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1. Complex Number and Functions

1.1 Complex Number

Definition 1.1.1 — Complex Number.
The complex number is defined as

C= {a+bi : a,b ∈ R} where i2 =−1

Note: There is no prior distinction between i and −i, then all behavior in C should be invariant under the
map i←→−i

Question: Is this a good definition?
For any a,b,c,d ∈ R, we have

(a+bi)+(c+di) = (a+ c)+(b+d)i closed under addition

(a+bi)(c+di) = (ac−bd)+(bc+ad)i closed under multiplication

For a,b,c,d ∈ R with c,d 6= 0, we have

a+bi
c+di

=
a+bi
c+di

· c−di
c−di

=
ac+bd
c2 +d2 +

bc−ad
c2 +d2 i closed under division

The complex number are closed under its operations, then it’s a good defintion.

Definition 1.1.2 — Conjugation.
The conjugation in C is defined as

a+bi = a−bi

where a,b ∈ R.
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Moreover, we have
(a+bi)(a+bi) = (a+bi)(a−bi) = a2 +b2

� Remark 1.1 There is a conical bijection between C and R2, that is

a+bi←→ (a,b)

we usually can write it as C∼= R2

Definition 1.1.3 — Norm. The norm in C is defined as

|a+bi|=
√

(a+bi)(a+bi) =
√

a2 +b2

� Remark 1.2 The in for n ∈ N has a cycle 4, that is

i = i i2 =−1 i3 =−i i4 = 1︸ ︷︷ ︸
cycle4

i5 = i ....

� Remark 1.3 The polar coordinate is defined differently in C and R2.
For (x,y) ∈ R2 we have

x = r cosθ y = r sinθ r =
√

x2 + y2 = ‖(x,y)‖ θ = arctan
y
x

For a+bi ∈ C we have

a = r cosθ b = r sinθ r =
√

a2 +b2 = |a+bi| θ = arctan
b
a

Behaviors in R and C function operation:
Let x ∈ R and z = a+bi, then

x3 +2x+1 =⇒ z3 +2z+1

For z,w ∈ C, we insist that d
d ez = ez and ew+z = ew · ez, then we have

ex =⇒ ez = ea+bi = ea · ebi

Note that i is a constant, so for y ∈ R we have

d
d(iy)

eiy =
1
i
· d

dy
eiy︸ ︷︷ ︸

=ieiy

= eiy and
d2

dy2 eiy =
d
dy

(ieiy) = i · d
dy

eiy = i2eiy =−eiy

Therefore, the f (y) = eiy satisfies d2

dy2 =− f , then by ODE the f must be:

f (y) = Asiny+Bcosy and f ′(y) = Acosy−Bsiny

but we can see that f (0) = B = ei0 = 1, f ′(0) = iei0 = i. This gives us that

f (y) = eiy = cosy+ isiny

Therefore, we have
ea+bi = eaebi = ea(cosb+ isinb) = ea cosb+ iea sinb
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1.2 Basic Topology, Limit, Continuity and Differentiability

Definition 1.2.1 — Distance.
The distance between two points w,z ∈ C is

|w− z| (or |z−w|)

Thus C and R2 are isomorphic as metric spaces.

Definition 1.2.2 — Open Set and Closed Set.
An open set S⊆ C is a set such that for every z ∈ S, there exists ε > 0 s.t.

|z−w|< ε =⇒ w ∈ S

A set S⊆ C is closed if C\S is open.

Definition 1.2.3 — Limit.
Let f : C→ C, we say

lim
z→w

f (z) = L

if ∀ε > 0, ∃δ > 0 s.t. |z−w|< δ , then

| f (z)− f (w)|< ε

� Example 1.1 Calculate the following:

lim
z→0

z
z

Let’s try to approach in different directions.
Let z = x ∈ R, then

lim
z→0

z
z
= lim

x→0

x
x
= lim

x→0

x
x
= 1

Let z = iy for y ∈ R, then we have

lim
z→0

z
z
= lim

y→0

iy
iy

= lim
y→0

−iy
iy

=−1

so the limit does not exist. �

Definition 1.2.4 — Continuity.
A function is continuous at point z0 if

lim
z→z0

f (z) = f (z0)

A function is continuous on a set S if it’s continuous at each point of S

� Example 1.2 Let f : C→ C where f (z) = z2. Consider ∆z = z− z0, then

lim
z→z0

f (z) = lim
z→z0

z2 = lim
∆z→0

(z0 +∆z)2 = lim
∆z→0

z2
0 +2z0∆z+∆z2 = z2

0

so f is continuous everywhere. �
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Definition 1.2.5 — Correctness, Path-Correctness and Domain.
A set S is connected if S there is no open sets S1,S2 with S1∩S2 = /0 such that

S⊆ S1∪S2

A set S is path-connected if ∀z1,z2 ∈ S, there exists a path from z1 to z2 lying in S where a path is the
image of [0,1] under a continuous

A domain is a path-connected open set.

� Example 1.3 Consider a set S⊆ R2 where

S =

{(
x,sin

(
1
x

))
: x > 0

}
∪{(0,y) : y ∈ R}

is a connected set. �

Proposition 1.2.1
Path connected =⇒ connected

Proof: Let X be a path-connected set and x0 ∈ X . For each y ∈ X , find a continuous map f : [0,1]→ X
such that

f (0) = x0 and f (1) = y

Since an interval is connected and the image of continuous map preserve correctness, then f ([0,1]) is
connected. Therefore, y belongs to the largest connected set that contains x0, so X is connected.

Definition 1.2.6 — Differentiability.
Let f : C→ C if

lim
z→z0

f (z)− f (z0)

z− z0
exists

we say that f is differentiable at z0 and that the limit is its derivative f ′(z0)

� Example 1.4 Let f (z) = z2, then we have

lim
∆z→0

f (z0 +∆z)− f (z0)

∆z
= lim

∆z→0

z2
0 +2z0∆z+∆z2

∆z
= lim

∆z→0
2z0 +∆z = 2z0

�
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� Example 1.5 Let f (z) = |z|, then we have

lim
∆z→0

f (z0 +∆z)− f (z0)

∆z
= lim

∆z→0

|z0 +∆z|− |z0|
∆z

Let’s consider g(a,b) =
√

a2 +b2, then we have

∂g
∂a

=
a√

a2 +b2
(∗) and

∂g
∂b

=
b√

a2 +b2
(∗∗)

Now we try ∆z = x ∈ R and z0 = a+bi where a,b ∈ R, then

lim
x→0

|x+a+bi|− |a+bi|
x

= lim
x→0

√
(a+ x)2 +b2−

√
a2 +b2

x
=

a√
a2 +b2

by (*)

Similarly, if we let ∆z = yi for y ∈ R, then by (**) we have

lim
y→0

√
a2 +(b+ y)2−

√
a2 +b2

yi
=

1
i

∂g
∂y

=
1
i

b√
a2 +b2

=− bi√
a2 +b2

Therefore, f (z) = |z| is differentiable nowhere �

Proposition 1.2.2
Let f ,g : C→ C and c ∈ C, then we have

( f +g)(z)′ = f ′(z)+g′(z) (c f )′(z) = c f ′(z)

( f g)′(z) = f (z)g′(z)+ f ′(z)g(z) ( f ◦g)′(z) = f ′(g(z))g′(z)

Definition 1.2.7 — Real Part and Imaginary Part.
Let z ∈C with z = a+bi where a,b ∈R, then a and b are call real and imaginary parts of z respectively
denoted Re(z) and Im(z).

� Example 1.6 Let f (z) = Re(z), what’s the differentiability of f ?
We look at

lim
h→0

f (z+h)− f (z)
h

Let h = hx ∈ R, then

lim
hx→0

Re(a+hx +bi)−Re(a+bi)
hx

= lim
hx→0

a+hx−a
hx

= 1

Let h = ihy for hy ∈ R, then

lim
hy→0

Re(a+ ihy +bi)−Re(a+bi)
ihy

= lim
hy→0

a−a
ihy

= 0

Therefore, f (z) = Re(z) is differentiable nowhere. Similarly, Im(z) is differentiable nowhere. �
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� Remark 1.4

Im(z) = Re(−iz) and z = Re(z)− i Im(z)

differentiable nowhere.

