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Complex Number

Definition 1.1.1 — Complex Number.
The complex number is defined as

C={a+bi:a,bcR} wherei®=—1
Note: There is no prior distinction between i and —i, then all behavior in C should be invariant under the

map [ «— —I

Question: Is this a good definition?
For any a,b,c,d € R, we have

(a+bi)+ (c+di) = (a+c)+ (b+d)i closed under addition
(a+bi)(c+di) = (ac—bd)+ (bc+ad)i  closed under multiplication
For a,b,c,d € R with ¢,d # 0, we have

a+bi a+bi c—di ac+bd bc—ad,

crdicxdi di Ry + C2+d2l closed under division

The complex number are closed under its operations, then it’s a good defintion.

Definition 1.1.2 — Conjugation.
The conjugation in C is defined as
a+bi=a—bi

where a,b € R.
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Moreover, we have
(a+bi)(a+bi) = (a+bi)(a—bi)=d*+b*

m Remark 1.1 There is a conical bijection between C and R?, that is
a+bi<— (a,b)

we usually can write it as C = R?

Definition 1.1.3 — Norm. The norm in C is defined as
la+bi| = \/(a+bi)(a+bi) =\ a*+ b?

m Remark 1.2 The " for n € N has a cycle 4, that is

cycled

= Remark 1.3 The polar coordinate is defined differently in C and R?.
For (x,y) € R? we have

x=rcos® y=rsin0 r=+/x2+y2=|(xy) 0 = arctan >

For a + bi € C we have

b
a=rcos® b=rsin r=+a>+b>=la+bi| 6 =arctan
a

Behaviors in R and C function operation:
Let x € R and z = a + bi, then

P42+l = P+2z+1
For z,w € C, we insist that %ez =¢% and e 1% = ¢" - €%, then we have

er _— &&= ea-‘rbz =0 ebz

Note that i is a constant, so for y € R we have

d ., 1 d . . a2 . d, . . d . ,
—eV=-.—eV=¢€" and —se"= —(ie”)=i-—eY = i2e
d(iy) i dy dy dy dy
=iely

Therefore, the f(y) = eV satisfies j—; = —f, then by ODE the f must be:

f(y) =Asiny+Bcosy and  f(y) =Acosy— Bsiny
but we can see that £(0) = B = ¢ = 1, f'(0) = ie”® = i. This gives us that
f(y) =e” =cosy+isiny

Therefore, we have
e = ¢aeb = ¢9(cos b+ isinb) = e cos b+ ie® sinb

X
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Basic Topology, Limit, Continuity and Differentiability

Definition 1.2.1 — Distance.
The distance between two points w,z € C is

lw—z (or |z—wl|)

Thus C and R? are isomorphic as metric spaces.

Definition 1.2.2 — Open Set and Closed Set.
An open set S C C is a set such that for every z € S, there exists € > 0 s.t.

lz—w|<e = weS
A set S C Cis closed if C\ S is open.
Definition 1.2.3 — Limit.

Let f: C — C, we say
lim f(z) =L
=W

if Ve > 0,30 > 0s.t. [z—w| < &, then

[f(z)—fw)l <&

m Example 1.1 Calculate the following:

.z
lim -
=0 Z
Let’s try to approach in different directions.
Let z=x € R, then B 3
x X
lim -=lm -=Ilm -=1
z—0 Z x—0 X x—=0 X
Let z =iy for y € R, then we have
iy —i
lim Z=1lim 2 =1lim —2 =—1

so the limit does not exist.

Definition 1.2.4 — Continuity.
A function is continuous at point z if

lim f(z) = f(z0)

720

A function is continuous on a set S if it’s continuous at each point of S

» Example 1.2 Let f: C — C where f(z) = 7. Consider Az = z — 70, then
lim f(z) = lim 2% = lim (z9 +Az)* = lim 23 +220Az + AZ> = 2
720 20 Az—0 Az—0

so f is continuous everywhere.
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Definition 1.2.5 — Correctness, Path-Correctness and Domain.
A set S is connected if S there is no open sets S1,S5, with S1 NS> = 0 such that

SCSUS,

A set S is path-connected if Vz1,z; € S, there exists a path from z; to z; lying in S where a path is the
image of [0, 1] under a continuous

A domain is a path-connected open set.

= Example 1.3 Consider a set S C R? where

S:{<x,sin<i>> :x>0}U{(O,y) .y €R}

is a connected set. n

Path connected — connected

Proof: Let X be a path-connected set and xp € X. For each y € X, find a continuous map f : [0,1] — X
such that
f(0)=xo and f(1)=y

Since an interval is connected and the image of continuous map preserve correctness, then f([0,1]) is
connected. Therefore, y belongs to the largest connected set that contains xp, so X is connected.

Definition 1.2.6 — Differentiability.
Let f:C— Cif
i L) = f(z0)

220 Z—20

exists

we say that f is differentiable at zo and that the limit is its derivative f’(zo)

» Example 1.4 Let f(z) = 7%, then we have

_ 2 2
lim flz20+A27) — f(z0) _ lim 20T 270A7+ Az
Az—0 Az Az—0 Az

= lim 2zp+ Az =2z
Az—0
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» Example 1.5 Let f(z) = |z|, then we have

. fleo+Az) = f(zo) . |20+ Az — |z
hm = hm _—
Az—0 Az Az—0 Az

Let’s consider g(a,b) = v a*> + b?, then we have

dg_ a4 (x)  and de _ b (%)
da  \a>+b? b \a>+b?
Now we try Az =x € R and zo = a+ bi where a,b € R, then
; ; 212 22
o letatbil —latbi V0a+tx?+02—Val+b? _ a by )
x—0 X x—0 X a2+ b2
Similarly, if we let Az = yi for y € R, then by (¥*) we have
\/a2 +(b+y)?-—Va+b 1dg 1 b bi
y%O vi idy ia2+b2 Va2 £ b2
Therefore, f(z) = |z| is differentiable nowhere .

Let f,g: C — C and ¢ € C, then we have
(f+8)@)' =f@)+8@)  (cf)@)=cf(2)
(f8)(2) = (g () +f'(2)8(z)  (fo8)(2) ="(¢(2))¢'(2)

Definition 1.2.7 — Real Part and Imaginary Part.
Let z € C with z = a+ bi where a,b € R, then a and b are call real and imaginary parts of z respectively

denoted Re(z) and Im(z).

= Example 1.6 Let f(z) = Re(z), what’s the differentiability of f?

‘We look at 5
i LG+ = 1)
h—0 h
Let h = h, € R, then
Re(a+h+bi)—Re(a+bi) . a+h.—a

li =lim ——— =1
hxlglo hy hxlino hy
Let h = ih, for h, € R, then
lim Re(a+ihy+ bl) —Re(a+ bi) —im %
hy—0 ihy hy—0 Thy

Therefore, f(z) = Re(z) is differentiable nowhere. Similarly, Im(z) is differentiable nowhere.
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= Remark 1.4

Im(z) = Re(—iz) and =Re(z) —ilm(z)

Il

differentiable nowhere.
Intuition: Differentiable functions are those that acts on z and are blind to Re(z) and Im(z)

» Example 1.7 The function f : C — C with f(z) =z is a reflection by real-axis .
= Example 1.8 The function f : C — C with f(z) = 72, if we write z = a + bi, then
f(z) =2* = (a+bi)* = (a* — b*) +2abi

Recall z = a+ bi = re'®, so let z = re'?, then

. . .1
Question: What is i2?

. iz T .. T .. 1 LN ;
l:€2:COS§+151n§:O+L:z = i2=(e2)2=e¢e

Modulus and Argument

Definition 1.3.1 — Modulus.
Let z = re'® with 0 < r € R and 6 € R. The modulus (or magnitude or absolute value) of z is r = |z|

Definition 1.3.2 — Argument.
Let z = re’® with 0 < r € R and 8 € R. The argument of z is 8 = arg(z)

m Remark 1.5 The argument of z is not unique. That’s because
i=e'7 =3 = 547 — = 5 for ez

We also note that

i— 3t o i {ei(%+2n)’ei(%+4ﬂ)} _ {e%,e%ﬂ}



1.3 Modulus and Argument

More generally, if n > 0 and n € Z, z = re'®, then

1 i1 1 .6 1 .e+2nr 1 ;6+dmw 1 ;6+2(=-lz
zn = (re"”)n = qrne'n rne n rnet n rne' n

so any non-zero z € C, has exactly n distinct n" roots:

1 ;0+2kn

rnet n where 0 <k <n




Holomorphic Function

Definition 2.1.1 — Holomorphic.
If f: C — C is differentiable on a domain D, we say f is holomorphic on D. Also called (complex)
analytic regular.

Sloppy terminology warning: A function is said holomorphic at point z if it is holomorphic on some
open set containing zg

Let f : C — C be holomorphic on a domain D and let z € D, then

o D) = £

, —
f2) = lim ; extsts
Consider h = h, € R, then (
0  tim £EHh) 1)
fz) = lim I
and let z = x + iy, then

h—0 hy



2.1 Holomorphic Function 11

Let f(z) = f(x+iy) = u(x,y) + iv(x,y), where u,v : R> — R, then

u(x+hy,y) +iv(x+hy,y) —u(x,y) —iv(x,y)

/ 0 _ 1
f(x+iy) i, .
— 111’1’1 u(x+hx7y)_u(x7y) +l hm V(X‘i‘hx’y) _v(x7y)
he—0 hy he—0 hy
Ju Jdv
= o
= f(x+iy)

Now let h = ih, where h, € R, then

u(x,y+hy) +iv(x,y+hy) —u(x,y) —iv(x,y)

/ SN 1s
b = i a
_ u(x,y—i-h.y) —u(x,y) © - lim zv(x,y—i-h.y) +iv(x,y)
hy—0 ihy hy—0 ihy
RO
idy dy
_9v_ou
“oy oy
Therefore, we have
P VN B O VRN VIR R
ATI= 9% lax_ay lay ox dy ox  dy

These are the Cauchy-Riemann equations. If f = u+ iv is holomorphic on D, then u and v satisfy the
CR equations on D.

