.
(2) The minimal polynomials of α and β over F are the same.
In this case, we say that α and β are conjugate over F

Proof:
(1) =⇒ (2): Let p(x) be the minimal polynomial of α over F and ψ ∈ AutF (E) with ψ(α) = β.
By Lemma 7.1.1 β is also a root of p(x). Since p(x) is monic and irreducible, it is the minimal
polynomial of β over F . Hence, α and β have the same minimal polynomials
(2) =⇒ (1): Suppose that the minimal polynomials of α and β are the same, we say p(x). Since

F (α) ∼= F [x]/〈p(x)〉 ∼= F (β)

we have the F -isomorphism θ : F (α) → F (β) with θ(α) = β. Since E/F is a finite normal
extension, by Theorem 8.2.1, E is the splitting field of some f(x) ∈ F [x] over F . We can also
view E as the splitting field of f(x) over F (α) and F (β) respectively. Then, by Theorem 3.2.1,
there exists an isomorphism ψ : E → E which extends θ. It follows that ψ ∈ AutF (E) and
ψ(α) = β.
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� Example 8.5 The complex numbers 3
√

2, 3
√

2ζ3 and 3
√

2ζ23 are all conjugate over Q since they are
roots of the irreducible polynomial x3 − 2 ∈ Q[x]. �

We have seen some nice properties about normal extensions. Since not all finite extensions are normal.
It’s attempting to construct normal extensions related to them. Note taht we want to do it in the
"minimal way" so that the associated group AutF (E) is as small as possible.

Definition 8.2.2 — Normal Closure.
A normal closure of a finite extension E/F is a finite normal extension N/F satisfying the
following properties:
(1) E is a subfield of N
(2) Let L be an intermediate field of N/E. If L is normal over F , then L = N

� Example 8.6 The normal closure of Q( 3
√

2)/Q is Q( 3
√

2, ζ3)/Q �

Theorem 8.2.4
Every finite extension E/F has a normal closure N/F which is unique up to E-isomorphism

Proof: We write E = F (α1, α2, ...., αn)

(Existence): Let pi(x) be the minimal polynomial of αi over F for 1 ≤ i ≤ n. We write
f(x) = p1(x)p2(x)...pn(x) and let N/E be the splitting field of f(x) over E. Since α1, α2, ...., αn
are roots of f(x), N is also the splitting field of f(x) over F . By Theorem 8.2.1, N is normal
over F . Let L ⊆ N be a subfield containing E. Then L contains all αi. If L is normal over F ,
each pi(x) splits over L. Then, N ⊆ L, it follows that L = N

(Uniqueness): Let N/E be the splitting field of f(x) over E defined as above. Let N1/F be
another normal closure of E/F . Since N1 is normal over F and contains all αi, N1 must contains
a splitting field Ñ of f(x) over F , then over E. By Corollary 3.2.2, N and Ñ are E-isomorphic.
Since Ñ is a splitting field of f(x) over F , by Theorem 8.2.1, Ñ is normal over F . Therefore, by
definition of a normal closure, N1 = Ñ . It follows that N and N1 are E-isomorphic.
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9.1 Galois Extensions

Definition 9.1.1 — Galois Extension.
An algebraic extension E/F is Galois if it is normal and separable. If E/F is a Galois extension,
the Galois group of E/F , GalF (E) is defined to be the automorphism group AutF (E).

Definition 9.1.2 A Galois extension E/F is called abelian, cyclic or solvable if GalF (E) has the
corresponding properties.

� Remark 9.1
(1) By Theorem 8.1.1 and Theorem 8.2.1, a finite Galois extension E/F is equivalent to the
splitting field of a separable polynomial f(x) ∈ F [x]
(2) If E/F is a finite Galois extension, by Theorem 7.2.1

[GalF (E)] = [E : F ]

(3) If E/F is the splitting field of a separable polynomial f(x) ∈ F [x] with deg(f) = n, then by
Theorem 7.2.2, GalF (E) is a subgroup of Sn �

� Example 9.1 Let E be the splitting field of (x2−2)(x2−3)(x2−5) ∈ Q[x]. Then E = Q(
√