Intuition: Differentiable functions are those that acts on z and are blind to Re(z) and Im(z)

� Example 1.7 The function f : C→ C with f (z) = z is a reflection by real-axis �

� Example 1.8 The function f : C→ C with f (z) = z2, if we write z = a+bi, then

f (z) = z2 = (a+bi)2 = (a2−b2)+2abi

Recall z = a+bi = reiθ , so let z = reiθ , then

f (z) = z2 = r2ei(2θ)

�

Question: What is i
1
2 ?

i = ei π

2 = cos
π

2
+ isin

π

2
= 0+ i = i =⇒ i

1
2 = (ei π

2 )
1
2 = ei π

4 = cos
π

4
+ isin

π

4
=

1√
2
+

i√
2

1.3 Modulus and Argument

Definition 1.3.1 — Modulus.
Let z = reiθ with 0≤ r ∈ R and θ ∈ R. The modulus (or magnitude or absolute value) of z is r = |z|

Definition 1.3.2 — Argument.
Let z = reiθ with 0≤ r ∈ R and θ ∈ R. The argument of z is θ = arg(z)

� Remark 1.5 The argument of z is not unique. That’s because

i = ei π

2 = ei( π

2 +2π) = ei( π

2 +4π) = ....= ei( π

2 +nπ) for n ∈ Z

We also note that

i = ei( π

2 +2π) =⇒ i
1
2 ∈
{

ei( π

2 +2π),ei( π

2 +4π)
}
=
{

e
iπ
4 ,e

i5π

4

}
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Proposition 1.3.1
More generally, if n > 0 and n ∈ Z, z = reiθ , then

z
1
n = (reiθ )

1
n =

{
r

1
n ei θ

n ,r
1
n ei θ+2π

n ,r
1
n ei θ+4π

n , ....,r
1
n ei θ+2(n−1)π

n

}
so any non-zero z ∈ C, has exactly n distinct nth roots:

r
1
n ei θ+2kπ

n where 0≤ k < n



2. Holomorphic functions and CR equations

2.1 Holomorphic Function

Definition 2.1.1 — Holomorphic.
If f : C→ C is differentiable on a domain D, we say f is holomorphic on D. Also called (complex)
analytic regular.

Sloppy terminology warning: A function is said holomorphic at point z0 if it is holomorphic on some
open set containing z0

Proposition 2.1.1
Let f : C→ C be holomorphic on a domain D and let z ∈ D, then

f ′(z) = lim
h→0

f (z+h)− f (z)
h

extsts

Consider h = hx ∈ R, then

f ′(z) = lim
h→0

f (z+hx)− f (z)
hx

and let z = x+ iy, then

f ′(z) = lim
h→0

f (x+hx + iy)− f (x+ iy)
hx
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Let f (z) = f (x+ iy) = u(x,y)+ iv(x,y), where u,v : R2→ R, then

f ′(x+ iy) = lim
hx→0

u(x+hx,y)+ iv(x+hx,y)−u(x,y)− iv(x,y)
hx

= lim
hx→0

u(x+hx,y)−u(x,y)
hx

+ i · lim
hx→0

v(x+hx,y)− v(x,y)
hx

=
∂u
∂x

+ i
∂v
∂x

= f ′(x+ iy)

Now let h = ihy where hy ∈ R, then

f ′(x+ iy) = lim
hy→0

u(x,y+hy)+ iv(x,y+hy)−u(x,y)− iv(x,y)
ihy

= lim
hy→0

u(x,y+hy)−u(x,y)
ihy

+ · lim
hy→0

iv(x,y+hy)+ iv(x,y)
ihy

=
1
i

∂u
∂y

+ i
∂v
∂y

=
∂v
∂y
− i

∂u
∂y

Therefore, we have

f ′(x+ iy) =
∂u
∂x

+ i
∂v
∂x

=
∂v
∂y
− i

∂u
∂y

=⇒ ∂u
∂x

=
∂v
∂y

and
∂v
∂x

=−∂u
∂y

These are the Cauchy-Riemann equations. If f = u+ iv is holomorphic on D, then u and v satisfy the
CR equations on D.

� Example 2.1 Let f be holomorphic on a domain D and let v(x,y) = Im( f ) = xy on D, find u(x,y). Let
f = u+ iv, then

∂u
∂x

=
∂v
∂y

= x and − ∂u
∂y

=
∂v
∂x

= y

so that
∂u
∂x

= x
∂u
∂y

=−y =⇒ u =
1
2

x2 +C1(y) u =−1
2

y2 +C2(x)

This gives us that

u(x,y) =
1
2

x2− 1
2

y2 +C

so we have

f (x+ iy) =
(

1
2

x2− 1
2

y2 +C
)
+ xyi

Note that
(x+ iy)2

2
=

x2− y2 +2xyi
2

=

(
1
2

x2− 1
2

y2 +C
)
+ xyi

then

f (z) =
z2

2
+C and f ′(z) = z
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where z = x+ iy �

� Example 2.2 Let f be holomorphic on a domain D and let Re( f ) = x2y. Let z = x+ iy and f (x+ iy) =
u(x,y)+ iv(x,y), u(x,y) = x2y. Then we have

∂v
∂y

=
∂u
∂x

= 2xy =⇒ v =
∫

2xydy = xy2 + C1(x)︸ ︷︷ ︸
cause contradiction

∂v
∂x

=−∂u
∂y

= x2 =⇒ v =
∫

x2dx =
1
3

x3 + C2(y)︸ ︷︷ ︸
cause contradiction

this implies that there is no such v exists, so this is a contradiction, there is no such function f . �

Proposition 2.1.2

f ′(z) =
∂u
∂x

+ i
∂v
∂x

=
∂v
∂y
− i

∂u
∂y

=
∂v
∂y

+ i
∂v
∂x

=
∂u
∂x
− i

∂u
∂y

� Example 2.3 Let f (z) = ez, so consider

f (x+ iy) = exeiy = ex · (cos(y)+ isin(y)) = ex cos(y)+ iex sin(y)

Then
∂u
∂x

= ex cos(y) =
∂v
∂y

∂u
∂y

=−ex sin(y) =
∂v
∂x

�

Theorem 2.1.3 Let u,v : R2→ R has continuous particle derivatives at (x0,y0) which satisfy

∂u
∂x

=
∂v
∂y

∂u
∂y

=−∂v
∂x

at (x0,y0). Then f (x+ iy) = u(x,y)+ iv(x,y) is holomorphic at z0 = x0 + iy0

Proof: Let D⊆ C be domain with z0 ∈ D. Let z = x+ iy ∈ D. Then

u(x,y) = u(x0,y0)+(x− x0)

(
∂u
∂x

(x0,y0)− ε1(x,y)
)
+(y− y0)

(
∂u
∂y

(x0,y0)− ε2(x,y)
)

where ε1,ε2 are continuous at (x0,y0) and ε1(x0,y0) = ε2(x0,y0) = 0. Similarly, we have

v(x,y) = v(x0,y0)+(x− x0)

(
∂v
∂x

(x0,y0)− ε3(x,y)
)
+(y− y0)

(
∂v
∂y

(x0,y0)− ε4(x,y)
)

so

f (x+ iy) = u(x,y)+ iv(x,y) = f (z0)+(z− z0)

(
∂u
∂x

(x0,y0)+ i
∂v
∂x

(x0,y0)+ ε(z)
)

where
ε(z) =

x− x0

z− z0
(ε1 + iε3)+

y− y0

z− z0
(ε2 + iε4)



2.1 Holomorphic Function 13

satisfying ε continuous at z0 with ε(z0)→ 0. Then

lim
z→z0

f (z)− f (z0)

z− z0
= lim

z→z0

∂u
∂x

(x0,y0)+ i
∂v
∂x

(x0,y0)+ ε(z) =
∂u
∂x

(x0,y0)+ i
∂v
∂x

(x0,y0) = f ′(z0)

� Example 2.4 Let f (z) = z so f (x+ iy) = x− iy so u = x and v =−y. Note that

∂u
∂x

= 1 6= ∂v
∂y

=−1
∂u
∂y

= 0 =−∂v
∂y

This holds nowhere, so f is holomorphic nowhere �

� Example 2.5 Let f (z) = 1
z so

f (x+ iy) =
1

x+ iy
· x− iy

x− iy
=

x− iy
x2 + y2 =

x
x2 + y2 − i

(
y

x2 + y2

)
Then we have

∂u
∂x

=
y2− x2

(x2 + y2)2
∂v
∂y

=
y2− x2

(x2 + y2)2
∂u
∂y

=
−2xy

(x2 + y2)2 − ∂v
∂x

=
−2xy

(x2 + y2)2

so f is holomorphic everywhere except {0}

Note: f (z) = 1
z =

z
zz =

z
|z|2

(*) �

Proposition 2.1.4 Let f ,g : C→ C holomorphic at z0 with g(z0) 6= 0, then

f
g

is holomorphic at z0

The converse is false because of the Example 1.13, so let f be holomorphic, h is not holomorphic, then
f h
h is holomorphic at z while h(z) 6= 0.