= Example 2.1 Let f be holomorphic on a domain D and let v(x,y) = Im(f) = xy on D, find u(x,y). Let
f=u-+iv, then

Ju Jdv and Ju Jdv
— = =X _—_—= =
dx dy dy dx Y
so that 5 5 | .
l = l = — = — 2 — —— 2
P =Xx 7y y = u 2x +Ci(y) u 2y + G (x)
This gives us that
1
u(x,y) = Exz — Eyz +C
so we have
1
fletiy)= (2x2 -5 +C> +xyi
Note that ) .
(x+iy)® x =y +2xyi (1, 1, _
> = > =33 +C | +xyi
then
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where z = x4+ iy "

= Example 2.2 Let f be holomorphic on a domain D and let Re(f) = x?y. Let z = x +iy and f(x+iy) =
u(x,y) +iv(x,y), u(x,y) = x2y. Then we have

Jdv  du
— == =2xy = v:/nydy:xy2+ Ci(x)
8y ox N——
cause contradiction
v u 1
==y = v:/xzdx:fxﬁ— Ca(y)
dx ay 3 N
cause contradiction
this implies that there is no such v exists, so this is a contradiction, there is no such function f. n

B gu_ov v ou g
fz*ax laxiay layiay "ox T~ ox lay

m Example 2.3 Let f(z) = €%, so consider
flx+iy) = e"e” = e*- (cos(y) +isin(y)) = e*cos(y) +ie*sin(y)
Then
v
dx

Let u,v : R? — R has continuous particle derivatives at (xo,yo) which satisfy

Ju dv u v

dx  dy dy  dx
at (xo,y0). Then f(x+iy) = u(x,y) +iv(x,y) is holomorphic at zo = xo + iyo
Proof: Let D C C be domain with zg € D. Let z =x+iy € D. Then

() = i, 30) + (530 52 (r030) = 15) ) + 030 ( 57 00— xt) )

where €, & are continuous at (xo,yo) and € (xo,y0) = € (x0,y0) = 0. Similarly, we have

v

w(53) = vl 0)+ (x30) (55 Goo) = ex(1) ) + 0 =30) (51 ) — ) )

SO

e+ i9) = x)-+v(53) = o) + = 20) (5 (o) +i5% G +6(2))
where
£(2) = T2 (e +ie3) + 220 (e + i)

Z—20 Z—20
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satisfying € continuous at zo with €(z9) — 0. Then

= 0 0 0 0
lim 1@~ 1) _ lim 2- (Xo,yo)+i(7: (x0,y0) +&(z) = 871; (xojyo)Jria*: (x0,0) = f'(z0)

=0 Z2—20 7—20 dX

= Example 2.4 Let f(z) =Zso f(x+iy) =x—iy sou=xand v = —y. Note that
du du dv

v
=1 F o= 5=0="3

This holds nowhere, so f is holomorphic nowhere

= Example 2.5 Let f(z) =1 so

i 1 x—iy x—iy X ) y
flr+iy) = x+iy x—iy x2+yr  x24y? l(xz—i—yz

Then we have

du  y*—x av y? —x? Ju  —2xy v —2xy

HWHE B @ h @) @

so f is holomorphic everywhere except {0}

Note: f(z) = % =z % (*)

Let f,g : C — C holomorphic at zg with g(z¢) # 0, then
f

= is holomorphic at z
8

The converse is false because of the Example 1.13, so let f be holomorphic, 4 is not holomorphic, then
I is holomorphic at z while /(z) # 0.

» Example 2.6 Let f(z) = % and z = re'%, then

0y __ - —i0
flret) = re®
Let z = re'®, 79 = rpe'® and f(z) be holomorphic and let f(z) = u(r,0) +iv(r,8) we have
720 Z—20

First fix 8 = 6y and r — rg, then

£ (re®) = tim 7 80) (5 80) —ulro. &) = (o, &)

r—ro rei® — rpei®
T, u(r,6p) —u(ro, o) n iv(r, 60) —v(ro, 6o)
r—ro r—ro r—ro

; d d
" <8i (Vo,9o)+ia*: (rojeo))
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Next let r = rg and 8 — 6, so similarly we have

210 _ oo

f/(roeie):i lim [M(Foﬁg:g(()roﬁo)+iV(ro,96):;iro790)]( 6 — 6o )

~ o\ 26 " 'oe

_ L g(dv_.ou
—7¢ (98 o0

= f'(re")

(o
—¢ or lar

Therefore, we have

du 1dv v 1 du

ar  raoe ar  raé

Polar Form of CR-Equation "

m Example 2.7 Consider

so we have
(r,0) = r+ cos [ & (,0) = sin
r,0)=rn — r,0) =sin| —
u(r, S " v(r, S "
so that
ar n n) radeé
and
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Definition 2.1.2 — Branch and Principal Branch.
Let’s define _
Arg(re®) =6 —r<0<m

This is a branch of the multvalued function arg. In particular, Arg is called the principal branch

Other breanches: ' _
f(ré®)=60 mw<6<3m=Arg(re’®)+2n

so we have the value
Arg(z)+2nm for meZ

is a branch of arg(z)

Consider the branches 71 = rie'n for —1 < 67

Question: Where is this function holomorphic?

Answer: This function is not continuous along Arg(z) = 7, but it’s holomorphic on C \ R<, this is called
branch cut

-0
an

a Example 2.8 The function f(re'®) = rie
on C\ R

for —m < 8 < 7 has a branch cut along R<( but holomorphic

We use branches in R as well: v/4 = 2 because /- means principal branch of the function X
We can put a branch cut somewhere else:

f(re®) = rieln  for 0<0<2m

m Remark 2.1 Some times we can define a branch cut that is not a straight line.

m Example 2.9 Let’s consider the log function, that is
log(z) = log <rei9) =log(r) +log (e’g) =log(r) +i0 = In|z| +iArg(0) + 2mim = In |z| + iArg(z) + 27wim
for m € Z. Use log for the multivalued function and log for the principal branch. That is

log(z) = log|z| + iArg(z) = log|z| +2mim

formeZ n

m Example 2.10 Let’s consider log <Z%), so we have

log(z%) = 10g<r%ei ) =1In

(SIS

6 1 1
rz —HE = E(ln\z\ +i0) = Elog(z)
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m Remark 2.2 Note that for w,z € C:

log(wz) # log(w) +log(z)

in general. We can see that

log(e%e%) = _2m #* pd = @—i- 2m
3 3 3 3
That is because of the branches we use.
= Remark 2.3 ) ) ) )
cos(y) = L te” sin(y) = L —e”
2 2i
are holomorphic.
Moreover ) ) . ) . .
4 sin(z) = 4q (elz _ e_lz> — ie" +ie™™ = eite” = cos(z)
dz dz 2i 2i
and , ) ) ) . .
d d (e“+e™™ e —ie™* —e%4e .
d—zcos(z) =7 ( 5 ) = ) = 5 = —sin(z)

= Remark 2.4 If two holomorphic funcions are equal on "'enough'' of a set, they must agree on their domains.
Definition 2.1.3 — Tangent Function.
1 iz __ ,—iz
tan(z) = ¢ ¢

T2 eitek

and all trig identities carry over in the obvious way.

m Remark 2.5 Trig function are not bounded. Consider cos(iy) for y € R, then
ei(iy) + eii(iy)

jcos(iv)| = |5

so we have |cos(iy)| — e as y — +oo. The sin function is similar. Therefore, cos, sin are unbounded in C.

= Remark 2.6

Z_ ,2Z V4 -z
et —e cosh(z):e—;e

sinh(z) = and sinh(iz) =isin(z)  cosh(iz) = cos(z)

Question: What is i#?
Since log(i) = loge'? = ¥+ 2nk for k € Z, then

_. N i e
i (elog(z)) _ pilogli) _ i-(F+2mk) _ ,—5-2mk

Z2 _ ewlog(z) — i(zw) — ieWk’g(Z) — EWIOg(Z)i(WIOg(Z) = w-

dz dz

as expected.
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Question: How many values does z" have?

For k € Z we have

wo_ ewlog(z) ew(log(z)+27rik) wlog(z) . @2Tikw

Z

When is eZﬂ:ikW — eZn:inwr;
Then are equal when for some n € Z
eZm’kW _

eZnianrZTCin

Consider €% = 1, then e* = 10 = ¥V = ¥ = ¢*¢V implies ¢ = 1 and y = 27n. Now we can see that

kw = nw + m for some m € Z, then
m

W= k—n

) 1 .
for n,m, k € 7, so the powers z" repeats if and only if w € Q. Now if w = g, 50 72 = z¢ = (z”)4 has ¢ distinct

values. If z # 0, we have
1 ifweZ

={q ifw=LeQ

o otherwise

— Rotalion Approximation.
Let f be holomorphic at zp, so that

. Z)—J &
f/(ZO) — hm f( ) f( 0)

= 2—20
The modolus and argument must converge individually.

i F@ = £(0)

Z—20 Z—20

— 1f(z) — f(z0)| = | f' (z0) | Iz — 20l

|f'(z0)| =

nd (1Ot
- 0

arg(f'(z0)) = lim arg
Z—20

720

for some branch of arg holomorphic near z, f(zo), f'(z0) s0

arg(f'(z0)) = arg(f(z) — f(z0)) —arg(z—z0) =  arg(f(z) — f(z0)) ~ arg(f'(z0)) + arg(z — z0)

near zo we have

Fx) = f(z0) + € @ f'(2)] (2~ 20)
this is a roralion of z — z by arg(f’(z0)) and a scaling by |f’(z0)|

= Example 2.11 Consider f(z) =z2 so f(re'®) = r2e20. Let zo = 1 +i = \/2¢'%, s0 f(z0) = 2i and f'(z0) =
21/2¢'% so for small h = z — 7y we have

flzo+h) = f(z0) + ¢/ (20))

= Remark 2.7
If f is differentiable on an open interval (a,b) and f’(x) = 0 on (a,b), then f is constant on (a,b)
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If f is holomorphic on a domain D and f’(z) = 0 for all z € D, then f is constant on D

Proof:
Ju Jdv dv Jdu

1

g 2% eV 9V Lon
flg=0= 8x+l8x dy dy

so that
Ju du dv _dv
ox dy dx dy
so u, v are constant on any horizontal or vertical line segment in D, but D is a domain so it’s open and path
connected. Then any two points in D can be connected by a path of horizontal and vertical line segment, so
u and v are constant on D, that means f = u + iv is constant on D.