2,
√

3,
√

5)
and [E : Q] = 8. For ψ ∈ GalQ(E) we have

ψ(
√

2) ∈
{
±
√

2
}

ψ(
√

3) ∈
{
±
√

3
}

ψ(
√

5) ∈
{
±
√

5
}

Since
[GalQ(E)] = [E : Q] = 8
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we have
GalQ(E) ∼= Z/〈2〉 × Z/〈2〉 × Z/〈2〉

�

Definition 9.1.3
Let t1, t2, ...., tn be variables. We define the elementary symmetric functions in t1, t2, ....., tn
as

s1 := t1 + t2 + ...+ tn s2 :=
∑

1≤i≤j≤n
titj .... sn := t1t2....tn

Then it follows that

f(x) = (x− t1)(x− t2)....(x− tn) = xn − s1xn−1 + s2x
n−2 − ....+ (−1)nsn

Theorem 9.1.1 — E.Artin.
Let E be a field and G be a finite subgroup of Aut(E), the automorphism group of E. Let
EG = {α ∈ E : ψ(α) = α ∀ψ ∈ G}. Then E/EG is a finite Galois extension and GalEG(E) = G.
In particular, we have

[E : EG] = |G|

Proof: Let n = |G| and F = EG. For α ∈ E, consider G-orbit of α. i.e.

{ψ(α) | ψ ∈ G} = {α = α1, α2, ....., αm} where αi are distinct

For any ψ ∈ G, ψ permutes the roots {α1, α2, ...., αm}. Since the coefficient of f(x) are symmetric
with respect to αi (1 ≤ i ≤ m), they are fixed by all ψ ∈ G. Then

f(x) ∈ EG[x] = F [x]

To show f(x) is actually the minimal polynomial of α, consider a factor g(x) ∈ F [x] of f(x).
WLOG we can write

g(x) = (x− α1)(x− α2)....(x− αl)

If l 6= m. Since αi (1 ≤ i ≤ m) are in the G-orbit of α, there exists ψ ∈ G such that

{α1, α2, ...., αl} 6= {ψ(α1), ψ(α2), ....., ψ(αl)}

It follows that
ψ(g(x)) = (x− ψ(α1))(x− ψ(α2))......(x− ψ(αn))

Then, if l 6= m, g(x) /∈ F [x]. It follows that f(x) is the minimal polynomial of α over F . Since
f(x) ∈ F [x] is separable and splits over E, E/F is a Galois extension.
Claim: [E : F ] ≤ n
If [E : F ] > n = |G|, we can choose β1, β2, ...., βn+1 ∈ E which are linearly independent over F .
Consider the system

ψ(β1)v1 + .....+ ψ(βn+1)vn+1 = 0 for all ψ ∈ G



48 Chapter 9. Galois Correspondence

of n linear equations in (n+ 1) variables v1, v2, ....vn+1. Then, it has a non-zero solution in E. Let
(γ1, γ2, ....., γn+1) be such a solution which has the minimal number of non-zero coordinates, we
say r. Clearly, r > 1. WLOG we assume

γ1, ..., γr 6= 0 and γr+1, ...., γn+1 = 0

Then we have
ψ(β1)γ1 + .....+ ψ(βr)γr = 0 for all ψ ∈ G

By dividing the solution by γr, we can assume that γr = 1. Also, since (β1, β2, ...., βr) are
independent over F and β1γ1 + ....+ βrγr = 0 (take ψ = id), there exists at least one γi /∈ F (if
γ1, γ2, ...., γr ∈ F , then β1γ1 + ....+ βrγr = 0 implies that γ1 = γ2 = ..... = γr = 0 a contradiction).
Since r ≥ 2, WLOG we can assume that γ1 /∈ F . Choose φ ∈ G such that φ(γ1) 6= γ1. Applying
φ into (1) we get

(φ ◦ ψ)(β1)φ(γ1) + .....+ (φ ◦ ψ)(βr)φ(γr) = 0 for all ψ ∈ G

Since ψ runs through all elements of G, so does φ ◦ ψ. Then we can write above equation as