� Example 2.6 Let f (z) = 1
z and z = reiθ , then

f (reiθ ) =
1

reθ
=

1
r

e−iθ

Let z = reiθ , z0 = r0eiθ0 and f (z) be holomorphic and let f (z) = u(r,θ)+ iv(r,θ) we have

f ′(z0) = lim
z→z0

f (z)− f (z0)

z− z0

First fix θ = θ0 and r→ r0, then

f ′(reiθ0) = lim
r→r0

u(r,θ0)+ iv(r,θ0)−u(r0,θ0)− iv(r0,θ0)

reiθ0− r0eiθ0

= e−iθ0 lim
r→r0

u(r,θ0)−u(r0,θ0)

r− r0
+ i

v(r,θ0)− v(r0,θ0)

r− r0

= e−iθ0 ·
(

∂u
∂ r

(r0,θ0)+ i
∂v
∂ r

(r0,θ0)

)
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Next let r = r0 and θ → θ0, so similarly we have

f ′(r0eiθ ) =
1
r0

lim
θ→θ0

[
u(r0,θ)−u(r0,θ0)

θ −θ0
+ i

v(r0,θ)− v(r0,θ0)

θ −θ0

](
θ −θ0

eiθ − eiθ0

)
=

1
r

1
ieiθ

(
∂u
∂θ

+ i
∂v
∂θ

)
=

1
r

e−iθ
(

∂v
∂θ
− i

∂u
∂θ

)
= f ′(reiθ )

= e−iθ
(

∂u
∂ r

+ i
∂v
∂ r

)

Therefore, we have

∂u
∂ r

=
1
r

∂v
∂θ

∂v
∂ r

=−1
r

∂u
∂θ

Polar Form of CR-Equation �

� Example 2.7 Consider

z
1
n = r

1
n cos

(
θ

n

)
+ isin

(
θ

n

)

so we have

u(r,θ) = r
1
n cos

(
θ

n

)
v(r,θ) = sin

(
θ

n

)

so that

∂u
∂ r

=
1
n

r
1
n−1 cos

(
θ

n

)
=

1
r

∂v
∂θ

and

∂v
∂ r

=
1
n

r
1
n−1 sin

(
θ

n

)
=−1

r
∂u
∂θ

�
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Definition 2.1.2 — Branch and Principal Branch.
Let’s define

Arg(reiθ ) = θ −π ≤ θ ≤ π

This is a branch of the multvalued function arg. In particular, Arg is called the principal branch

Other breanches:
f (reiθ ) = θ π < θ ≤ 3π = Arg(reiθ )+2π

so we have the value
Arg(z)+2πm for m ∈ Z

is a branch of arg(z)

Consider the branches z
1
n = r

1
n ei θ

n for −π < θπ

Question: Where is this function holomorphic?
Answer: This function is not continuous along Arg(z) = π , but it’s holomorphic on C\R≤0, this is called
branch cut

� Example 2.8 The function f (reiθ ) = r
1
n ei θ

n for −π < θ ≤ π has a branch cut along R≤0 but holomorphic
on C\R≤0

We use branches in R as well:
√

4 = 2 because
√
· means principal branch of the function x

1
n

We can put a branch cut somewhere else:

f (reiθ ) = r
1
n ei θ

n for 0 < θ < 2π

�

� Remark 2.1 Some times we can define a branch cut that is not a straight line.

� Example 2.9 Let’s consider the log function, that is

log(z) = log
(

reiθ
)
= log(r)+ log

(
eiθ
)
= log(r)+ iθ = ln |z|+ iArg(θ)+2πim = ln |z|+ iArg(z)+2πim

for m ∈ Z. Use log for the multivalued function and log for the principal branch. That is

log(z) = log |z|+ iArg(z) = log |z|+2πim

for m ∈ Z �

� Example 2.10 Let’s consider log
(

z
1
2

)
, so we have

log
(

z
1
2

)
= log

(
r

1
2 ei θ

2

)
= ln

∣∣∣r 1
2

∣∣∣+ i
θ

2
=

1
2
(ln |z|+ iθ) =

1
2

log(z)

�
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� Remark 2.2 Note that for w,z ∈ C:

log(wz) 6= log(w)+ log(z)

in general. We can see that

log
(

e
2πi
3 e

2πi
3

)
=−2πi

3
6= 4π

3
=

2πi
3

+
2πi
3

That is because of the branches we use.

� Remark 2.3

cos(y) =
eiy + e−iy

2
sin(y) =

eiy− e−iy

2i
are holomorphic.
Moreover

d
dz

sin(z) =
d
dz

(
eiz− e−iz

2i

)
=

ieiz + ie−iz

2i
=

eiz + e−iz

2
= cos(z)

and
d
dz

cos(z) =
d
dz

(
eiz + e−iz

2

)
=

ieiz− ie−iz

2
=
−eiz + e−iz

2
=−sin(z)

� Remark 2.4 If two holomorphic funcions are equal on "enough" of a set, they must agree on their domains.

Definition 2.1.3 — Tangent Function.

tan(z) =
1
2
· e

iz− e−iz

eiz + e−iz

and all trig identities carry over in the obvious way.

� Remark 2.5 Trig function are not bounded. Consider cos(iy) for y ∈ R, then

|cos(iy)|=

∣∣∣∣∣ei(iy)+ e−i(iy)

2

∣∣∣∣∣
so we have |cos(iy)| → ∞ as y→±∞. The sin function is similar. Therefore, cos, sin are unbounded in C.

� Remark 2.6

sinh(z) =
ez− e−z

2
cosh(z) =

ez + e−z

2
and sinh(iz) = isin(z) cosh(iz) = cos(z)

Question: What is ii?
Since log(i) = logei π

2 = iπ
2 +2πk for k ∈ Z, then

ii =
(

elog(i)
)i

= ei log(i) = ei·( iπ
2 +2πk) = e−

π

2−2πk

Define

z2 = ew log(z) =
d
dz

(zw) =
d
dz

ew log(z) = ew log(z) d
dz

(w log(z) = w · 1
z
· ew log(z) =

w
z
· zw = w · zw−1

as expected.
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Question: How many values does zw have?
For k ∈ Z we have

zw = ew log(z) = ew(log(z)+2πik) = ew log(z) · e2πikw

When is e2πikw = e2πinw?
Then are equal when for some n ∈ Z

e2πikw = e2πinw+2πin

Consider ez = 1, then ez = 1ei·0 = ex+iy = ex+iy = exeiy implies ex = 1 and y = 2πn. Now we can see that
kw = nw+m for some m ∈ Z, then

w =
m

k−n

for n,m,k ∈ Z, so the powers zw repeats if and only if w ∈Q. Now if w = p
q , so z2 = z

p
q = (zp)

1
q has q distinct

values. If z 6= 0, we have

zw =


1 if w ∈ Z
q if w = p

q ∈Q

∞ otherwise

Proposition 2.1.5 — Rotalion Approximation.
Let f be holomorphic at z0, so that

f ′(z0) = lim
z→z0

f (z)− f (z0)

z− z0

The modolus and argument must converge individually.

∣∣ f ′(z0)
∣∣= ∣∣∣∣ limz→z0

f (z)− f (z0)

z− z0

∣∣∣∣ =⇒ | f (z)− f (z0)| ≈
∣∣ f ′(z0)

∣∣|z− z0|

and

arg( f ′(z0)) = lim
z→z0

arg
(

f (z)− f (z0)

z− z0

)
for some branch of arg holomorphic near z0, f (z0), f ′(z0) so

arg( f ′(z0)) = arg( f (z)− f (z0))− arg(z− z0) =⇒ arg( f (z)− f (z0))≈ arg( f ′(z0))+ arg(z− z0)

near z0 we have
f (x)≈ f (z0)+ eiarg( f ′(z0))

∣∣ f ′(z0)
∣∣(z− z0)

this is a roralion of z− z0 by arg( f ′(z0)) and a scaling by | f ′(z0)|

� Example 2.11 Consider f (z) = z2 so f (reiθ ) = r2ei2θ . Let z0 = 1+ i =
√

2ei π

4 , so f (z0) = 2i and f ′(z0) =
2
√

2ei π

4 so for small h = z− z0 we have

f (z0 +h)≈ f (z0)+ eiarg( f ′(z0))

�

� Remark 2.7
If f is differentiable on an open interval (a,b) and f ′(x) = 0 on (a,b), then f is constant on (a,b)
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Theorem 2.1.6
If f is holomorphic on a domain D and f ′(z) = 0 for all z ∈ D, then f is constant on D

Proof:
f ′(z) = 0 =

∂u
∂x

+ i
∂v
∂x

=
∂v
∂y
− i

∂u
∂y

so that
∂u
∂x

=
∂u
∂y

=
∂v
∂x

=
∂v
∂y

= 0

so u,v are constant on any horizontal or vertical line segment in D, but D is a domain so it’s open and path
connected. Then any two points in D can be connected by a path of horizontal and vertical line segment, so
u and v are constant on D, that means f = u+ iv is constant on D.

� Example 2.12 Find a branch of (z2−1)
1
2 holomorphic on |z|> 1

Note that the principal branch of z
1
2 does not work:

e
1
2 log(z2−1)

Its branch cut is where z2−1 ∈ R with z2−1≤ 0. But let z = 2i, so z2−1 =−5≤ 0.

Consider the principal branch of f (z) = z(1− 1
z2 )

1
2 , its branch cut lies wherever 1− 1

z2 ≤ 0 in R, which
is 1

z2 ≥ 1 in R ⇐⇒ z2 ≤ 1 in R =⇒ |z|< 1 �

2.2 Smooth Curve

Definition 2.2.1 — Smooth Curve.
A smooth curve in C is the image of the function r : [a,b]→ C satisfying:

1. r is continuous and differentiable on [a,b]
2. r′ 6= 0 on [a,b]
3. r is one to one

� Remark 2.8 The definition of smooth curve results gaps, sharp corners, pausing, retracing and self-
intersection are not smooth curve.

Definition 2.2.2 — Directed Smooth Curve.
A directed smooth curve is a smooth curve with a fixed direction. i.e. The points on the curve are ordered
and and r must trace them in order.