0

= Example 2.12 Find a branch of (z2 — 1) holomorphic on |z| > 1
Note that the principal branch of 22 does not work:

e%log(zz—l)
Its branch cut is where 72 — 1 e R withz2—1 < 0. Butletz=2i,s0 72— 1 = -5 < 0.

Consider the principal branch of f(z) = z(1 — Ziz)% its branch cut lies wherever 1 — Ziz < 0 in R, which

s >1inR <= Z<1inR = [¢ <1 .

Smooth Curve

Definition 2.2.1 — Smooth Curve.
A smooth curve in C is the image of the function r : [a,b] — C satisfying:

1. r is continuous and differentiable on [a, D]
2.7 #0on [a,b]
3. r is one to one

= Remark 2.8 The definition of smooth curve results gaps, sharp corners, pausing, retracing and self-
intersection are not smooth curve.

Definition 2.2.2 — Directed Smooth Curve.
A directed smooth curve is a smooth curve with a fixed direction. i.e. The points on the curve are ordered
and and r must trace them in order.

Definition 2.2.3 — Contour.
A contour is a directed piecewise smooth curve. i.e. I' = [Ji_; C; where each C; is directed smooth curve
and the terminal point of C; is the initial point of Cj, .

Definition 2.2.4
A contour is simple if it has no self-intersection



2.2 Smooth Curve 19

Definition 2.2.5
A contour is closed if its initial point coincides with its terminal point.

[| Definition 2.2.6 A simple closed contour is a contour both simple and closed.

‘Dé(;h:\‘\ﬂﬂ: A Contonr 18 S D il } 7
g "SR L_l g /@1 Mt bn -
Simple =%+ héag no A gimple clesed

o . 1 - ) = . ¥d wy " 4 (“"\'&f“
£ = ‘}"é rgec +I o S (EK(.F(JJ’ form i L"‘J@fh’l < HGon e 2 i
{é’l Ih S /a'f\fhﬂ"ﬂj vl th }an\ur\u’ pu:n"') Lot h :huﬂe ard

NS, v FATERN ‘
| Defintion: A conburizs () (losed

| Q[ﬂ:ﬁ; |( |’+5 ;ﬂl;i‘;dl (?:'-)\]’ , ' /,,

3 S Loy
Comades, e

15

‘?(MIHCJ ’ /
\ 54

m Example 2.13 LetI': ri(r) = zot +z1(1 —1) for ¢ € [0, 1] where zp,z; are constants.
Note: Parametrizations are not unique. That means we have

1
r(t) =z0(2t) +z1(1—2t) forte [0,5] r3(t) = zot* +z1(1 —1%) forr € [0,1]

= Example 2.14 Consider I': r(t) = R- " +zo for t € [0,27] .

Definition 2.2.7 If C,(z9) = r- e 4z for t € [0,27] is the circular contour with radius r and center zp,
traversed counterclockwise

= Example 2.15 Consider I' = C; UC, UC; where
Ci:ri(t)=t Cr: n(t)=ti+(1=t) Cz: r3(t)=(1—1)i
where 7 € [0, 1] so we can parametrize I" by
r tel0,1]
rt)=<r tel0,1]
ry tel0,1]
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Theorem 2.2.1 — Jordan Curve Theorem.
A simple closed contour divides C into two disjoint regions, a bounded interior and an unbounded exterior.

Definition 2.2.8
A simple closed contour is positively oriented if its interior is to the left when traversed, negatively
oriented clockwise otherwise.



3. Integration and Series

Integration

Definition 3.1.1 — Partition. Let I" be a directed with initial point wy and terminal point w;. A partition
of I' is a set of points where
Wo = 20, 21,22, ----3Zn = W1

such that for all 0 <i < n, z;1 is further along I than z;.

Definition 3.1.2 — Mesh.
The mesh of a partition is the largest distance between two consecutive points z;,z;+1 along I"

Definition 3.1.3 — Riemann Sum.
Let I" lie on a domain D and let f : D — C. The Riemann sum of f with respect to B, is

f(zi)-(zi—zic1)

N

Sf(Pn) =
1

Definition 3.1.4
f is integrable along I if

lim S(B,) exists
mesh(P,)—0

Definition 3.1.5 — integral.
If f is integrable along I' the integral of f along I is

/r f= lim S(P)

mesh(P,)—0

m Remark 3.1 This definition does not reference a parametrization of I', thus the integral is independent of
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the choice of parametrization of the curve.

Let I parametrized by r : [a,b] — T, then

n—

1
lim Zf(Zi)(Zi+l =)

mesh(P,)—0 =0

Let t9,11,...,t, be the partition of [a,D] s.t. r(t;) = z; and 0 < i < n. This gives us

n—1

lim Y f(r(1)Az

mesh(P,)—0 ;=)

where Af; = t;41 —t; and Az; = z;41 — z;, so that

n—1 n—1 b
lim ZO fr(t)Az; = Algglo;) Flr)r ()AL = / Fr(e)r (t)dt

mesh(P,)—0 ;=

That is

b
/f(Z)dZ:/ flr()r (t)dr very important
I a

m Remark 3.2 Let’s define the integral over a contour. First we consider
I'=I1+I%+... 4T,

where the I'; are smooth directed curves, to be

/Ff:/rlf+/rzf+...+/rnf

The contour integral immediately satisfies the followings

[fve=[r+ e /szz [+ s [er=c[1

for some constant ¢ € C
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» Example 3.1 LetI: 7(¢) = ¢ where € [0, 7], then by Remark 1.14 we have

T T | P | .
/zdz:/ e”(ie”)dt:i/ Aldr =i| —e*| == (#"—e%) =0
r 0 0 2i 0 2

L . T 1 . . 2
/szZ — / (el[)z(ielt)dt — i/ e3ztdt —_ *(63”: _e31~0) __=
r 3 3

0 0

also we have

= Example 3.2 Let C;(0) = r(t) = ¢" fort € [0,27], then by Remark 1.14 we have

2n . 1 .
/ ZdZ:/ e”(ie")dt: *(6‘47”—60) =0
C1(0) 0 2

and

m Example 3.3 Let’sdefine I'; : ri () =t with 7 € [0,1] and "2 : r2(¢) = 1+t with ¢ € [0, 1], then by Remark

1.14 we have
/zzdz = / Zdz+ | Zdz
Jr I JT,

1 1

:/ t2(1)dz+/ (1 +ir)(i)dr
0 0

——g—i-%

— 7373

» Example 3.4 Let Ci(zo) : r(t) = zo + €' for t € [0,27], then by Remark 1.14 we have

2

2 . . . . 2
/ (Z —Zo)ndZ _ / (ZO 4ol — z())”(ie”)dt _ / el dt — i/ et(n-i—z)tdt
Ci(z0) 0 0

0

by solving the integral we get
1

2mi(n+1 0 s .
Ci(20) 0

27i otherwise 27i otherwise

Definition 3.1.6 — Length.
The length of a contour I parametrized by r : [a,b] — I with

/ub ¥ (1)|dr
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Let f be integrable on I" and |f(z)| < M on T, then

' /F F2)dz

[ reoyoal < [ 1reerola= [ ool

Definition 3.1.7 — Primitive.
A function F is primitive (or antiderivative) for a function f on a domain D if F is holomorphic on D and
for all z € D with F'(z) = f(z)

Let f have a primitive F on D and I lie on D, consider

/Ff(z)dz:/FF’(z)dz

Let r: [a,b] — T parametrize I, then

b dF dr /’(b) dF

b
/r F'(2)dz = / FUr0) e = [T Grar= [ G dr=Fr(0) - Flr(a)

by the fundamental theorem of calculus in R

Fundamental Theorem of Calculus in C: If f has a primitive F' on a domain D and I lies in D with
initial point zp and terminal point z, then

[ £@dz=F@)~Fa)

= Example 3.5 Let f(z) = z so it has primitive F(z) = 3z on all of C. Then for I containing from z to zy,

Ifz1 =14iand zp =0, so we get

1o
/dezziz pH=i

= Example 3.6 Let f(z) = % has a primitive log(z), that is any branch of log(z) is a primitive of % on its
domain. so log(z) is primitive of % on the domain C \ R<, then

/rldz =log(i) —log(—i) = log (eiTﬂ) —log (e%m) =iz

but for f(z) = % has no primitive valid on all of C;(0) .
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If f has a primitive on a domain D and I" is a closed contour lying in D, then

/Ff(Z)dz =0

Proof: Note that

/Ff:F(Zl)—F(ZO):F(Zo)—F(zo)ZO

that is primitive implies § f =0

Let f be continuous on a domain D and let

fr-o

for any closed I" lying in D. Then given I'y, I'; in D with the same initial and terminal points, then

[r=]r
I I,
Proof: Note that I'; + (—I'2) is closed, so

Fra” == b 7 =0

Let f be continuous on a domain D such that for I';, I'; in D sharing initial and terminal point

Jo=

then f has a primitive on D

Proof: Fix zg € D and define
F@) = [ £z

where I is a contour lying in D with initial point zyp and terminal point z. This is well-defined by path-
independent (and path-connectedness of D). Now consider

F'(z)= lim F(z+Az)—F(z)
|Az|—0 Az |Az—0 Az

where E is the line segment running from z to z+ Az, that is E : r(t) = z+tAz for ¢ € [0, 1]. Then we have

F'(z) = lim M: lim !