ψ(β1)φ(γ1) + ..........+ ψ(βr)φ(γr) = 0 for all ψ ∈ G

By subtracting (2) from (1) we get

ψ(β1)(γ1 − φ(γ1)) + ..........+ ψ(βr)(γr − φ(γr)) = 0 for all ψ ∈ G

Since γr = 1, we have γr − φ(γr) = 0. Also Since γ1 /∈ F , we have γ1 − φ(γ1) 6= 0. Then
(γ1 − φ(γ1), γ2 − φ(γ2), , ....γr − φ(γr) = 0, 0, ..., 0) is a non-zero solution of the system This
contradicts the choices of (γ1, γ2, ...., γn+1) having the minimal number of non-zero coordinates, so
[E : F ] ≤ n. We have proved that the E/F is a finite Galois-extension. Then E is the splitting
field of some separable polynomial over F . Also, since

F = EG = {α ∈ E : ψ(α) = α for all ψ ∈ G}

G is a subgroup of GalF (E). By Theorem 7.2.1, we have

n = |G| ≤ |GalF (E)| = [E : F ] ≤ n

It follows that
[E : F ] = n and GalF (E) = G

This completes the proof.

� Remark 9.2 Let E be a field and G a finite subgroup of Aut(E). For α ∈ E, we let

{α1 = α, α2, ..., αm}

be the G-orbit of α. i.e. the set of all conjugates of α.. Then we can see from the proof Theorem
9.1.1 that the minimal polynomial of α over EG is

(x− α1)(x− α2)........(x− αm) ∈ EG[x]
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�

� Example 9.2 omit �

9.2 The Fundamental Theorem

Theorem 9.2.1 — Fundamental Theorem of Galois Theory.
Let E/F be a finite Galois extension and G = GalF (E). There is an order reversing bijection
between the intermediate fields of E/F and the subgroup of G. More precisely, let Int(E/F )
denote the intermediate fields of E/F and Sub(G) the set of subgroups of G. Then, the maps

Int(E/F )→ Sub(G), L 7→ L∗ := GalL(E)

and
Sub(G)→ Int(E/F ), H 7→ H∗ := EH

are inverse of each other and reverse inclusion relation. In particular, for L1, L2 ∈ Int(E/F ) with
L2 ⊆ L1, H1, H2 ∈ Sub(G) with H2 ⊆ H1, we have

[L1 : L2] = [L∗1 : L∗2] and [H1 : H2] = [H∗1 : H∗2 ]

Proof: Let L ∈ Int(E/F ) and H ∈ Sub(G). We recall Theorem 7.3.1 which states that if
G1 = GalF1(E1), then EG1

1 = F1, so we have

(L∗)∗ = (GalL(E))∗ = EGalL(E) = L

Also by Theorem 9.1.1 states that if G1 ⊆ Aut(E1) then Gal
E
G1
1

(E1) = G1. Then we have

(H∗)∗ = (EH)∗ = GalEH = H

Then we have
H 7→ H∗ 7→ H∗∗ = H and L 7→ L∗ 7→ L :∗∗= L

In particular, the maps L 7→ L∗ and H 7→ H∗ are inverse of each other. Let L1, L2 ∈ Int(E/F ).
Since E/F is the splitting field of some separable polynomial f(x) ∈ F [x], E/L1 and E/L2 are
also Galois extensions since E is the splitting field of f(x) over L1 and L2 respectively. We have

L2 ⊆ L1 =⇒ GalL1(E) ⊆ GalL2(E) i.e. L∗1 ⊆ L∗2

Also
[L1 : L2] =

[E : L2]

[E : L1]
=

[GalL2(E)]

|GalL1(E)|
=
|L∗2|
|L∗1|

= [L∗2 : L∗1]

For H1, H2 ∈ Sub(G) we have

H2 ⊆ H1 =⇒ EH1 ⊆ EH2 i.e. H∗1 ⊆ H∗2
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Also

[H1 : H2] =
|H1|
|H2|

=
[GalEH1 (E)]

GalEH2 (E)
=

[E : EH1 ]

[E : EH2 ]
= [EH2 : EH1 ] = [H∗2 : H∗1 ]

which completes the proof.