Definition 2.2.3 — Contour.
A contour is a directed piecewise smooth curve. i.e. Γ =

⋃n
i=1Ci where each Ci is directed smooth curve

and the terminal point of Ci is the initial point of Ci+1.

Definition 2.2.4
A contour is simple if it has no self-intersection
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Definition 2.2.5
A contour is closed if its initial point coincides with its terminal point.

Definition 2.2.6 A simple closed contour is a contour both simple and closed.

� Example 2.13 Let Γ : r1(t) = z0t + z1(1− t) for t ∈ [0,1] where z0,z1 are constants.
Note: Parametrizations are not unique. That means we have

r2(t) = z0(2t)+ z1(1−2t) for t ∈ [0,
1
2
] r3(t) = z0t2 + z1(1− t2) for t ∈ [0,1]

�

� Example 2.14 Consider Γ : r(t) = R · eit + z0 for t ∈ [0,2π] �

Definition 2.2.7 If Cr(z0) = r · eit + z0 for t ∈ [0,2π] is the circular contour with radius r and center z0,
traversed counterclockwise

� Example 2.15 Consider Γ =C1∪C2∪C3 where

C1 : r1(t) = t C2 : r2(t) = ti+(1 = t) C3 : r3(t) = (1− t)i

where t ∈ [0,1] so we can parametrize Γ by

r(t) =


r1 t ∈ [0,1]

r2 t ∈ [0,1]

r3 t ∈ [0,1]
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�

Theorem 2.2.1 — Jordan Curve Theorem.
A simple closed contour divides C into two disjoint regions, a bounded interior and an unbounded exterior.

Definition 2.2.8
A simple closed contour is positively oriented if its interior is to the left when traversed, negatively
oriented clockwise otherwise.



3. Integration and Series

3.1 Integration

Definition 3.1.1 — Partition. Let Γ be a directed with initial point w0 and terminal point w1. A partition
of Γ is a set of points where

w0 = z0, z1,z2, ....,zn = w1

such that for all 0≤ i < n, zi+1 is further along Γ than zi.

Definition 3.1.2 — Mesh.
The mesh of a partition is the largest distance between two consecutive points zi,zi+1 along Γ

Definition 3.1.3 — Riemann Sum.
Let Γ lie on a domain D and let f : D→ C. The Riemann sum of f with respect to Pn is

S f (Pn) =
n

∑
i=1

f (zi) · (zi− zi−1)

Definition 3.1.4
f is integrable along Γ if

lim
mesh(Pn)→0

S(Pn) exists

Definition 3.1.5 — integral.
If f is integrable along Γ the integral of f along Γ is∫

Γ

f = lim
mesh(Pn)→0

S(Pn)

� Remark 3.1 This definition does not reference a parametrization of Γ, thus the integral is independent of
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the choice of parametrization of the curve.

Let Γ parametrized by r : [a,b]→ Γ, then

lim
mesh(Pn)→0

n−1

∑
i=0

f (zi)(zi+1− zi)

Let t0, t1, ..., tn be the partition of [a,b] s.t. r(ti) = zi and 0≤ i≤ n. This gives us

lim
mesh(Pn)→0

n−1

∑
i=0

f (r(ti))∆zi

where ∆ti = ti+1− ti and ∆zi = zi+1− zi, so that

lim
mesh(Pn)→0

n−1

∑
i=0

f (r(ti))∆zi = lim
∆ti→0

n−1

∑
i=0

f (r(ti))r′(ti)∆ti =
∫ b

a
f (r(t))r′(t)dt

That is ∫
Γ

f (z)dz =
∫ b

a
f (r(t))r′(t)dt very important

� Remark 3.2 Let’s define the integral over a contour. First we consider

Γ = Γ1 +Γ2 + ....+Γn

where the Γi are smooth directed curves, to be

∫
Γ

f =
∫

Γ1

f +
∫

Γ2

f + ...+
∫

Γn

f

The contour integral immediately satisfies the followings

∫
Γ

f +g =
∫

Γ

f +
∫

Γ

g
∫

Γ1+Γ2

f =
∫

Γ1

f +
∫

Γ2

f
∫

Γ

c · f = c ·
∫

Γ

f

for some constant c ∈ C
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� Example 3.1 Let Γ : r(t) = eit where t ∈ [0,π], then by Remark 1.14 we have∫
Γ

zdz =
∫

π

0
eit(ieit)dt = i

∫
π

0
e2itdt = i

[
1
2i

e2it
]π

0
=

1
2
(e2πi− e0) = 0

also we have ∫
Γ

z2dz =
∫

π

0
(eit)2(ieit)dt = i

∫
π

0
e3itdt =

1
3
(e3iπ − e3i·0) =−2

3
�

� Example 3.2 Let C1(0) = r(t) = eit for t ∈ [0,2π], then by Remark 1.14 we have∫
C1(0)

zdz =
∫ 2π

0
eit(ieit)dt =

1
2
(e4πi− e0) = 0

and ∫
C1(0)

=
∫ 2π

0

1
eit ieitdt =

∫ 2π

0
idt = 2πi

�

� Example 3.3 Let’s define Γ1 : r1(t) = t with t ∈ [0,1] and Γ2 : r2(t) = 1+ it with t ∈ [0,1], then by Remark
1.14 we have ∫

Γ

z2dz =
∫

Γ1

z2dz+
∫

Γ2

z2dz

=
∫ 1

0
t2(1)dt +

∫ 1

0
(1+ it)2(i)dt

=−2
3
+

2
3

i

�

� Example 3.4 Let C1(z0) : r(t) = z0 + eit for t ∈ [0,2π], then by Remark 1.14 we have∫
C1(z0)

(z− z0)
ndz =

∫ 2π

0
(z0 + eit − z0)

n(ieit)dt =
∫ 2π

0
enit · ieitdt = i

∫ 2π

0
ei(n+i)tdt

by solving the integral we get∫
C1(z0)

(z− z0)
ndz = i

∫ 2π

0
ei(n+i)tdt =

{
1

n+1(e
2πi(n+1)− e0) if n 6=−1

2πi otherwise
=

{
0 if n 6=−1

2πi otherwise

�

Definition 3.1.6 — Length.
The length of a contour Γ parametrized by r : [a,b]→ Γ with∫ b

a

∣∣r′(t)∣∣dt
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Theorem 3.1.1
Let f be integrable on Γ and | f (z)| ≤M on Γ, then∣∣∣∣∫

Γ

f (z)dz
∣∣∣∣= ∣∣∣∣∫ b

a
f (r(t))r′(t)dt

∣∣∣∣≤ ∫ b

a

∣∣ f (r(t))r′(t)∣∣dt =
∫ b

a
| f (r(t))|

∣∣r′(t)∣∣dt

Definition 3.1.7 — Primitive.
A function F is primitive (or antiderivative) for a function f on a domain D if F is holomorphic on D and
for all z ∈ D with F ′(z) = f (z)

Let f have a primitive F on D and Γ lie on D, consider∫
Γ

f (z)dz =
∫

Γ

F ′(z)dz

Let r : [a,b]→ Γ parametrize Γ, then∫
Γ

F ′(z)dz =
∫ b

a
F ′(r(t))r′(t)dt =

∫ b

a

dF
dr

(r(t))
dr
dt

dt =
∫ r(b)

r(a)

dF
dr

dr = F(r(b))−F(r(a))

by the fundamental theorem of calculus in R

Theorem 3.1.2
Fundamental Theorem of Calculus in C: If f has a primitive F on a domain D and Γ lies in D with
initial point z0 and terminal point z, then∫

Γ

f (z)dz = F(z1)−F(z0)

� Example 3.5 Let f (z) = z so it has primitive F(z) = 1
2 z2 on all of C. Then for Γ containing from z0 to z1,∫

Γ

zdz =
1
2

z2 |z1
z0

If z1 = 1+ i and z0 = 0, so we get ∫
Γ

zdz =
1
2

z2 |1+i
0 = i

�

� Example 3.6 Let f (z) = 1
z has a primitive log(z), that is any branch of log(z) is a primitive of 1

z on its
domain. so log(z) is primitive of 1

z on the domain C\R≤0, then∫
Γ

1
z

dz = log(i)− log(−i) = log
(

e
iπ
2

)
− log

(
e
−iπ

2

)
= iπ

but for f (z) = 1
z has no primitive valid on all of C1(0) �
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Corollary 3.1.3
If f has a primitive on a domain D and Γ is a closed contour lying in D, then∫

Γ

f (z)dz = 0

Proof: Note that ∫
Γ

f = F(z1)−F(z0) = F(z0)−F(z0) = 0

that is primitive implies
∮

f = 0

Lemma 3.1.4
Let f be continuous on a domain D and let ∮

Γ

f = 0

for any closed Γ lying in D. Then given Γ1, Γ2 in D with the same initial and terminal points, then∫
Γ1

f =
∫

Γ2

f

Proof: Note that Γ1 +(−Γ2) is closed, so∫
Γ1+(−Γ2)

f = 0 =
∫

Γ1

f −
∫

Γ2

f = 0

Lemma 3.1.5
Let f be continuous on a domain D such that for Γ1, Γ2 in D sharing initial and terminal point∫