1 1
— tAZ)Azdt = i tAz)dt
Az—0 Az |Az|—0 Az/o flatthz)hz | s /0 flatthz)

Az|—0
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since f is continuous, so

Jim fle+180) = £(2)

so forall € > 036 > 0s.t. as Az < 3, then f(z+1Az) — f(z) < €. Now we can see that

0< lim/fz+tAzdt< hm/f +8dt—hmf() = f(z)

|Az]—0 |Az]—0

Let f be continuous on a domain D, TFAE:

1. f has a primitive on D
2. For all closed contours I lying in D, / f=0
r

3. For any two contours I'j,I; in D that sharing intial and terminal points, then
Jir=
I

Definition 3.1.8 — Cauchy Sequence.
A Cauchy sequence is a sequence {z,},_, such that Ve > 0 3N > 0 such that nj,n, > N

‘Zm _Zn2| <E&

A Cauchy seugence in a compact set S C R" converges to a point in S
Any closed and bounded subset of R” is compact

Let f be holomorphic at zp, then

f(2) = f(20) + f'(20)(z — 20) + &(2) (z— 20)

for some €£(z) satisfying 1i_>m €(z)=0
Z—20

Proof: Let

then take lim.
Z—20
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— Goursat’s Theorem.
Let f be the holomorphic on a domain D and let 7' be a triangle lying D with interior in D then

/Tf(Z)dZZO

Proof: Divide T into four triangles by connecting the midpoints of its sides. Now

Af=Af+Af+Af+nf
Aﬂs4éf

Note that length(T;) < tlength(T) and diam(T;) < 1diam(T). Repeat this process, yielding 7 =T, 71 ..

1 1 (n)

with length(T™) < swlength(T) and diam(T™") < sdiam(T).
Let z,, be a point in the interior of (") for each n, then {z,} is a Cauchy sequence. Then lgn 7, = w where
n—oo

there exists a 7; such that

w lies in the interior of each 7). Since f is hlomorphic at w, then

f@)=fw) = f (W) (z—w)+e()(z—w)

lim £(z) = 0. Now consider
=W

f@dz= | fw)+f(w)(z—w) +e(2)(z—w)dz

T(n) T(n
Note that f(w) has primitive zf(w) and f'(w)(z — w) has primitive J f'(w)(z—w)?* so
L )f(w) +f'(w)(z—w)dz=0
so that

[ f@dz= [ e)—w)dz

Let’s define €, = sup |€(z)| and then

zeT™
am(T™) < - gi
|z—w| <diam(T"") < ?dlam(T)

and

)y < 1 (n)

length(T\") < ﬁlength(T )
so that
1
‘/( )f(z)dz = /( : £(z)(z—w)dz| < Sndiam(T("))length(T(")) < Snﬂdiam(T)length(T)
T T
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thus

1. .
<4" < 4"8,,Edlam(T)length(T) = g,diam (T )length(T)

| r@de <#| [ sz

let n — o and g, — 0, we get

/T(”> f(z)dz| =0 — /T(n) f(z2)dz=0

which completes the proof.
The Goursat’s Theorem also works for retangles and polygons.

If f is holomorphic on an open disk, then f has a primitive on that disk

Proof: Choose zg € D and define
Fz) = /r F)dz

so that
F(z—l—h)—F(z):/Ff(z)dz+/Af+/Df
n =0

so that

| f@dz= 1

as in last lecture.

m Example 3.7 f holomorphic on domain D does not imply f has primitive on D.

Let f(z) = % is holomorphic on
{zeC:1< 7| <2}

and

1
/ —dz =2mi
C(0) 2

Definition 3.1.9 — Homotopic.
LetI';,I; be two contours in a domain D with the same initial and terminal point. I'; is homotopic (or
continuously deformable) if there exists r : [0, 1]> — C satisfying:

1. r is continuous on [0, 1]?

2. For a fixed s, r(s,t) is a parametrization of a contour in D with initial and terminal point shared with
I',1>

3. r(0,7) parmetrizes I'j, r(1,¢) parmetrizes I
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Definition 3.1.10 — Simply Connected.
A domain D is simply connected if any two contours in D sharing initial and terminal point are homotopic
to each other.

Cauchy’s Theorem and its Integration Formula

Theorem 3.2.1 — Cauchy’s Theorem.
Let f be holomorphic on a simply connected domain D and let I" be a closed contour in D, then

=

Proof: I" is homotopic and triangle.

= Example 3.8 Let f(z) = 72, since 72 is entire so by Cauchy’s Theorem,

[r@az= [ @z = /  Pde= 2

» Example 3.9 Let f(z) = z2+1’ so f is holomorphic on C\ {1,—1}, then

/cz(o) f(2)dz = /CE(_l)f(z)dz—l— f(z)dz

Ce(1)

for € € (0,2). Note that

then

1 1 1 1
d:—-/ —d—/ ——dz | = -2mi=mi
/S(l)f(Z)Z 2 Cg(l)Z—lz c£(1)z+1Z 2 : !
| R —
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Similarly, we have

1 1 1 1
/S( )f(Z)dZZE /cg(—1)z—1 —/S( )H—ldz —5-—2711:—%1
ﬁﬁ_z
S0
f(2)dz=0
G(0)

m Example 3.10 Say f has a taylor series at zg:

f(2) = f(z0) +ai(z—20) +a2(z—20)* + .....

Then we get

f(z)dzzl/ f(zo)+a1+az(z 20) + ... |dz

27i rz—20 2wiJr | z—2z0
holomorphic
1
_ () / dz
2mi Jrz—20
= / (ZO.) 2mi
2mi
= f(20)

— Cauchy Integral Formula.
Let f be function holomorphic on a domain Q C C, I' is a jordan curve (closed contour) contained in Q

and whose interior in contained in Q. Let 7y € the interior of I', then

1@,

27rl rz— zo

f(z0) =

Proof: WE can replace I" with C(r) = {z € C : |z—z9| = r} for small enough r, then

@, 1 1@,

2miJrz—z0 © 2mi Jep) z— 20
:L fZO / f
2mi yZ— zo
:f(20)+/ f(z) f(Zo)
) Z—20

We will show that

JRCECN.
C(r) Z—20
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Since

f'(z0) = lim

20

exists and ‘ f(@)—f(z0)
7—20

/C(r) f(Zi:

f(z) = f(z0)

f(z20)

20

Z—20

is bounded on C(r) and its interior Sy, so

dz—0

as r — 0. so since this integral is independent of r and it must equal 0, which complesthes the proof.

» Example 3.11 Say g is holomorphic on 0 < |z| < R, which of the following implies that

/ g(z)dz=0
C(r)

(a) g is holomorphic at 0

(b) g is identically O on 0 < |z| < R
(c) |g| is bounded on 0 < |z| < R

(d) g(z) =2mion0< |z| <R

(e) g is defined and continuouos at 0
(f) im0 g(z) = oo

Answer: (a)(b)(c)(d)(e)

m Example 3.12 LetI"' = {z € C: |z| = 1}, compute
(@ Jp 2Dy

(b) Jr-5dz
(C)fcos(Zﬂ:z)dZ

2z—1

By Cauchy Integral Thm/Formula, (a)(b) are O.

— Cauchy Integral Formula for Derivaives.

Note that (ﬁ), = ﬁ, then the CIF:

fon) = 5 [ L2

S 2miJrz—w

Taking devaritive again:

27i

f,(w)zl_/r &,

(z—w)?

d
d “
Z e dwf(w

)71

—

d [ 1@,

C 2midw Jrz—w

2
2mi

f(z)

rz—w

L [d f@)

2wi Jrdwz—w

dz

dz



32 Chapter 3. Integration and Series

Taking devaritive n times:

f(n) (W) _ n! /F f(Z) dz

~2mi Jr (z—w)rH

so f is infinitely differentiable!

Let f be holomorphic on Q with D = {|z —zo| < R} C €, then

’f(")(Zo)‘ < ”Li”

where M = max | f(z)|.

|z|=r

Proof: Take I' = {|z — z9| = r} then apply prop 3.1.15, then we have
n! f(2) n! / M

— | ——=—dz| < |—= | —dz|=
27171'/1“ (z—z)"*! Z‘ = \2mi Jpm*

Liouvlle Theorem and Maximum Modulus Principle

n! M

. n'M
2mi

Tl

A0 <

r}’l

— Liouivlle.
A bounded entire (holomorphic on C) function is constant.

Proof: By the CIF for derivatives we have |f’(z)| < "'TM for any r > 0, so since M canbe taken inde-
pendent of r, we get | f/(zo)| = 0 for all zg so f is constant.

— Maximum Modulus Principle.
A non-constant holomorphic function on a domain £ cannot chieve its supremum on €. More precisely,
for all zg € Q, there is some z; € Q with | f(z1)| > | f(z0)]

Every non-constant complex polynomials has a root in C

Proof: Let p be a complex polynomial with no root in C, we will show that p is constant. Then we
have % is entire, let
m(r) = max |p(z)|

|z|=r

then m(r) increases as r — oo, so g(r) = ln‘lin]p(z)\ decreases as r — oo, but lim |p(z)| = e is p is not
Z|=r Z—oo0

constant, which they couldn’t true at the same time, so it’s a contradiction. That means p is constant.

= Example 3.13
If f is entire and non-constant, which of the followings are true?
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(a) Image(f) = f(C) must intersect the upper half plane.
(b) Image(f) must intersect every straight line.

(c) Image(f) must intersect every non-empty open set.
(d) Image( f) must contain every point.

Answer: (a)(b)(c)

s Example 3.14
If p is a polynomial satisfying |p(z)| < |e?| for all z, what is p(z)?

Answer: Only p(z) = 0 by taking negative z with |z| large.

— Maximum Modulus Priciple.
Let f be holomorphic on an open set Q. If f achieves its maximum on €, then f is a constant. That is, if
there is some z9 €  such that |f(zo)| > |f(z)| for all z € , then f is constant.