� Remark 9.3 omit �

Proposition 9.2.2
Let E/F be a finite Galois extension with G = GalF (E). Let L be an intermediate field. For
ψ ∈ G we have

Galψ(L)(E) = ψGalL(E)ψ−1

Proof: For any α ∈ ψ(L), ψ−1(α) ∈ L. If ψ ∈ GalL(E), we have

φψ−1(α) = ψ−1(α), thus ψφψ−1(α) = α

It follows that
ψφψ−1 ∈ Galψ(L)(E) for all φ ∈ GalL(E)

so
ψGalL(E)ψ−1 ⊆ Galψ(L)(E)

Since ∣∣ψGalL(E)ψ−1
∣∣ = |GalL(E)| = |E : L| = |E : ψ(L)| =

∣∣Galψ(L)(E)
∣∣

The third equality above can be seen by considering the basis of E over L. It follows that

Galψ(L)(E) = ψGalL(E)ψ−1

which completes the proof.

The following theorem gives a criterion about when L/F is a Galois extension

Theorem 9.2.3
Let E/F , L, L∗ be defined as Theorem 9.2.1. Then L/F is a Galois extension if and only if L∗

is a normal subgroup of G. In this case

GalF (L) ∼= G/L∗

Proof: Note that

L/F is normal ⇐⇒ ψ(L) = L for all ψ ∈ GalF (E)

⇐⇒ Galψ(L)(E) = GalL(E) for all ψ ∈ GalF (E)

⇐⇒ ψGalL(E)ψ−1 = GalL(E) for all ψ ∈ GalF (E) by Prop 9.2.2
⇐⇒ L∗ = GalL(E) is a normal subgroup of G
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If L/F is a Galois extension, the restriction map

G = GalF (E) −→ GalF (L) ψ 7→ ψ |L

is well defined. Moreover, it is surjective and its kernel is GalL(E) = L∗, then

GalF (L) ∼= G/L∗



10. Cyclic Extensions

We recall that if E/F is a Galois extension, we say E/F is cyclic if GalF (E) is cyclic.

Lemma 10.0.1 — Dedekind’s Lemma.
Let K and L be fields and let ψi : L → K be distinct non-zero homomorphisms (1 ≤ i ≤ n). If
ci ∈ K and

c1ψ1(α) + c2ψ2(α) + .................cnψn(α) = 0 ∀α ∈ L

then c1 = c2...... = cn = 0

Proof: Suppose the statement is false, i.e. there exists some c1, c2, ...., cn ∈ K, not all 0, such that

c1ψ1(α) + c2ψ2(α) + .................cnψn(α) = 0 ∀α ∈ L

Let m ≥ 2 be minimal positive integer such that

c1ψ1(α) + c2ψ2(α) + .................cmψm(α) = 0 ∀α ∈ L (∗)

Since m is minimal, we have ci 6= 0 (1 ≤ i ≤ m). Since ψ1 6= ψ2, we can choose β ∈ L such that
ψ1(β) 6= ψ2(β). Moreover, since ψ1 is surjective, we can assume ψ1(β) 6= 0. By (∗), we have

c1ψ1(αβ) + c2ψ2(αβ) + .................cmψm(αβ) = 0 ∀α ∈ L

By dividing the above equation by ψ(β). We have

In the previous chapter, we see the example of E being the splitting field of x5 − 7 over Q. Then
E = Q(α, ζ5) with α = 5

√
7 and ζ5 = e

2πi
5 . We recall that E is a simple extension of Q(ζ5). Moreover,
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its Galois group GalQ(ζ5)(E) ∼= Z/〈5〉, which is cyclic. This example is a special case of the following
general theorem.

Theorem 10.0.2
Let F be a field and n ∈ N. Suppose ch(F ) = 0 or p with p - n. Assume also that xn−1 splits over F

(1) If the Galois extension E/F is cyclic of degree n, then E = F (α) for some α ∈ E with
αn ∈ F . In particular, xn − αn is the minimal polynomial of α over F

(2) If E = F (α) with αn ∈ F , then E/F is a cyclic extension of degree d with d | n and
αd ∈ F . In particular, xd − αd is the minimal polynomial of α over F

Proof: Let ζn ∈ F be primitive n-th root of unity. i.e. ζnn = 1 and ζdn 6= 1 for any
1 ≤ d < n. Note that since ch(F ) = 0 or p with pn, xn − 1 separable. Then 1, ζn, ζ

2
n, ....ζ

n−1
n are

all distinct.