Γ1

f =
∫

Γ2

f

then f has a primitive on D

Proof: Fix z0 ∈ D and define
F(z) =

∫
Γ

f (z)dz

where Γ is a contour lying in D with initial point z0 and terminal point z. This is well-defined by path-
independent (and path-connectedness of D). Now consider

F ′(z) = lim
|∆z|→0

F(z+∆z)−F(z)
∆z

= lim
|∆z|→0

∫
E f (z)dz

∆z

where E is the line segment running from z to z+∆z, that is E : r(t) = z+ t∆z for t ∈ [0,1]. Then we have

F ′(z) = lim
∆z→0

∫
E f (z)dz

∆z
= lim
|∆z|→0

1
∆z

∫ 1

0
f (z+ t∆z)∆zdt = lim

|∆z|→0

∫ 1

0
f (z+ t∆z)dt
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since f is continuous, so
lim

∆z→0
f (z+ t∆z) = f (z)

so for all ε > 0 ∃δ > 0 s.t. as ∆z < δ , then f (z+ t∆z)− f (z)< ε . Now we can see that

0≤ lim
|∆z|→0

∫ 1

0
f (z+ t∆z)dt ≤ lim

|∆z|→0

∫ 1

0
f (z)+ εdt = lim

ε→0
f (z)+ ε = f (z)

Theorem 3.1.6
Let f be continuous on a domain D, TFAE:

1. f has a primitive on D

2. For all closed contours Γ lying in D,
∫

Γ

f = 0

3. For any two contours Γ1,Γ2 in D that sharing intial and terminal points, then∫
Γ1

f =
∫

Γ2

f

Definition 3.1.8 — Cauchy Sequence.
A Cauchy sequence is a sequence {zn}∞

n=1 such that ∀ε > 0 ∃N > 0 such that n1,n2 > N

|zn1− zn2 |< ε

Lemma 3.1.7
A Cauchy seuqence in a compact set S⊆ Rn converges to a point in S

Lemma 3.1.8 Any closed and bounded subset of Rn is compact

Lemma 3.1.9 Let f be holomorphic at z0, then

f (z) = f (z0)+ f ′(z0)(z− z0)+ ε(z)(z− z0)

for some ε(z) satisfying lim
z→z0

ε(z) = 0

Proof: Let

ε(z) =
f (z)− f (z0)

z− z0
− f ′(z0)

then take lim
z→z0

.
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Theorem 3.1.10 — Goursat’s Theorem.
Let f be the holomorphic on a domain D and let T be a triangle lying D with interior in D then∫

T
f (z)dz = 0

Proof: Divide T into four triangles by connecting the midpoints of its sides. Now∫
T

f =
∫

T1

f +
∫

T2

f +
∫

T3

f +
∫

T4

f

there exists a Ti such that ∣∣∣∣∫T
f
∣∣∣∣≤ 4

∣∣∣∣∫Ti

f
∣∣∣∣

Note that length(T1)≤ 1
2 length(T ) and diam(T1)≤ 1

2 diam(T ). Repeat this process, yielding T =T (0),T (1), ...
such that ∣∣∣∣∫T

f
∣∣∣∣≤ 4n

∣∣∣∣∫T (n)
f
∣∣∣∣

with length(T (n))≤ 1
2n length(T ) and diam(T (n))≤ 1

2n diam(T ).
Let zn be a point in the interior of T (n) for each n, then {zn} is a Cauchy sequence. Then lim

n→∞
zn = w where

w lies in the interior of each T (n). Since f is hlomorphic at w, then

f (z) = f (w)− f ′(w)(z−w)+ ε(z)(z−w)

lim
z→w

ε(z) = 0. Now consider

∫
T (n)

f (z)dz =
∫

T (n)
f (w)+ f ′(w)(z−w)+ ε(z)(z−w)dz

Note that f (w) has primitive z f (w) and f ′(w)(z−w) has primitive 1
2 f ′(w)(z−w)2 so∫

T (n)
f (w)+ f ′(w)(z−w)dz = 0

so that ∫
T (n)

f (z)dz =
∫

T (n)
ε(z)(z−w)dz

Let’s define εn = sup
z∈T (n)

|ε(z)| and then

|z−w| ≤ diam(T (n))≤ 1
2n diam(T )

and
length(T (n))≤ 1

2n length(T (n))

so that∣∣∣∣∫T (n)
f (z)dz

∣∣∣∣= ∣∣∣∣∫T (n)
ε(z)(z−w)dz

∣∣∣∣≤ εndiam(T (n))length(T (n))≤ εn
1
4n diam(T )length(T )
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thus ∣∣∣∣∫T
f (z)dz

∣∣∣∣≤ 4n
∣∣∣∣∫T (n)

f (z)dz
∣∣∣∣≤ 4n

εn
1
4n diam(T )length(T ) = εndiam(T )length(T )

let n→ ∞ and εn→ 0, we get∣∣∣∣∫T (n)
f (z)dz

∣∣∣∣→ 0 =⇒
∫

T (n)
f (z)dz = 0

which completes the proof.

Corollary 3.1.11
The Goursat’s Theorem also works for retangles and polygons.

Corollary 3.1.12
If f is holomorphic on an open disk, then f has a primitive on that disk

Proof: Choose z0 ∈ D and define
F(z) =

∫
Γ

f (z)dz

so that
F(z+h)−F(z) =

∫
Γn

f (z)dz+
∫

∆

f +
∫
�

f︸ ︷︷ ︸
=0

so that
d
dz

∫
Γn

f (z)dz = f (z)

as in last lecture.

� Example 3.7 f holomorphic on domain D does not imply f has primitive on D.

Let f (z) = 1
z is holomorphic on

{z ∈ C : 1 < |z|< 2}

and ∫
C1(0)

1
z

dz = 2πi

�

Definition 3.1.9 — Homotopic.
Let Γ1,Γ2 be two contours in a domain D with the same initial and terminal point. Γ1 is homotopic (or
continuously deformable) if there exists r : [0,1]2→ C satisfying:

1. r is continuous on [0,1]2

2. For a fixed s, r(s, t) is a parametrization of a contour in D with initial and terminal point shared with
Γ1,Γ2
3. r(0, t) parmetrizes Γ1, r(1, t) parmetrizes Γ2
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Definition 3.1.10 — Simply Connected.
A domain D is simply connected if any two contours in D sharing initial and terminal point are homotopic
to each other.

3.2 Cauchy’s Theorem and its Integration Formula

Theorem 3.2.1 — Cauchy’s Theorem.
Let f be holomorphic on a simply connected domain D and let Γ be a closed contour in D, then∫

Γ

f = 0

Proof: Γ is homotopic and triangle.

� Example 3.8 Let f (z) = z2, since z2 is entire so by Cauchy’s Theorem,∫
Γ

f (z)dz =
∫

Γ1

f (z)dz =
∫ −1

1
x2dx =−2

3
�

� Example 3.9 Let f (z) = 1
z2−1 , so f is holomorphic on C\{1,−1}, then∫

C2(0)
f (z)dz =

∫
Cε (−1)

f (z)dz+
∫

Cε (1)
f (z)dz

for ε ∈ (0,2). Note that
1

z2−1
=

1
2
·
(

1
z−1

− 1
z+1

)
then ∫

Cε (1)
f (z)dz =

1
2
·

∫Cε (1)

1
z−1

dz−
∫

Cε (1)

1
z+1

dz︸ ︷︷ ︸
=0

=
1
2
·2πi = πi
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Similarly, we have

∫
Cε (−1)

f (z)dz =
1
2
·

∫Cε (−1)

1
z−1

dz︸ ︷︷ ︸
=0

−
∫

Cε (−1)

1
z+1

dz

=
1
2
·−2πi =−πi

so ∫
C2(0)

f (z)dz = 0

�

� Example 3.10 Say f has a taylor series at z0:

f (z) = f (z0)+a1(z− z0)+a2(z− z0)
2 + .....

Then we get

1
2πi

∫
Γ

f (z)
z− z0

dz =
1

2πi

∫
Γ

 f (z0)

z− z0
+a1 +a2(z− z0)+ ...︸ ︷︷ ︸

holomorphic

dz

=
f (z0)

2πi

∫
Γ

1
z− z0

dz

=
f (z0)

2πi
·2πi

= f (z0)

�

Theorem 3.2.2 — Cauchy Integral Formula.
Let f be function holomorphic on a domain Ω⊆ C, Γ is a jordan curve (closed contour) contained in Ω

and whose interior in contained in Ω. Let z0 ∈ the interior of Γ, then

f (z0) =
1

2πi

∫
Γ

f (z)
z− z0

dz

Proof: WE can replace Γ with C(r) = {z ∈ C : |z− z0|= r} for small enough r, then

1
2πi

∫
Γ

f (z)
z− z0

dz =
1

2πi

∫
C(r)

f (z)
z− z0

dz

=
1

2πi

∫
C(r)

f (z0)

z− z0
dz+

∫
C(r)

f (z)− f (z0)

z− z0
dz

= f (z0)+
∫

C(r)

f (z)− f (z0)

z− z0

We will show that ∫
C(r)

f (z)− f (z0)

z− z0
= 0
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Since

f ′(z0) = lim
z→z0

f (z)− f (z0)

z− z0

exists and
∣∣∣ f (z)− f (z0)

z−z0

∣∣∣ is bounded on C(r) and its interior S0, so

∫
C(r)

f (z)− f (z0)

z− z0
dz→ 0

as r→ 0. so since this integral is independent of r and it must equal 0, which complesthes the proof.