Proof: Let z( be a local max of | f| on Q, let
D={lz—z|<r}CQ
be a disc around zo. Then the Cauchy integral formula says for C(r) = dD = {|z —zo| = r}:

1 f(z ) 1 2”f(10+r€i9)
o dz= —_—
27i Je(r) z— 20 27i rei®

17 fzo+re'®)
C27i Jo rei®

= l./znf(z)de

C27i Jo

flz) = d (20 +re”)

re'do

This gives us that
277:
fel < 5z [ 17140 < max |£6)

zeC(r

with equality iff | f| is constant on C(r) with | f(z0)| = ma(x) | f(z)| because r is arbitrary (as long as D C Q),
zeC(r

we will show f is constant on D. Write f = u + iv then u> +v? is constant on D.
2uuy, +2vv, =0 2uuy +2vvy =0 since u,=v, and u,=—v,

then we get —2uv, 4 2vu, = 0. That is to solve

det=—u?—12

so either u> +v> =0 or u, = vy = 0. The u?> +v*> =0 implies f = 01is a constant or u, = v, =u, =v, =0
implies f is constant. Therefore, f is constant on D, since D is arbitrary so f is constant on €2.
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Morera’s Theorem

— Morera’s Theorem.
If f is continuous on a domain Q with

/Ff(z)dz =0

for all simple closed curves I' C Q whose interiors are contained in £, then f is holomorphic on Q.

Proof: We will find a holomorphic F with F’ = f. This will prove that f is holomorphic. Since holomor-
phicity is local, we can assume that Q = D is a disc. Now choose zp € D we define

= /l_f(z)dz

where IT" is any path from zy to z because D is simply connected, this F' is well defined by hypothesis.

Compute
—}ngzx</f )y - /f dy)

—hm—/f )dy

X—=27—X

—tim ([ LIy [ 1))
o =S

=f(2)+0

F'(z) =lim

X—Z

F(z) — F(x)
—X

dy

because the

f(m) = f(x)

Z—X

/fy —flx dy

<lz—x|
— X

= |f(m) -

where m = the max value of f on (x,z), completes the proof.

— Symmetry Principle.
Let D be a domain symmetric across R, let D D~ I be as indicated. Let f* be holomorphic on DT, f~
be holomorphic on D, both extend continuously to I and f*(z) = f~(z) for z € I, then

(z) z€D*
f@=qft@)=f(2) zel
(@ z€D™

is holomorphic on D.

Proof: Note that if f is continuous on D, then

zeT

<e- (max‘f

‘) -length(T) — 0
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ase€—0

— Schwarz Reflection Principle.
Let D, D™, I as be the ones defined in Lemma 3.1.22. Let f* be holomorphic on D and extend continu-
ously to 7, then there exists f such that f(z) = f*(z) on D" and f is holomorphic on D
Proof: Let f7(z) = f(z), by A2 we have f~ is holomorphic on D™, then apply the Symmetry Prin-
ciple

— Schwarz’s Lemma.
Let D={z€C:|z] <1} and f be holomorphic on D, f(0) =0 and |f(z)| < 1 for all z € D. Then
|f(z)] < |z| forall z € D and |f'(0)| < 1. Furthermore, if |f(z)| = |z| for some 0 # z € D, then f is rotation
f(z) = Az for some constant [A] < 1.

Proof: Let

Note that g is holomorphic on D, since

iy t2 iy FO= — r0

Now consider g on |z| < r < 1, then

|8(2)] < max |g(w)| < max

wl=r wi=r  |w]|

as r — 1. so we have |g(z)| < 1 on D, then for z # 0

<1l = |f@I<]

for z =0 we have [g(0)| = |f'(0)| < 1. If |f(z)| = |z| at some z € D, then |g(z)| = 1, so by maximum
modulus theorem g is constant on D. Let g(z) = A and |z| = 1, then we have f(z) = Az as desired.

m Remark 3.3 If f is holomorphic on domain D, then f is infinitely differentialbe on D

s Remark 3.4 In R, an infinitely differentiable function has a Taylor series representation.

Series

Definition 3.5.1 — Convergent Series.
n

A series Y . ; z, is convergent if lim Z Z; converges.
n—yoo
i=1
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Definition 3.5.2 — Cauchy Series.

A series Y~ z, is Cauchy if /}im Z 7z, =0.
—>00
n=k

Definition 3.5.3 — Uniformly Convergent.
A sequence {f,} is uniformly convergent on a set if Ve > 0, IN >0,Vz€ S, 3L, Vn >0

fn(x) =Ll <&

If f,, — f uniformly on S, then
/ Jo = / f
s S

Definition 3.5.4 — Uniformly Convergent Series.
A series is uniformly convergent if its sequence of partial sum is uniformly convergent.

Definition 3.5.5 — Absolutely Convergent Series.

A series is absolutely convergent if the series Z Zp converges.
n=0

Definition 3.5.6
Let’s define
Di(z0) ={z€C:|z—z2| <r}

be the open disk of radius r centered at zo. Let D,(z9) = D,(z0) UC,(20) be its closure.

Definition 3.5.7
Let {x,} C R, then

limsupx, = lim supxy
N k>n

— Ratio Test.
If limsup Z’;—:‘ < 1, then Z z, converges absolutely. If limsup Z’;—:‘ > 1, then Z z,, diverges.
n=0 n=0

— Root Test.

If lim sup \znﬁ < 1, then then Z Z, converges absolutely. If limsup |zn|% > 1, then Z 7, diverges
n=0 n=0
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— Comparison Test.

If Z x, converges with x,, € R and |z,| < x, for all n, then Z Z, converges absolutely.
n=0 n=0

— Weierstrass M Test.
Let {f,}_, satisfy | f,(z)] <M, forall z € S. If Y M, converges, then ) f,(z) converges uniformly on S

n=1 n=1

n
Proof: Let g,(z) = )_ f(z). then g, is uniformly Cauchy on §
k=0

Definition 3.5.8 — Power Series.

A Power Series about z is a series of the form Z an(z—2z0)" where z, € C
n=0

If a power series Z an(z —z0)" converges at point z with |z — z9| = R, then it converges absolutely on
n=0
Dg(z0) and converges uniformly on any closed subdisk of D,(z)

Proof: Let w € Dg(zp) and |w —zo| < r < R, then

an(w—2z0)" A"
nlr—aifl= foe—ay] -[EES <o ()
N—
—0 sois bounded <M S>—~— .
<k 7<l

oo

Now we can see that M (ﬁ)” is a convergent geometric series so Z a,(w —zp)" converges absolutely by
n=0
comparison. Apply the Weierstrass M-Test to the above to get uniformly convergence on D, (7o)

— Taylor’'s Theorem.
Let f be holomorphic on D,(zp), then for all z € Dg(zo),

Proof: Choose z € Dg(zo) and let |z —z9| < r < R, by Cauchy Integration formula

1 f(w)
&)= W/C‘r(m) w—z "
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for all w € C(z). Then

) S S L i(w)":i f(w)_(((z—zo)" )

w—z (w—z20)—(z—20) w—20 -2 w—z,5\W—20 = w— o)1

Now we have

Fw)- (z—z20)" < e ,f(w)|,|1rnf?\":1' max [fw)] (222 "
(

w —Z())"Jrl weC,(z0)

Since ‘@‘ < 1, then by weierstrass M-test, this series converges uniformly on C,(z9), thus we may
integrate term by term. Then

(z— zo) _y
27[1/ (20) Z n+1 zmnzb/ (20) n+1 —z0)" = Z

Z—ZO

s Remark 3.5 The term "analytic" means expressible as n power series many text will use "analytic" in place
of "holomorphic".

= Example 3.15

o 7" 2
* = — =1 — ...
e ng() | +Z+2!+
with R = o0
oo 2n+1 3 5
. Z Z Ve
= B [ ——
sin(z) ngb( ) D TR
with R = o
oo 2n 2 4
w2 . Tz
cos(z) ngb(—l) 201 =1 2'+4, +.
with R = o
1 .- n 2
7222 =14+z+z7+....
1- ’ n=0
withR=1 n

= Example 3.16 Taylor series for >* about 0, we have

= (22 47> 873
=Z< ‘) =142z o+ 5+
n—o

3!

Converges for |2z| < oo, implies that R = o. .
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3.5 Series
= Example 3.17 Let’s look at ﬁ letw= —%zz, then
2
1 1 . n - ( 1 2>Vl . (_l)n 2n
1241 1-w ;) ;) 2 = on
and ‘%zz‘ < 1 implies |z| < V2,50R=1+/2
= Example 3.18 Taylor series for cos(z) +isin(z) about 0:
oo 2n L) 2n+1 2 3 4 o n_n
Z Z Z 2z i"z
isin(z) = Y (—1)" Y () i e e b=
cos(z) +isin(z) ,;f eI ,;()( Vs~ e iyt ;) n!

m Example 3.19 Recall for r > 0

/‘ ( i 0 n#1
c,(zo)Z ar= 2ni n=-—1

Let f be analytic on Dg(zo), then

z—20)"

= f(n)
=g Lo

uniform convergence on D,(zo) and the convergence is uniform on closed subdisks.
so for all » < R we have

fzdz:/ ay(z—2z0)"'dz = an-/ 7—20)"dz=0
/Cr(zo) () r(ZU)r;) ( 0) ,;) Cr(Zo)( 0)

m Example 3.20 Find a series representation for 5—2 about z = 0.

If f, — f is uniformly on S, then

eiz
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Let f be holomorphic on a domain {z € C: r| < |z—zo| < r2}, then on that annulus, f has a Laurent
Series (generalized Cauchy series)

70 =L antz—2o)"

which converges on the annulus and converges uniformly on closed subannuli.

Definition 3.5.9 — Isolated Singnlarity.
An isolated singnlarity of a function f is a point zp where f is not holomorphic, but where f is holomor-
phic on some punnctured disk 0 < |z —z¢9| < r

= Remark 3.6 If f(z) has zero at zg, then % has singularity at zo.