(1) Let G = GalF (E) = 〈ψ〉 ∼= Cn, the cyclic group of order n. Apply Dedekind’s Lemma
ti K = L = E, ψi all elements of G, and c1 = 1, c2 = ζ−1n ,......,cn = ζ

−(n−1)
n . Since ci 6= 0 for

1 ≤ i ≤ n, there exists u ∈ E such that

α = u+ ζ−1n ψ(u) + ....+ ζ−(n−1)n ψn−1 6= 0

we have
1(α) = α ψ(α) = αζn ψ2(α) = aζ2n ..... ψn−1(α) = αζn−1n

Then α, αζn, ....., αζn−1n n are conjugate to each other. i.e. they have the same minimal polynomial
over F , say p(x). Since α, αζn, ...., αζn−1n are all distinct, it follows that deg(p) = n. Also, since
p(x) ∈ F [x],

p(0) = ±α(αζn).......(αζn−1n ) = ±αnζ
n(n−1)

2
n ∈ F

Since ζn ∈ F , αn ∈ F , since α is a root of xn − α∈F [x] and deg(p) = n, we have p(x) = xn − αn.
Moreover, since F (α) ⊆ E and [F (α) : F ] = deg(p) = n = [E : F ], we have E = F (α).

(2) Suppose αn ∈ F , let p(x) ∈ F [x] be the minimal polynomial of α over F . Since α is a
root of xn − αn ∈ F [x], p(x) | (xn − αn). Then the roots of p(x) are of the form αζin for some i
and we have

p(0) = ±αdζkn for some k ∈ Z and d = the number of roots of p(x) = deg(p)

Since p(0) ∈ F and ζn ∈ F , it follows that αd ∈ F . Since xd − αd ∈ F [x] has α as a root.
p(x) | (xd − αd). Since deg(p) = d and p(x) is monic, we have p(x) = xd − αd.
Claim:d | n
Suppose not, we say n = qd+ r with q ∈ Z and 0 < r < d. Since αd, αn ∈ F , we have

αr = αn−qd = (αn)(α−d)q ∈ F
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Since αr ∈ F , α is a root of xr − αr ∈ F [x]. It follows that p(x) | (xr − αr), a contradiction since
deg(p) = d > r. Thus d | n, write n = md, since p(x) = xd − αd, the roots of p(x) are

α, αζmn , αζ
2m
n , ......, αζ(d−1)mn

Since ζn ∈ F , E = F (α) is the splitting field of the separable polynomial p(x) over F , then Galois.
If ψ ∈ G = GalF (E) satisfies ψ(α) = αζmn , then G = 〈ψ〉 ∼= Cd. Then, E/F is a cyclic extension
of degree d.

When the degree of the polynomial and the characteristic of the base field are both p, the criterion
for cyclic extension is a bit more complicated.

Theorem 10.0.3
Let F be a field with ch(F ) = p, where p is prime.

(1) If xp − x − a ∈ F [x] is irreducible, then its splitting field E/F is a cycylic extension of
degree p

(2) If E/F is a cyclic extension of degree p, then E/F is the splitting field of some irreducible
polynomial xp − x− a ∈ F [x]

Proof:
(1) Let f(x) = xp − x− a and α a root of f(x). Then since ch(F ) = p

f(α+ 1) = (α+ 1)p − (α+ 1)− a = αp + 1− α− 1− a = f(α) = 0

i.e. α + 1 is also a root of f(x). Similarly, α + 2, α + 3, ...., α + (p− 1) are roots of f(x). Since
f(x) has at most p distinct roots,

α, α+ 1, α+ 2, ...., α+ (p− 1)

are all roots of f(x). It follows that E = F (α, α + 1, , ...., α + (p − 1)) = F (α) and [E : F ] =
deg(f) = p. Since Cp is the only group of order p, we have GalF (E) ∼= Cp. Indeed, GalF (E) = 〈ψ〉,
where

ψ : E → E, ψF = 1F α 7→ α+ 1

(2) Let G = GalF (E) = 〈ψ〉Cp. Apply Dedekind’s Lemma to K = L = E, ψi all elements of G
and c1 = c2 = ..... = cp = 1. Since ci 6= 0 for 1 ≤ i ≤ p, there exists some v ∈ E such that