� Example 3.11 Say g is holomorphic on 0 < |z|< R, which of the following implies that∫
C(r)

g(z)dz = 0

(a) g is holomorphic at 0
(b) g is identically 0 on 0 < |z|< R
(c) |g| is bounded on 0 < |z|< R
(d) g(z) = 2πi on 0 < |z|< R
(e) g is defined and continuouos at 0
(f) limz→0 g(z) = ∞

Answer: (a)(b)(c)(d)(e) �

� Example 3.12 Let Γ = {z ∈ C : |z|= 1}, compute
(a)
∫

Γ

cos(z)
z dz

(b)
∫

Γ

ez

z−2 dz

(c)
∫ cos(2πz)

2z−1 dz

By Cauchy Integral Thm/Formula, (a)(b) are 0. �

Proposition 3.2.3 — Cauchy Integral Formula for Derivaives.
Note that

( 1
1−x

)′
= 1

(1−x)2 , then the CIF:

f (w) =
1

2πi

∫
Γ

f (z)
z−w

dz =⇒ d
dw

f (w) =
1

2πi
d

dw

∫
Γ

f (z)
z−w

dz =
1

2πi

∫
Γ

d
dw

f (z)
z−w

dz

Taking devaritive again:

f ′(w) =
1

2πi

∫
Γ

f (z)
(z−w)2 dz =⇒ 2

2πi

∫
Γ

f (z)
z−w

dz
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Taking devaritive n times:

f (n)(w) =
n!

2πi

∫
Γ

f (z)
(z−w)n+1 dz

so f is infinitely differentiable!

Proposition 3.2.4
Let f be holomorphic on Ω with D = {|z− z0|< R} ⊆Ω, then∣∣∣ f (n)(z0)

∣∣∣≤ n!M
rn

where M = max
|z|=r
| f (z)|.

Proof: Take Γ = {|z− z0|= r} then apply prop 3.1.15, then we have∣∣∣ f (n)(z0)
∣∣∣≤ ∣∣∣∣ n!

2πi

∫
Γ

f (z)
(z− z0)n+1 dz

∣∣∣∣≤ ∣∣∣∣ n!
2πi

∫
Γ

M
rn dz

∣∣∣∣= ∣∣∣∣ n!
2πi

M
rn ·2πi

∣∣∣∣= n!M
rn

3.3 Liouvlle Theorem and Maximum Modulus Principle

Theorem 3.3.1 — Liouivlle.
A bounded entire (holomorphic on C) function is constant.

Proof: By the CIF for derivatives we have | f ′(z)| ≤ n!M
r for any r > 0, so since M canbe taken inde-

pendent of r, we get | f ′(z0)|= 0 for all z0 so f is constant.

Theorem 3.3.2 — Maximum Modulus Principle.
A non-constant holomorphic function on a domain Ω cannot chieve its supremum on Ω. More precisely,
for all z0 ∈Ω, there is some z1 ∈Ω with | f (z1)|> | f (z0)|

Theorem 3.3.3
Every non-constant complex polynomials has a root in C

Proof: Let p be a complex polynomial with no root in C, we will show that p is constant. Then we
have 1

p is entire, let
m(r) = max

|z|=r
|p(z)|

then m(r) increases as r→ ∞, so g(r) = min
|z|=r
|p(z)| decreases as r→ ∞, but lim

z→∞
|p(z)| = ∞ is p is not

constant, which they couldn’t true at the same time, so it’s a contradiction. That means p is constant.

� Example 3.13
If f is entire and non-constant, which of the followings are true?



3.3 Liouvlle Theorem and Maximum Modulus Principle 33

(a) Image( f ) = f (C) must intersect the upper half plane.
(b) Image( f ) must intersect every straight line.
(c) Image( f ) must intersect every non-empty open set.
(d) Image( f ) must contain every point.

Answer: (a)(b)(c) �

� Example 3.14
If p is a polynomial satisfying |p(z)| ≤ |ez| for all z, what is p(z)?

Answer: Only p(z) = 0 by taking negative z with |z| large. �

Theorem 3.3.4 — Maximum Modulus Priciple.
Let f be holomorphic on an open set Ω. If f achieves its maximum on Ω, then f is a constant. That is, if
there is some z0 ∈Ω such that | f (z0)| ≥ | f (z)| for all z ∈Ω, then f is constant.

Proof: Let z0 be a local max of | f | on Ω, let

D = {|z− z0| ≤ r} ⊆Ω

be a disc around z0. Then the Cauchy integral formula says for C(r) = ∂D = {|z− z0|= r}:

f (z) =
1

2πi

∫
C(r)

f (z)
z− z0

dz =
1

2πi

∫ 2π

0

f (z0 + reiθ )

reiθ d(z0 + reiθ )

=
1

2πi

∫ 2π

0

f (z0 + reiθ )

reiθ reiθ dθ

=
1

2πi

∫ 2π

0
f (z)dθ

This gives us that

| f (z0)| ≤
1

2π

∫ 2π

0
| f (z)|dθ ≤ max

z∈C(r)
| f (z)|

with equality iff | f | is constant on C(r) with | f (z0)|= max
z∈C(r)

| f (z)| because r is arbitrary (as long as D⊆Ω),

we will show f is constant on D. Write f = u+ iv then u2 + v2 is constant on D.

2uux +2vvx = 0 2uuy +2vvy = 0 since ux = vy and uy =−vx

then we get −2uvx +2vux = 0. That is to solve[
u v
v −u

]
︸ ︷︷ ︸
det=−u2−v2

[
ux

vx

]
=

[
0
0

]

so either u2 + v2 = 0 or ux = vx = 0. The u2 + v2 = 0 implies f = 0 is a constant or ux = vx = uy = vy = 0
implies f is constant. Therefore, f is constant on D, since D is arbitrary so f is constant on Ω.
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3.4 Morera’s Theorem

Theorem 3.4.1 — Morera’s Theorem.
If f is continuous on a domain Ω with ∫

Γ

f (z)dz = 0

for all simple closed curves Γ⊆Ω whose interiors are contained in Ω, then f is holomorphic on Ω.

Proof: We will find a holomorphic F with F ′ = f . This will prove that f is holomorphic. Since holomor-
phicity is local, we can assume that Ω = D is a disc. Now choose z0 ∈ D we define

F(z) =
∫

Γ

f (z)dz

where Γ is any path from z0 to z because D is simply connected, this F is well defined by hypothesis.
Compute

F ′(z) = lim
x→z

F(z)−F(x)
z− x

= lim
x→z

1
z− x

(∫ z

z0

f (y)dy−
∫ x

z0

f (y)dy
)

= lim
x→z

1
z− x

∫ z

x
f (y)dy

= lim
x→z

(∫ z

x

f (y)− f (z)
z− x

dy+
∫ z

x

f (z)
z− x

dy
)

= lim
x→z

f (x)+
∫ z

x

f (y)− f (x)
z− x

dy

= f (z)+0

because the ∣∣∣∣∫ z

x

f (y)− f (x)
z− x

dy
∣∣∣∣≤ |z− x|

∣∣∣∣ f (m)− f (x)
z− x

∣∣∣∣= | f (m)− f (x)|

where m = the max value of f on (x,z), completes the proof.

Lemma 3.4.2 — Symmetry Principle.
Let D be a domain symmetric across R, let D+,D−, I be as indicated. Let f+ be holomorphic on D+, f−

be holomorphic on D, both extend continuously to I and f+(z) = f−(z) for z ∈ I, then

f (z) =


f+(z) z ∈ D+

f+(z) = f−(z) z ∈ I

f−(z) z ∈ D−

is holomorphic on D.

Proof: Note that if f is continuous on D, then∣∣∣∣∫T
f (z)−

∫
Tε

f (z)
∣∣∣∣≤ ε ·

(
max
z∈T

∣∣ f ′(z)∣∣) · length(T)→ 0
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as ε → 0

Proposition 3.4.3 — Schwarz Reflection Principle.
Let D+,D−, I as be the ones defined in Lemma 3.1.22. Let f+ be holomorphic on D+ and extend continu-
ously to I, then there exists f such that f (z) = f+(z) on D+ and f is holomorphic on D

Proof: Let f+(z) = f (z), by A2 we have f− is holomorphic on D−, then apply the Symmetry Prin-
ciple

Lemma 3.4.4 — Schwarz’s Lemma.
Let D = {z ∈ C : |z|< 1} and f be holomorphic on D, f (0) = 0 and | f (z)| ≤ 1 for all z ∈ D. Then
| f (z)| ≤ |z| for all z ∈ D and | f ′(0)| ≤ 1. Furthermore, if | f (z)|= |z| for some 0 6= z ∈ D, then f is rotation
f (z) = λ z for some constant |λ | ≤ 1.