Definition 3.5.10 — Zero of Order m.
An analytic function f has a zero of order m at 7 if

(Z_(ZZO))m is analytical at zo but % is not.

oo

Equivalently if f(z) = Z the order is the smallest n such that a, # 0
n=0

Definition 3.5.11 — Singularity.
A singularity of f is a point where f is not analytic but is a limit point of the points where f is analytic.

Definition 3.5.12

Let zo be an isolated singularity of f, let Z an(z—1z0)" be the Laurrent series of f at 7o
n=0

If a_,, # 0 but @, = 0 for all n > m, we call zy a pole order of m <= (z—2z9)"f(z) is analytic at
zo but (z—2z0)™ ! f(z) is not

If a_, = 0 for all n > 0, we call this a removable singularity. In this case, we have

f(2) 2# 20
§\2) = }Lrg)f(z) =20

is analytic at zp.

If a_,, # 0 for infinitely many n > 0, we call this essential singularity.

= Example 3.21 Removable singularity examples:
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m Example 3.22 Let a function

f(z)= i an(z—z0)" with a, #0

n—=—m

on a punctured disk 0 < |z —zo| < r. Let I" be a simple, closed positively oriented contour in the annulus with
zp inside the loop, then

/rf(Z)dZZ/r i an(z—20)"'dz = i /ra,,(z—zo)”:27ri~a_1

n=—m n=—m

Definition 3.5.13 — Residue.
Given f, zo, I as before, we define the residue of f at zy to be

Zlm/rf(z)dzzal :reSZO(f)

Definition 3.5.14 — Meromorphic.
A function f is called meromorphic on a domain D if it’s holomorphic on all of D except for a set of

isolated poles.

— Residue Theorem.
Let f be meromorphic on a simply connected domain D and let I" be a simple, closed, positively oriented

contour lying in D. Let zj, ...,z be the poles of f inside I', then

[ #@dz= 2nil (f)

= Example 3.23 Consider f(z) = ﬁ = ﬁ, so for 0 < |z| < 1, then

1 1 12 . 1 - -
Z(Z+1):Z‘<1_(_Z)>:Z,§)(_Z) = 14z-22....

so it has order 1 and residue 1
for 0 < |z+ 1| < 1, then

1 1 1 1 1 1 & —-1
= : = : = Y (@+1)"=——1—(z4+1)—(z+1)*—..
zZ(z+1) z+41 z+1-1 z+1 (1—(z+1)> z+1 :O( ) z+1 (1) =(z+1)

n

so is has simple pole and residue —1.
for |z| > 1, then

p—
|
| —
‘ -
N\v—“'\l\v—t
Il
o k.
+
Il
N‘ -
7 N\
| —
N———
S
Il
S
+
_l_
Nw —
_l_
2|
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» Remark 3.7 Recall f has pole of order m at zp <= (z—z9)" f(z) has removeable singularity at z,
(z—20)"" ' f(z) has a pole at zg. That is

(z—z0)" <(Zazn(;)m + ) =a_m+am-1(z—20)+-...

f has a zero of order m at 79 < (Zf: (ZZO))M has a removeable singgularity at zo, (Z_f; gz)l, - has a pole at zg.
1 m
gy anE=20)" ) = antans (2= 20) + -

Let f and g be analytic at zg, let f have a zero of order m at zg and let g have a zerp pf order n at zg, then

= = (z—2z0)" "h(z) where h(z) is analytic at z,

and we see that
azerooforderm—natzy ifm>n

& has apoleofordern—matzy ifm<n
8(2) . . .
a removable singularity ifm=n
= Example 3.24 z(z]Tl) has simple poles at z =0 and z = —1 .
= Example 3.25 m has order 3 pole at 0, order 2 pole at —1 and simple pole at 2. "

= Example 3.26
cos(z) =1 1 2 # 1 2
Z b4 21 41 2! 4!

so it has removeable singularity at z = 0. "

m Example 3.27 Let f has a simple pole at zp and a Laurent series:

a

f(2)=

= +ao+ai(z—z0)+ ...
Z—20

is same punctured disk about zg, then

(z—20)f(2) = a—1 +ao(z—2z0) +a1(z—20)2+...

so that
lim ((z—20)f(2)) = a1 =res;(f)
Z—20
so if f has a simple pole at zo, then res,, (f) = lim (z —z0) f(2) .

20

1 1
= Example 3.28 Let f(z) = ﬁ, then resy(f) = l%zf(z) =limz- = 1. Similarly, we
Y Z

=0 z(z+1) T 0+1
. 1
hve 51 1) = i e+ )y = 2 = :
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m Example 3.29 Now let f have a pole of order m at zg, then

a4 a_m+1
)= (z—z0)" * (z—2z0)mH!

so that
(z—20)"f(z) =a—m+a—mi1(z—20) + ...
SO p
d—z((z—zo)mf(z)) =a i1 +20_mia(z—20)+ .4 (m—Da_1(z—20)" 2 +.
and
dmfl
W((Z—Zo)mf(z)) =a(m—1)!+..
then -
Jim 7 (2= 20)"/(2)) = @y (m = 1)!
and

1 dmfl

i
(m— 1)1 25 dgm]

((z—20)"f(2))

a1 =resy(f) =

= Example 3.30 Consider f(z) = ez;gl, then ¢ 4+ 1 =z # 0 so f has an order 3 pole at 0, then

1 d? e+ 1 1
= 1 3 I
resolf) = 3y A0 22 <Z 3 > 2

= Example 3.31 Let f(z) = ) au(z—z0)" be the Laurent series for f in some annulus, so

1
ai=s 74 £

where I is simple, closed, positively oriented contour looping around the inner circle of annulus.

Now we see

C=20) " @) = b = amzlf(zf(z)dz

Z—20 27i —zo)"t!

f()

Note: for a Taylor series, this is equivalent to by Cauchy’s Integration Theorem.

Integration Il

Let f(z) = 200 \where g,h are analytic at zo. Let g(z0) # 0 and h(zo) = 0, /' (z0) # 0.

( )
That is f has a simple pole at zg, then

res;, (f) = lim (z—z0) f(z) = lim (z _ZO)g( 22 h(z) — h(z0)

—20 Z—20 ]’l Z

=20 h(z)

(Zi g(z0) lim ° 0 = g(zp) lim -~ =
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= Example 3.32 Find residues of all poles of f(z) = 13%1, note that 2 — 1 =0 < z ¢ {l,e%,e% }, then

f has 3 simple poles. Then residue at simple pole z is 317 This gives us that

1 2mi 1 4mi

1
res;(f) = 3 res o (f) = geT res i (f)= geT

m Example 3.33 Consider the following:

< ] < ]
d 1= —d
/0 x4+1dx an /0 P x

< ]
2 = —d
./—oo x*+1 x

Let I'g be the line segment running from —R to R in R, then

Note that

2= 1 e E—
R e 2+ 1

Let Cg be the upper semicircle running from R to —R, note I'r 4 Cp is simple closed positive oriented tour. so
we can sue residue theorem. Consider

CRZ4+1 ‘ ‘/

and find their residues. Note that z* +1 =0 <= z € {e% k= 1,3,5,7}.

<\mR| R " .0 as R

Next we locate the poles of
Then

4+1

res;, (f) = where Z()E{e%i k:1,3,5,7}

@

Then we have

]{ 1 J T
= —F=
Cr+TR Z4+1 \/i

SO

T T
2 = lim = lim / z)dz — 2)dz | =—=—-0=—
R—eo JTp R~>°°< I'r+Cr f( ) Cr f( ) > \/E \/E

Definition 3.6.1
Extended complex plane CU {«} =C

Definition 3.6.2
Define the behavior of f(z) at e to behavior of f (%) at 0.
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= Example 3.34 For example, let f(z) = 72+ 1, so that f(%) =L4+1= Ziz—i— g + 1, so it has order 2 and

Va
residue O and

lim Z+1dz=0

R—e= JC(0)
also

/ f(2)dz = —2miresw(f)
—C..(0)
|
1

= Example 3.35 Let f(z) = £, so that f(1) = li_: = {*£atz=0and f() =1 s0 fis analytic at oo,

» Example 3.36 Let f(z) =sin(z) so f (%) = sini does not converge as z — 0, so sin(z) has essential singu-
larity at oo

At an isolated singularity zq

lim f(z) =c€C = f analytic at zy (or removeable singularity)
20

lim [f(z)] = = fhasapoleat z
20

lim f(z) does not existin C = f has an essential singularity at z
720

m Example 3.37 Consider the following
|
——d
/0 Bl

Let f(z) = ﬁ so f has poles at z = —1,e%,e*" . We define

< 1
1 :/ dx=lim | f(z)dz
0 I

x34+1 R—oo
1
dz
/CR B+1

LetIh :m(t) = t-e3 fort e [0,R],

and we can see that

1
~R-—=R2-=30as R—
R3

2mi
R 7 2mi

1 R 1 2mi i
/ 3+1dZ:/ T'e3dl‘: t3+1dt:€3
I 2 0 <t~eT> i 0 0

1

Now i
T i
/ f=2mires iz (f) = e H
I'+Cr—T e’ 3
This gives us that
21 i i 23w
Tlef%:IqLOfezT = I= \9f



46

Chapter 3. Integration and Series

Definition 3.6.3 — Cauchy Principal Value.