β := v + ψ(v) + ψ2(v) + .....+ ψp−1(v) 6= 0
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Since ψi(β) = β for all ψi ∈ G for 0 ≤ i ≤ p− 1, β ∈ F . Let u = v
β , since β ∈ F we have

u+ ψ(u) + ψ2(u) + .....+ ψp−1(u)

=
v

β
+ ψ2

(
v

β

)
+ .....+ ψp−1

(
v

β

)
=
v + ψ(v) + ψ2(v) + .....+ ψp−1(v)

β

=
β

β

= 1

Set
α := 0 · u− 1ψ(u)− 2ψ2(u)− .....− (p− 1)ψp−1(u)

Then
ψ(α) = −ψ2(u)− 2ψ3(u)− ....− (p− 1)ψp(u)

Then
ψ(α)− α = ψ(u) + ψ2(u) + .....+ ψp−1(u) + ψp(u) = 1

i.e. ψ(α) = α+ 1, since ch(F ) = p, we have

ψ(αp) = ψ(α)p = (α+ 1)p = αp + 1

It follows that
ψ(αp − α) = ψ(α6p)− ψ(α) = (αp + 1)− (α+ 1) = αp − α

Then αp − α is fixed by ψ. Since G = 〈ψ〉, it follows that a = αp − α ∈ F and α is a root of
xp − x− a ∈ F [x]. Since [E : F ] = p, [F (α) : F ] is a factor of p. Since α /∈ F (as ψ(α) = α+ 1)
and p is a prime, we have [F (α) : F ] = p and E = F (α). Since [F (α) : F ] = p, xp − x− a ∈ F [x]
is the minimal polynomial of α over F
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11.1 Radical Extensions
Definition 11.1.1
A finite extension E/F is radical if there exists a tower of fields

F = F0 ⊆ F1 ⊆ F2 ⊆ .... ⊆ ....Fm = E

such that Fi = Fi−1(αi) and αdii ∈ Fi−1 for some di ∈ N (1 ≤ i ≤ m)

Lemma 11.1.1
If E/F a finite separable radical extension, then its normal closure N/F is also radical.

Proof: Since E/F is a finite separable extension, by Theorem 8.1.4 E = F (β) for some
β ∈ E. Since E/F is a radical extension, there is a tower

F = F0 ⊆ F1 ⊆ F2 ⊆ .... ⊆ ....Fm = E

such that Fi = Fi−1(αi) and αdii ∈ Fi−1 for some di ∈ N. Let p(x) ∈ F [x] be the minimal
polynomial of β and let β = β1, β2, ...., βn be roots of p(x). By the definition of normal closure
and Theorem 8.2.1, N = E(β2, β3, ..., βn) = F (β1, β2, ..., βn). Also, there is an F−isomorphism

σj : F (β)→ F (βj), β 7→ βj , ∀j = 2, 3, ...., n

Since N can be viewed as the splitting field of p(x) over F (β) and F (βj) respective, by Theorem
3.2.1, there exists ψj : N → N which extends σj (2 ≤ j ≤ n). Then, ψj ∈ GalF (N) and



11.2 Radical Solutions 57

ψj(β) = βj . We have the following tower of fields

F = F0 ⊆ F1 ⊆ F2 ⊆ .... ⊆ Fm = E = F (β1) = F (β1)ψ2(F0)

= F (β1)ψ2(F1) ⊆ F (β1)ψ2(F2) ⊆ .... ⊆ F (β1)ψ2(Fm) = F (β1, β2) = F (β1, β2)ψ3(F0)

⊆ F (β1, β2)ψ3(F1) ⊆ .....
⊆ .... ⊆ F (β1, β2, .., βn) = N

Note that since Fi = Fi−1(αi) and αdii Fi−1, we have

F (β1, β2, ...., βj−1)ψj(Fi) = F (β1, β2, ..., βj−1)ψj(Fi−1(αi))

= (F (β1, β2, ...., βj−1)ψj(Fi−1))(ψj(αi))

and (ψj(αi))
di = ψj(α

di
j ) ∈ ψj(Fi−1), then N/F is also radical extension.