Proof: Let

g(z) =

{
f (z)

z z 6= 0

f ′(0) z=0

Note that g is holomorphic on D, since

lim
z→0

f (z)
z

= lim
z→0

f (z)− f (0)
z−0

= f ′(0)

Now consider g on |z|< r < 1, then

|g(z)| ≤ max
|w|=r
|g(w)| ≤ max

|w|=r

| f (w)|
|w|

≤ 1
r
→ 1

as r→ 1. so we have |g(z)| ≤ 1 on D, then for z 6= 0

| f (z)|
|z|
≤ 1 =⇒ | f (z)| ≤ |z|

for z = 0 we have |g(0)| = | f ′(0)| ≤ 1. If | f (z)| = |z| at some z ∈ D, then |g(z)| = 1, so by maximum
modulus theorem g is constant on D. Let g(z) = λ and |z|= 1, then we have f (z) = λ z as desired.

� Remark 3.3 If f is holomorphic on domain D, then f is infinitely differentialbe on D

� Remark 3.4 In R, an infinitely differentiable function has a Taylor series representation.

3.5 Series

Definition 3.5.1 — Convergent Series.

A series ∑
∞
n=1 zn is convergent if lim

n→∞

n

∑
i=1

zi converges.
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Definition 3.5.2 — Cauchy Series.

A series ∑
∞
n=1 zn is Cauchy if lim

k→∞

∞

∑
n=k

zn = 0.

Definition 3.5.3 — Uniformly Convergent.
A sequence { fn} is uniformly convergent on a set if ∀ε > 0, ∃N > 0, ∀z ∈ S, ∃L, ∀n > 0

| fn(z)−L|< ε

Lemma 3.5.1 If fn→ f uniformly on S, then ∫
S

fn→
∫

S
f

Definition 3.5.4 — Uniformly Convergent Series.
A series is uniformly convergent if its sequence of partial sum is uniformly convergent.

Definition 3.5.5 — Absolutely Convergent Series.

A series is absolutely convergent if the series
∞

∑
n=0

zn converges.

Definition 3.5.6
Let’s define

Dr(z0) = {z ∈ C : |z− z0|< r}

be the open disk of radius r centered at z0. Let Dr(z0) = Dr(z0)∪Cr(z0) be its closure.

Definition 3.5.7
Let {xn} ⊆ R, then

limsupxn = lim
n→∞

sup
k>n

xk

Proposition 3.5.2 — Ratio Test.

If limsup
∣∣∣ zn+1

zn

∣∣∣< 1, then
∞

∑
n=0

zn converges absolutely. If limsup
∣∣∣ zn+1

zn

∣∣∣> 1, then
∞

∑
n=0

zn diverges.

Proposition 3.5.3 — Root Test.

If limsup |zn|
1
n < 1, then then

∞

∑
n=0

zn converges absolutely. If limsup |zn|
1
n > 1, then

∞

∑
n=0

zn diverges
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Proposition 3.5.4 — Comparison Test.

If
∞

∑
n=0

xn converges with xn ∈ R and |zn| ≤ xn for all n, then
∞

∑
n=0

zn converges absolutely.

Proposition 3.5.5 — Weierstrass M Test.

Let { fn}∞

n=1 satisfy | fn(z)| ≤Mn for all z ∈ S. If
∞

∑
n=1

Mn converges, then
∞

∑
n=1

fn(z) converges uniformly on S

Proof: Let gn(z) =
n

∑
k=0

fk(z), then gn is uniformly Cauchy on S

Definition 3.5.8 — Power Series.

A Power Series about z0 is a series of the form
∞

∑
n=0

an(z− z0)
n where zn ∈ C

Theorem 3.5.6

If a power series
∞

∑
n=0

an(z− z0)
n converges at point z with |z− z0| = R, then it converges absolutely on

DR(z0) and converges uniformly on any closed subdisk of Dr(z0)

Proof: Let w ∈ DR(z0) and |w− z0|< r < R, then

|an(w− z0)
n|= |an(z− z0)

n|︸ ︷︷ ︸
→0 so is bounded ≤M

·
∣∣∣∣an(w− z0)

n

an(z− z0)n

∣∣∣∣︸ ︷︷ ︸
≤ r

R

≤M ·
( r

R

)n

︸ ︷︷ ︸
r
R<1

Now we can see that M
( r

R

)n is a convergent geometric series so
∞

∑
n=0

an(w− z0)
n converges absolutely by

comparison. Apply the Weierstrass M-Test to the above to get uniformly convergence on Dr(z0)

Theorem 3.5.7 — Taylor’s Theorem.
Let f be holomorphic on Dr(z0), then for all z ∈ DR(z0),

f (z) =
∞

∑
n=0

f (n)(z0)

n!
(z− z0)

n

Proof: Choose z ∈ DR(z0) and let |z− z0|< r < R, by Cauchy Integration formula

f (z) =
1

2πi

∫
Cr(z0)

f (w)
w− z

dw
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for all w ∈Cr(z). Then

f (w)
w− z

=
f (w)

(w− z0)− (z− z0)
=

f (w)
w− z0

· 1
1− z−z0

w−z0

=
f (w)

w− z0

∞

∑
n=0

(
z− z0

w− z0

)n

=
∞

∑
n=0

f (w) ·
(

(z− z0)
n

(w− z0)n+1

)
Now we have∣∣∣∣ f (w) ·( (z− z0)

n

(w− z0)n+1

)∣∣∣∣≤ max
w∈Cr(z0)

| f (w)| · |z− z0|n

rn+1 =
1
r
· max

w∈Cr(z0)
| f (w)|

(
z− z0

r

)n

Since
∣∣∣ z−z)

r

∣∣∣ < 1, then by weierstrass M-test, this series converges uniformly on Cr(z0), thus we may
integrate term by term. Then

f (z) =
1

2πi

∫
Cr(z0)

∞

∑
n=0

f (w)
(z− z0)

n

(w− z0)n+1 dw =
1

2πi

∞

∑
n=0

∫
Cr(z0)

f (w)
(w− z0)n+1 dw(z− z0)

n =
∞

∑
n=0

f (n)(z0)

n!
(z− z0)

n

� Remark 3.5 The term "analytic" means expressible as n power series many text will use "analytic" in place
of "holomorphic".

� Example 3.15

ez =
∞

∑
n=0

zn

n!
= 1+ z+

z2

2!
+ ......

with R = ∞

sin(z) =
∞

∑
n=0

(−1)n z2n+1

(2n+1)!
= z− z3

3!
+

z5

5!
+ ....

with R = ∞

cos(z) =
∞

∑
n=0

(−1)n z2n

(2n)!
= 1− z2

2!
+

z4

4!
+ ....

with R = ∞

1
1− z

=
∞

∑
n=0

zn = 1+ z+ z2 + ....

with R = 1 �

� Example 3.16 Taylor series for e2z about 0, we have

e(2z) =
∞

∑
n=0

(2z)n

n!
= 1+2z+

4z2

2!
+

8z3

3!
+ ...

Converges for |2z|< ∞, implies that R = ∞. �
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� Example 3.17 Let’s look at 1
1
2 z2+1

, let w =−1
2 z2, then

1
1
2 z2 +1

=
1

1−w
=

∞

∑
n=0

wn =
∞

∑
n=0

(
−1

2
z2
)n

=
∞

∑
n=0

(−1)n

2n z2n

and
∣∣1

2 z2
∣∣< 1 implies |z|<

√
2, so R =

√
2 �

� Example 3.18 Taylor series for cos(z)+ isin(z) about 0:

cos(z)+ isin(z) =
∞

∑
n=0

(−1)n z2n

(2n)!
+ i ·

∞

∑
n=0

(−1)n z2n+1

(2n+1)!
= 1+ iz− z2

2!
− i

z3

3!
+

z4

4!
+ ....=

∞

∑
n=0

inzn

n!
= eiz

�

� Example 3.19 Recall for r > 0

∫
Cr(z0)

(z− z0)
n =

{
0 n 6= 1

2πi n =−1

Let f be analytic on DR(z0), then

f (z) =
∞

∑
n=0

f (n)(z0)

n!
(z− z0)

n

uniform convergence on Dr(z0) and the convergence is uniform on closed subdisks.
so for all r < R we have∫

Cr(z0)
f (z)dz =

∫
Cr(z0)

∞

∑
n=0

an(z− z0)
ndz =

∞

∑
n=0

an ·
∫

Cr(z0)
(z− z0)

ndz = 0

�

� Example 3.20 Find a series representation for ez

z2 about z = 0.

ez

z2 =
1
z2

∞

∑
n=0

zn

n!
=

1
zn (1+ z+ ...) =

∞

∑
n=0

zn

(n+2)!

Now consider for r > 0∫
Cr(0)

ez

z2 =
∫

Cr(0)

∞

∑
n=0

zn

(n+2)!
=

∞

∑
n=0

∫
Cr(0)

zn

(n+2)!
= 2πi · 1

(−1+2)!
= 2πi

�

Lemma 3.5.8
If fn→ f is uniformly on S, then ∫

S
fn→

∫
S

f
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Theorem 3.5.9
Let f be holomorphic on a domain {z ∈ C : r1 < |z− z0|< r2}, then on that annulus, f has a Laurent
Series (generalized Cauchy series)

f (z) =
∞

∑
−∞

an(z− z0)
n

which converges on the annulus and converges uniformly on closed subannuli.