Given a continuous function f : R — R, define the Cauchy Principal Value of / f(x)dxis

dx = lim
R—o0

p-v. [ Zf (x)

Note that / f(x)dx exists, then

/if(x)dx

p.v. /:Of(x)dx = /jof(x)dx

m Example 3.38 Find p.v. for

* cos(x)
d
/foo 1+x2 o
Let f(z) = Cloi(;z), then
S N4 —iz
cosS s(e“+e
c l+z 14z
but consider e~ at z is iR, as R — o e {R) — R 3 oo
Consider -
oo elZ d
I = p.v.
then .
ex 1 1
/cR 1+2% "R TR
and
iz efl
2)dz = 2mires;(f) = 2mi | — =2i— = —
/CR+Ff( ) l(f) |:22:| i 2i e
mI:%—O:%
Now we consider _
o e—lZ d
L =p.v. SR
2= Py /—oo 1422 <
then _
elZ 1 1
——dz|~—=R~—-—0
/CR 1+2% TR R

then similarly we have

—2mires_;(f) = —2mi [e

/CRJrFf

/3

solh, = .
Then we have

/3

0=7%

11
dx=—I+-1
x=5itah

/°° cos(x)
oo 1+ x2




3.6 Integration |l

47

» Example 3.39 Consider
21
/ sin® 046
0

Let z = ¢ = cos(0) +isin(0), then sin(0) = 5 (z+ %) then

27 1 de 1 1.\?
)
/0 o cl(o)<2z(Z z)> dz .(o)<21(Z z)> iz ¢
= [ etisa
4 cl(o)Z PR

1 2 1 L.
=~ 1eso <Z+ z + Z3> = —E(Zm)(—2) =7

= Example 3.40 Let f be continuous on [a, b] except at ¢ with a < ¢ < b, then

pv/f dz=hm</ fed [ f() >

m Example 3.41 Consider

2% cos? 0
R ———deo
pv/o 1—3sin0

_,if _1 1 g1 1y do _
Letz=e", thencos @ = 5(z+ ;) and sin@ = 5, (z— 7), 7 = 1

N
s
< 2 ) 1 1 42741

P T R e d
/Cl<0) l-3(-Yiz " 42(—32+z+3)

. Now we can rewrite it as

Note that

3, 3 —i+2V2
¢ Tty . 3

Let p(z), ¢(z) be polynomial with deg(p) < deg(g) — 2, then for any arc Cg of Cg(0),

lim
R—o0

/CR‘ZE;)dz‘:O

Rdeg(p)

This is because

" Rdeg(q)

p(z)
/cR a@)| K
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Leta > 0addeg(q) > 1+deg(p), let Cg be the upper half of Cg(0), then

lim emz@dz =0
R g(2)

Proof: Parameterize Cg by Re” with t € [0, 7], now

; T bt Re" :
/ elaZ p(Z) dZ — / ezaRe . p( e. ) 'Rieltdt
a  q() 0 q(Re")

Note that

. it . .. _ .
plaRe" | _ etaR(cos(t)+zs1n(t)) —e aRsin(t)

Then for large enough R, exists K € R such that

so that

/”eiaRe” . p(Rel[) Rleltdt
0 q(Re")

2t

Since sin(t) > % on [()’ g], then e—Rsin(t) < efaR?, so

K/ﬂ: e,aRSin(l‘)dt _ 2](/72r efaRsin(t)dt < K/ﬂ: e*aRSin(t)dt _ 2]{/72r efaR%d[
0 0 0 0

—2K. (-MLR) (e®_1) =
= Remark 3.8 N
/ @dz Need deg(g) > 2 +deg(p)
— q(2)
/_o:o cos(z)z((gdz Need deg(q) > 1 +deg(p)

— Jordan’s Lemma.

< /71: e—aRsin(t) ERdl — K/ne—aRsin(t)dt — ZK/g e—aRsin(t)
—Jo R 0 0

dt

K
— 0 as R—
aR

Let f be meromorphic with a simple pole at zg, and I', be parametrized by 7(t) = zo + re'® with 8, < 8 < 6,,

then
limr — 0+/F f(2)dz=1i(6,— O1)res;,(f)

Proof:

fle)=

a—g — . a
+ ) anlz—2) = +8(z
ot L) 82
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where g is analytic so g is continuous then 3R such that for 0 < r <R, IM > 0 s.t. |g(z)| < M, so that

/rrg(z)dz
)

a—q 1 i0 92. .
/f(z)dz:/ dz+0:a_1/ —grie”d0 =a_ 1/ id0i-res;(f)
T, T, 2—20 o, re' 6,

<M length(T,) =M-(6,—6;)r =0 as r— 07"

Then

m Example 3.42 Consider

wl—

X3
dx
/0 1+x2
1

Let f(z) = + -2 with branch cut along the positive real axis, then

1
Z3
= dzl ~
/CR 1422

1
Z3
—=dz| ~
/CR 1422

R3

ﬁwR‘%—m as R — o

Similarly,

r3 4
~rr =0 as r—0*t

Let/rf%/omf(z)dzzl, then

1 .

z3 (ze*™)3 2mi

deZ/ dz=/ dz=1 e
rzf() r, | +22 r, 1+22

Let f has simple pole at z = 4i with residues, so that res,(f) = 5=, then

resi(f) = —i\f res_i(f) = —x

Then we have

2mi

1 V3 o1 2mi 2ni Tie™ 3 T
—omi g it o | =00+ 1T —1(1-eF)  — =T -
7{CR+C,+F. I ! (4 4 2) 1—e% V3

s Example 3.43

o eix ) —r eix R eix
p-v- / —dx= lim / —dx+ —dx
—o X R—o0 r—0+ R X r X

/ e—izdz =i(0—m)reso(f) = —mi
C

. 2

then by Jordan’s Lemma

LetI": [—R,R], then
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= Remark 3.9

Two techniques, either:

1. convert everything to rectangular, clear denominator.
2. convert to a trig function

m Example 3.44 Consider
|
I= d
Jo 143 o

we let f(z) = 1f§(zz3), branch cut along the positive real axis., then

log(z) . (R In(x)
/D 1+Z3dz_ r 1+X3dx

and .
/‘bﬂ@d::/Rbﬂﬂ”ﬂdx:/*m0?+%ﬁd
T r r

L 1+2 143 1+

/ / /Rln tﬁ“”*”izmz
- = 1-
I I, 1+x3

then we have

s Remark 3.10 Let f # 0 be meromorphlc on D and let I' be a simple, positively oriented closed contour
with I and its interior is in D. Consider £ 7 is meromorphic and its poles can only lie at poles and zeros of f.
Let zg be an order-m zeros of f, then

f(2) =(z—20)"8(z) g(z0) #0 g is analytic

Now we have
f(2) =m(z—z20)"""g(2) + (z—20)"¢(2)
so that

—
a\l
~—

f@) _mz=z20)" Te(x) +(2-20)"¢'(x) _ _m &
fz) (z—2z0)"g(2) z—z20 ()
Let zg be an order-m pole of f, then

flz)= hz) h(zo) #0 his analytic
(z—2z0)"
so that
o —m(z—20)" 'h(z) + (z—20)"H(z) _ _om o " (z)
N (z—z0)%™ - z-z20 h(2)

— The Argument Principle. Let f be meromorphic and inside a simple, close, positively
oriented contour I'. Let Ny(f) be the number of zeros in I" and N,(f) be the number of poles in I" (both
couted with multiplicity), then

s J =) =y (7)

f(2)
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Definition 3.6.4 — Curling Number.
Let I" be a closed contour and let zg # I'. The curling number of I about 7y, denoted n(T", zo) is the unique
integer n such that I" is homeomorphic to

Ci(z0) +Ci(z0) + ... + Ci(20)

n in total
in C\ {z0}
For zg €T,
1
7{ dz =2mi-n(T,z0)
r<—2o
Let f(T") be which I": y(¢) : [a,b] — T, then
1 b 1
—dz= / ——Y(¢)dt
/rz—ZO a Y(t)—zo}/()
so that

1 o y _ @)
frm =L, Fomy v wa = [ e

This gives us that
1 f@m .
3 7y S de = (D). 20)

Moreover, for zg = 0 we have that

L f&
37 7 e = (D))

m Example 3.45 Note that

then

Let f = re'® we have

— The Dog-walking Theorem.
Let I'},I"; be parametrized by 71,7 : [a,b] — C and V¢ € [a,b] with |yi(t) — %2(¢)] < [71(¢)]. Then
n(I'y,0) = n(I,0)



52 Chapter 3. Integration and Series

Proof: NOte that 7,7, # 0, consider I": y(¢) = 32—8, then

n(t) —n()
()

Yt
7 (t

<1

|1—y<r>|—\1— ;

so'liesin D;(1) son(I',0) =0. Let 3 = r1€% and y = r1€/® where 1,12, 01,6, are functions of 7, then

_r__n
N M - rlei(glfez)
and
I’l(F] 5 0) = 91 (b) — 91 (a) and n(Fz, 0) = 92 (b) — 92 (a)
so that

0= n(F,O) = Gz(b) — 92(61) — (91 (b) — 91 (a)) = I’L(FQ,O) —n(Fl,O)
which is n(I2,0) = n(I'1,0)

— The Generalized Dog-walking Theorem.
Let I'},I'; be parametrized by 91,7 : [a,b] — C and Vt € [a, b] with

M) —n@)| <In@)|+n0)l
then n(I,,0) = n(I'y,0)

Proof: Let y(r) = 2—8, assume for contradiction that exist ¢ > 0 abd ¢ € [a,b] such that y(t) = —c.
Then 7, (t) = —c)p(t), so that

11(0) = @)] = [(=c = Dn@)] = (c+ Dn@)]

but |7 ()|+ 7)) = |n@)|+|—cn(t)| = (1 +c)|r(t)|, which contradicts the Dog-walking Theorem,
so there is no such c exists. Then I : y(¢) lies in the C\ R<g, so n(I",0) = 0, that is n(I';,0) = n(I';,0).