� Remark 11.1 By Theorem 11.1.1, to consider a finite separable radical extension, we could
instead consider its normal closure, which is Galois. �

Definition 11.1.2
Let F be a field and f(x) ∈ F [x]. We say f(x) is solvable by radicals if there exists a radical
extension E/F such that f(x) splits over E

� Remark 11.2 It’s possible that f(x) ∈ F [x] is solvable by radicals, but splitting field is not a radical
extension (see Assignment 11, Question 2) �

� Remark 11.3 We recall that an expression involving only +,−, ∗,∇·, n√. Let F be a field and
f(x) ∈ F [x] be separable. If f(x) is solvable by radicals, by the definition of radical extensions,
f(x) has a radical root. Conversely, if f(x) has a radical root, it’s in some radical extension E/F .
By Lemma 11.1.1, the normal closure N/F of E/F is radical. Since f(x) splits over N , f(x) is
solvable by radicals. �

11.2 Radical Solutions

Lemma 11.2.1
Let E/F be a field extension and let K,L be intermediate fields of E/F . Suppose that K/F is a
finite Galois extension. Then KL is a finite Galois extension of L and GalL(KL) is isomorphic to
a subgroup of GalF (K).

Proof: Since K/F is a finite Galois extension, K is the splitting field of some f(x) ∈ F [x]
over F . Since F ⊆ L, KL is the splitting field of f(x) over L, then Galois. Consider the map

Γ : GalL(KL)→ GalF (K), ψ 7→ ψ |K
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Note that ψ ∈ GalL(KL) fixes L, then F . Also, since K is a Galois extension. ψ(K) = K, then Γ
is well-defined. Moreover, if ψ |K= 1K , then ψ is trivial on K and L. Then, ψ is trivial on KL.
This shows that Γ is an injection. Then, GalL(KL) ∼= Im Γ, a subgroup of GalF (K).

Definition 11.2.1
Let E/F be the splitting field of a separable polynomial f() ∈ F [x]. The Galois group of f(x)
is defined to be GalF (E), denoted by Gal(f).

Theorem 11.2.2
Let F be a field with ch(F ) = 0 and f(x) ∈ F [x] \ {0}. Then f(x) is solvable by radicals if and
only if its Galois group Gal(f) is solvable.

Proof: =⇒ Suppose that f(x) is solvable by radicals, i.e. f(x) splits over some extensions
E/F satisfying

F = F0 ⊆ F1 ⊆ F2 ⊆ ..... ⊆ Fm = E

with Fi = Fi−1(αi) and αdii ∈ Fi−1 for some di ∈ N. By Lemma 11.1.1, WLOG we can assume
E/F is Galois. Then, E/F is the splitting field of some f̃(x) ∈ F [x]. Let

n =
m∏
i=1

di

Let L/E be the splitting field of xn − 1 over E and ζn ∈ L a primitive n-th root of unity. Set
K = F (ζn) and we have L = E(ζn) = KE. Define

Ki = KFi = Fi(ζn)

Then we have

F ⊆ F (ζn) = K = K0 ⊆ K1 ⊆ .... ⊆ Km−1 ⊆ Km = Fm(ζn) = L

Since Fi = Fi−1(αi), we have Ki = Ki−1(αi). Since αdii ∈ Fi−1 ⊆ Ki−1 and ζn ∈ Ki−1. (thus

ζdi = ζ
n
di
n ). By Theorem 10.0.2, Ki/Ki−1 is a cyclic Galois extension. Note that L is the splitting

field of f̃(x)(xn − 1) over F (also over Ki). Hence, L/F (also L/Ki) is Galois. We have

G = GalF (L) ⊇ GalK0(L) ⊇ GalK1(L) ⊇ .... ⊇ GalKm−1(L) ⊇ GalKm(L) = {1}

Since Ki/Ki−1 is Galois extension, by Theorem 9.2.3, GalKi(L)CGalKi−1(L) and we have

GalKi−1(L)/GalKi(L) ∼= GalKi−1(Ki)

which is a cyclic group, then abelian. Also we have

GalF (L)/GalK0(L) = GalF (L)/GalK(L) ∼= GalF (K) = 〈Z/〈n〉)∗
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is abelian. Then, GalF (L) is solvable. Let Ẽ be the splitting field of f(x), which is a subfield of L.
Since Ẽ/F is a Galois extension, by Theorem 9.2.3 we have

Gal(f) = GalF (Ẽ) ∼= GalF (L)/GalẼ(L)

Since Gal(f) is a quotient group of the solvable group GalF (L), by Theorem 6.1, Gal(f) is
solvable.