— Rouche’s Theorem.
Let f,g be analytic on and inside a simple closed contour I'. Let [g(z)| < |f(z)| forall z €T, then f+g
and f have the same number of zeros (connted with multiplicity inside)

Proof: Let i = f + g then

=
—
~
~—
_l’_
—
|
~
—
~
~—
=~
I

l8(2)| < |-f(2)
onI'. Then
n(h(I'),0) =n(f(7),0) thatis No(h) = No(f)

» Example 3.46 All 5 zeros of h(z) = z° +3z+ 1 lie inside |z| < 2. Let f(z) = z° and g(z) = 3z+ 1 on C»(0),
so |f(z)| =32 and |g(z)| =7 < |f(z)|, so by Rouche’s Theorem £ and f have same number of zeros inside
(0) .
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» Example 3.47 How many zeros does z+ 3 + 2¢° have in the left half-plane Re(z) < 0? Let I'g be the
contour as "D" reflect by y-axis. Let f(z) = z+3 and g(z) = 2¢7, 50 |g(z)| = 2¢R°(@ s0 |g(z)| < 2 on Ik for
all R and

’f(z)|>{]3+iy| 2=y >{3 z=iy

R-3 |zl=R ~ |R-3 |z/=R

so for all R > 5 we have | f(z)| > |g(z)| on T, then f has the same number of zeros inside I'g as z+ 3 + 2¢7,
f(z) = z+ 3 has one zero inside I'g namely —3, so z+ 3 + 2¢° has exactly one zero in the left half-plane. =

Definition 3.6.5
A point z is a limit point of a set if there exists a sequence {z,} C S with z, # z but li_r>n W=z
n—oo

Let f be holomorphic on a domain D, let Z C D be the set of zeros of D if Z has a limit
point in D, f is identically zero on D

Proof: Let zo be the limit of {w,} C Z and zy # w, for all n, conside D¢(z9) for some sufficiently
small € > 0, that is

f@) =Y z(z—2)"
n=0
on D¢(z9). If f is not identically 0 on D¢(zp), then there exists a minimal m > 0 such that a,, # 0, write

f(z) = am(z—20)"(1+g(z—20))

where g(z —z0) — 0 as z — zo. Let k be sufficiently large that wy € Dg(z0), wi € De(z0) for all K > k. Now
f(wg) =0 but
0= f(wk) = am(wk — 20)" (1 + g(wk — 20))

and a,;, # 0, (wr —z0)" # 0 and g(wy —z0) — 0 as wyg as k — oo. so for large enough k, |g(wx —z0)| < 1, so
1+ g(wr —z0) # 0, which is a contradiction, so f =0 on Dg(z9). Let U be the interior of Z, we just showed
that U is non-empty, U is open by definition, let {z,} C U converging z, — z, f is continuous so f(z) =0,
by earlier argument, z € U. Then U is closed, so V =D\ U is open we have D=U UV and U NV, U,V
are open and D is connected, so one of U,V is empty. U is non-empty, so V =0 so U = D, then f is 0 on D

Let f,g analytic on D and f(z) = g(z) on S C D where S has limit point in D, then
f(z)=g(z)onD

Proof: apply the above theorem to f — g.

Let f be analytic and non-constant on a domain D and let zg € D, f(z9) = wo, then there
exist € > 0 such that D¢ (z9) € D and f(z) — wo has zero in D¢(20) \ {20}

Proof: Let f(z) —wo is a non-constant analytic function, so its zero cannot have a limit point, done.
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— Open Mapping Theorem.
If f is holomorphic on a domain D, then f is a open map on D (map open set to to open set)

Proof: It suffices to show f(D) is open. Let zo € D and f(z9) = wo, let w € C and

8(2) =f(&) —w=f(z) —wo+wo—w

Choose 8 > 0 such that Ds(z9) € D and such that f(z) # wo on the circle |z —zo| = & which exists by the
previous corollary. Now we choose € > 0 such that |f(z) —wo| > € on |z —zo| = 8, so for all w € D¢ (wy)
we have |f(z) —wo| > € > [w —wp| on the circle |z —zo| = &, so by Rouche’s Theorem g and f(z) —wo
have the same number of zeros in Dg(zg), namely one. Then 3z € Ds C D, g(z) =0= f(z) —w =
f(z)=w = w e f(D), then D¢(wg) C f(D)

= Example 3.48 Let f be analytic on a domain D and Re(f(z)) is constant , then f is constant, Re(f(z)) = K
contains no open set, so f must be constant by the contrapositive of open mapping theorem. "

Definition 3.6.6 — Gamma Function.
The gamma function is defined for s > 0 in R by

I(s) = / e 't dr
0

I" extends to an analytic function on Re(s) > 0 and

[(s)= / e 't dr
0
still holds there
Proof: It suffices to show lemma on
§={z€C:8 <Re(s) < M}
forany 0 < 6 <M < oo. Let Re(s) = o, now

o0 l
. € p— p—
/ et ldt=1lim | e 't ldt
0

e>0J¢

Consider 1

Fe(s) = /S e 't dr
€
Note that F(s) is analytic with

1
Fl(s) = /8 e (s— 1) 2dt
€
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Recall that the limit of a uniformly convergent sequence of analytic function is analytic. Consider
(<] l
‘F(s)—Fg(s” = ‘/ e*ttsfldt_/ efttsfldt
0 €

& S
/ e ' dr + / e ' dr
O 1

=3

€ oo
g/ e*’t"*ldt—k[ et dr
0 &
€
/e"t"‘ldt
0

M et dr
€

1
as ; — 0.

Then F;(s) — I'(s) uniformly, so I" is analytic on S so I is analytic on Re(s) > 0

Now for € < 1:

1 £
SS‘*' 6_1:7

(<7]
(«%]

Similarly we have

< / e "M ldr -0

1
€

Letn € Z>o, thenT'(n+1) = n!

For 0 < Re(a) < 1, then

5] vafl T
/ dv=—
o 1+v sin(7a)

/oo pa—1 J /oo e(a—l)xd /oo P
V= X =
o 1+v R e 1+ €

Let f(z) = 1%,z and integrate over a region. That is
27 ea(R+it)
[,
0 1+ eRJrLt

f(z)dz
Iy

Proof: Let v = €%, then

dx

aR

<C-Sp ~Ce IR 50 as R— oo
e

f(z)dz
I,

<Ce™® 50 as R— o

R ax

I fle)dz= /—R 1+e*

f(2)dz = —*™@ /R e
F3 —R 1+ex

dx

dx
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Note that f has a pole at z = 7i, then

lim (z — 7i) f(z) = lim (z — 7i) €T i o ( 5= 7ri4>

i i 14+et zomi et — e
— o <lim - ﬂ) h
z—mi 72— T
— i, (em')fl
— _eani
= reszi(f)

Then we have

/l_f(z)dz = 27i(—e ™) = (1 — &™) = |

so that )
ari ﬂ:

1= -2mi

1—e2m sin(7a)

T
I'(s)r((l1—s)=
(s)T(L =) sin(7s)
Proof: IT suffices to show this on 0 < Re(s) < 1:
I(1—s)= [ e “u'=qu= / e "u*du
0 0

Let u = vt, v > 0, then
[(1-s)= t/ e " (vt)"*dv
0

This give us

C(T(1—s)= [ e ! te " (vt)*dv |dt = ey gydr = >
0 0 0o Jo 0o v+1

By the lemma from above we have

F(s)l"(l—s):/om LA

v 1T sin(7s)

Definition 3.6.7 — Riemann Zeta Function.
Forreal s > 1 as

A
i=1 "

so ¢ immediately has an analytic continuation to Re(s) > 1 and the formula



3.6 Integration |l

57

is still valid. If s = o + it for o,t € R, if 6 > 14 > 1, then

L= L

then {(s) is analytic on Re(s) > 1. Consider the Euler product:

oo

L

1
eslog(n)

oo 1 oo

1
:l.; coogti] ~ e = X

e
ns

for Re(s) > 1, then we see that

then

I S R 1+1+1+ LI,
S l—ps 20458 9 55 258

but we have unique factorization of positive integers:

1 s > 1
formula above = Z <W> — 2{ —=
i=

J1sJ25ee

{(s) — -1 has an analytic continuation to Re(s) > 0. Then {(s) is rercmorphic on

Re(s) > 0 with a simple pole of residu 1 at s = 1

1 n 1
—— | —ds

n+l 1 1
n(s):/ — — —ds

n’ xS

Proof: Consider

Let

By the mean value theorem
I 1

nS xS

sl
- n0'+1

onn <x <n+ 1. Then we have uniform convergence of ,(s) on 1 + 6 > 1 <= Re(s) > 0. Then

is analyticiction on Re(s) > 0. Now
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Now
N

lim labc:/ ldx: ! xS
N— J1 Xx° 1 x5 1—s 0

on Re(s) > 1, this = ;. Thus,

is analytic on Re(s) > 0

{(s) has no zeros on the line Re(s) = 1
Proof: Let x,y € R, y # 0 and define

h(x) = (@) & (x+iy)C (x+2y0)

Now |
¢ =Ty,
SO |
ln|C(s)’:1nH 1 —5 Z—Zln‘l—p”’ :—ReZlog(l_p*V)
p -P p P
Now

—log(1—w) = ZVZ

o 7
i=1

for |w| < 1, so
1 _
n|¢(s)|=Re} ) —p~"
p on

and then
InA(x)] = 31n|¢ ()| +41n|¢ (x+ iy)| + In | (v+2iy)
1 1 3 1 .

=3Re) Y —p ™ +4Re) Y —p ™ +Re) ) = pm2iny
pop p on o n
1 . .

=YY —-p™Re(3+4p "+ p 2™

pon !

Note that ) , .
p i =P pag Re(p™) = cos(—nyln(p))

and .
Re(p~*™) = cos(—2nyln(p))
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so that
Re (3+4p~™ + p~2") =3+ 4cos(—nyln(p)) + cos(—2nyln(p))

Let 6 = —nylIn(p), so this is
Re (3+4p ™ +p ™) =3 +4cos6 +c0s26 = 2(1+cos0)> > 0
Then we have In|A(x)| > 0, so |h(x)| > 1 we have

1
x—1

Cx~|—ly

MCx+mw|

As x — 11 we have |§ (x+2iy)| — |§(1+2iy)|
lim (= 1) ()] = 1
x—1

if £(1+iy) =0, but

=1t x—1

={'(1+1iy)

so lim

h(x
M converges to some finite value. but this is > - 1 and lim
=1+ x— =1t X —

E(1+iy) #0

— oo, this is contradiction so
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