⇐= Suppose G = Gal(f) is solvable. Let E/F be the splitting field of f(x) and |G| = n.
Let L/E be the splitting field of xn − 1 over E and ζn ∈ L a primitive n-th root of unity. Set
K = F (ζn) and we have L = E(ζn) = KE. Since L = KE and E/F is a finite Galois extension, by
Lemma 11.2.1 L/K is a finite Galois extension and H = GalK(L) is isomorphic to a subgroup
of G. By Theorem 6.0.1, H is solvable, we write

H = H0 ⊇ H1 ⊇ H2 ⊇ ..... ⊇ Hm = {1}

where HiCHi−1 and Hi−1/Hi
∼= Cdi , a cyclic group of order di (1 ≤ i ≤ m). Since H is a subgroup

of G, we have di | n. Let Ki = H∗i = LHi (0 ≤ i ≤ m), then GalKi(L) = Hi. We have a tower of
fields

F ⊆ F (ζn) = K = K0 ⊆ K1 ⊆ K2 ⊆ .... ⊆ Km−1 ⊆ Km = L = E(ζn)

Since HiCHi−1, by Theorem 9.2.3, Ki/Ki−1 is Galois and GalKi−1(Ki) ∼= Hi−1/Hi
∼= Cd. Since

ζn, then ζdi = ζ
n
di
n , is Ki−1. By Theorem 10.0.2, there exists αi ∈ Ki s.t.

Ki = Ki−1(αi) and adii ∈ Ki−1

Moreover, we have
K0 = K = F (ζn) and ζnn = 1 ∈ F

It follows that L/F is a radical extension. Since all roots of f(x) are in E, then in L, we conclude
that f(x) is solvable by radicals

Proposition 11.2.3
Let f(x) ∈ Q[x] be an irreducible polynomial of prime degree p. If f(x) contains precisely two
non-real roots in C, then Gal(f) ∼= Sp

Proof: We recall that the symmetric group Sn can be generated by cycles (12) and (123....n).
Then, to show Gal(f) ∼= Sp, it suffices to find a p-cycle and 2-cycle in Gal(f). Since deg(f) = p, by
Theorem 7.2.2, Gal(f) is a subgroup of Sp. Let α be a root of f(x). Since f(x) is irreducible of
degree p, we have [Q(α) : Q] = deg(f) = p. Then we have p | |Gal(f)|. By Cauchy’s Theorem,
there exists an element of Gal(f) which is of order p. i.e. a p-cycle. Also, the complex conjugate
map σ(a+ bi) = a− bi will interchange two non-real roots of f(x) and fixes all real roots. Then, it
is an element of Gal(f) which is of order 2. i.e. a 2-cycle. By changing notetion, if necessary, we
have (12), (12.....p) ∈ Gal(f). It follows that Gal(f) ∼= Sp
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� Example 11.1 Consider f(x) = x5 + 2x3 − 24x − 2 ∈ Q[x] which is irreducible by Eisenstein’s
Criterion with p = 2. Since

f(−1) = 19 f(1) = −23 lim
x→∞

f(x) =∞ lim
x→−∞

f(x) = −∞

there are at least 3 real roots of f(x). Let α1, α2, ..., α5 be roots of f(x). i.e. f(x) = (x−α1).....(x−α5).
By considering the coefficients of x4 and x3 terms of f(x) we have

5∑
i=1

αi = 0
∑
i<j

αiαj = 2

From the first sum, we have (
5∑
i=1

αi

)2

=
5∑
i=1

α2
i + 2

∑
i<j

αiαj = 0

It follows that
5∑
i=1

α2
i = −4

Then, not all roots of f(x) are real. It follows that f(x) has 3 real roots and 2 complex root. By Prop
11.2.3, Gal(f) ∼= S5. Since S5 is not solvable, by Theorem 11.2.2 the polynomial x5+2x3−24x−2
over Q is not solvable by radicals. �

From the above example, we see a polynomial of degree 5 is not always solvable by radicals. Since
S5 ⊆ Sn for all n ≥ 5, we have

Theorem 11.2.4 — The Abel-Ruffini Theorem.
A general polynomial f(x) with deg(f) ≥ 5 is not solvable by radicals.
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