Definition 3.5.9 — Isolated Singnlarity.
An isolated singnlarity of a function f is a point z0 where f is not holomorphic, but where f is holomor-
phic on some punnctured disk 0 < |z− z0|< r

� Remark 3.6 If f (z) has zero at z0, then 1
f (z) has singularity at z0.

Definition 3.5.10 — Zero of Order m.
An analytic function f has a zero of order m at z0 if f (z)

(z−z0)m is analytical at z0 but f (z)
(z−z0)m+1 is not.

Equivalently if f (z) =
∞

∑
n=0

the order is the smallest n such that an 6= 0

Definition 3.5.11 — Singularity.
A singularity of f is a point where f is not analytic but is a limit point of the points where f is analytic.

Definition 3.5.12

Let z0 be an isolated singularity of f , let
∞

∑
n=0

an(z− z0)
n be the Laurrent series of f at z0

If a−m 6= 0 but an = 0 for all n > m, we call z0 a pole order of m ⇐⇒ (z− z0)
m f (z) is analytic at

z0 but (z− z0)
m+1 f (z) is not

If a−n = 0 for all n > 0, we call this a removable singularity. In this case, we have

g(z) =

{
f (z) z 6= z0

lim
z→z0

f (z) z = z0

is analytic at z0.

If a−n 6= 0 for infinitely many n > 0, we call this essential singularity.

� Example 3.21 Removable singularity examples:

f (z) =
z
z

f (z) =
sin(z)

z
=

1
z
·
(

z− z3

3!
+

z5

5!
− ...

)
= 1− z2

3!
+

z4

5!
− ...

�
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� Example 3.22 Let a function

f (z) =
∞

∑
n=−m

an(z− z0)
n with am 6= 0

on a punctured disk 0 < |z− z0|< r. Let Γ be a simple, closed positively oriented contour in the annulus with
z0 inside the loop, then∫

Γ

f (z)dz =
∫

Γ

∞

∑
n=−m

an(z− z0)
ndz =

∞

∑
n=−m

∫
Γ

an(z− z0)
n = 2πi ·a−1

�

Definition 3.5.13 — Residue.
Given f , z0, Γ as before, we define the residue of f at z0 to be

1
2πi

∫
Γ

f (z)dz = a−1 = resz0( f )

Definition 3.5.14 — Meromorphic.
A function f is called meromorphic on a domain D if it’s holomorphic on all of D except for a set of
isolated poles.

Theorem 3.5.10 — Residue Theorem.
Let f be meromorphic on a simply connected domain D and let Γ be a simple, closed, positively oriented
contour lying in D. Let z1, ...,zk be the poles of f inside Γ, then

∫
Γ

f (z)dz = 2πi
k

∑
i=1

reszi( f )

� Example 3.23 Consider f (z) = 1
z2+z =

1
z(z+1) , so for 0 < |z|< 1, then

1
z(z+1)

=
1
z
·
(

1
1− (−z)

)
=

1
z

∞

∑
n=0

(−z)n =
1
z
−1+ z− z2....

so it has order 1 and residue 1
for 0 < |z+1|< 1, then

1
z(z+1)

=
1

z+1
· 1
z+1−1

=
1

z+1
·
(

1
1− (z+1)

)
=− 1

z+1

n

∑
n=0

(z+1)n =
−1

z+1
−1−(z+1)−(z+1)2− ..

so is has simple pole and residue −1.
for |z|> 1, then

1
z(z+1)

=
1
z
· 1

z+1
·

1
z
1
z

=
1
z2 +

1
1+ 1

z

=
1
z2 ·

n

∑
n=0

(
1
z

)n

= ....+
1
z4 ++

1
z3 +

1
z2

�
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� Remark 3.7 Recall f has pole of order m at z0 ⇐⇒ (z− z0)
m f (z) has removeable singularity at z0,

(z− z0)
m−1 f (z) has a pole at z0. That is

(z− z0)
m
(

a−m

(z− z0)m + ...

)
= a−m +am−1(z− z0)+ ....

f has a zero of order m at z0 ⇐⇒ f (z)
(z−z0)m has a removeable singgularity at z0, f (z)

(z−z0)m+1 has a pole at z0.

1
(z− z0)m (am(z− z0)

m + ...)) = am +am+1(z− z0)+ ..

Let f and g be analytic at z0, let f have a zero of order m at z0 and let g have a zerp pf order n at z0, then

f (z)
g(z)

=

f (z)
(z−z0)m (z− z0)

m

g(z)
(z−z0)n (z− z0)n

= (z− z0)
m−nh(z) where h(z) is analytic at z0

and we see that

f (z)
g(z)

has


a zero of order m−n at z0 if m > n

a pole of order n−m at z0 if m < n

a removable singularity if m = n

� Example 3.24 1
z(z+1) has simple poles at z = 0 and z =−1 �

� Example 3.25 z+3
z3(z+1)2(z−2) has order 3 pole at 0, order 2 pole at −1 and simple pole at 2. �

� Example 3.26
cos(z)−1

z2 =
1
z2

(
1− z2

2!
+

z4

4!
− ...

)
=− 1

2!
+

z2

4!
− ...

so it has removeable singularity at z = 0. �

� Example 3.27 Let f has a simple pole at z0 and a Laurent series:

f (z) =
a−1

z− z0
+a0 +a1(z− z0)+ ...

is same punctured disk about z0, then

(z− z0) f (z) = a−1 +a0(z− z0)+a1(z− z0)
2 + ...

so that
lim
z→z0

((z− z0) f (z)) = a−1 = resz0( f )

so if f has a simple pole at z0, then resz0( f ) = lim
z→z0

(z− z0) f (z) �

� Example 3.28 Let f (z) = 1
z(z+1) , then res0( f ) = lim

z→0
z f (z) = lim

z→0
z · 1

z(z+1)
=

1
0+1

= 1. Similarly, we

have res−1( f ) = lim
z→−1

(z+1)
1

z(z+1)
=

1
−1

= 1 �
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� Example 3.29 Now let f have a pole of order m at z0, then

f (z) =
a−m

(z− z0)m +
a−m+1

(z− z0)−m+1 + ....

so that
(z− z0)

m f (z) = a−m +a−m+1(z− z0)+ ...

so
d
dz

((z− z0)
m f (z)) = a−m+1 +2a−m+2(z− z0)+ ...+(m−1)a−1(z− z0)

m−2 + .

and
dm−1

dzm−1 ((z− z0)
m f (z)) = a−1(m−1)!+ ...

then

lim
z→z0

dm−1

dzm−1 ((z− z0)
m f (z)) = a−1(m−1)!

and

a−1 = resz0( f ) =
1

(m−1)!
lim
z→z0

dm−1

dzm−1 ((z− z0)
m f (z))

�

� Example 3.30 Consider f (z) = ez+1
z3 , then e0 +1 = z 6= 0 so f has an order 3 pole at 0, then

res0( f ) =
1

(3−1)!
lim
z→z0

d2

dz2

(
z3 · e

z +1
z3

)
=

1
2

�

� Example 3.31 Let f (z) =
∞

∑
n=−∞

an(z− z0)
n be the Laurent series for f in some annulus, so

a−1 =
1

2πi

∮
Γ

f (z)dz

where Γ is simple, closed, positively oriented contour looping around the inner circle of annulus.
Now we see

(z− z0)
−m−1 f (z) = ....+

am

z− z0
+ .... =⇒ am =

1
2πi

∮ f (z)
(z− z0)m+1 dz

Note: for a Taylor series, this is equivalent to f (n)(z0)
n! by Cauchy’s Integration Theorem. �

3.6 Integration II

Proposition 3.6.1 Let f (z) = g(z)
h(z) where g,h are analytic at z0. Let g(z0) 6= 0 and h(z0) = 0, h′(z0) 6= 0.

That is f has a simple pole at z0, then

resz0( f ) = lim
z→z0

(z− z0) f (z) = lim
z→z0

(z− z0)
g(z)
h(z)

= g(z0) lim
z→z0

z− z0

h(z)
= g(z0) lim

z→z0

z− z0

h(z)−h(z0)
=

g(z0)

h′(z0)
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� Example 3.32 Find residues of all poles of f (z) = 1
z3−1 , note that z3−1 = 0 ⇐⇒ z ∈

{
1,e

2πi
3 ,e

4πi
3

}
, then

f has 3 simple poles. Then residue at simple pole z is 1
3z2 . This gives us that

res1( f ) =
1
3

res
e

2πi
3
( f ) =

1
3

e
2πi
3 res

e
4πi
3
( f ) =

1
3

e
4πi
3

�

� Example 3.33 Consider the following:∫
∞

0

1
x4 +1

dx and I =
∫

∞

0

1
x4 +1

dx

Note that

2I =
∫

∞

−∞

1
x4 +1

dx

Let ΓR be the line segment running from −R to R in R, then

2I = lim
R→∞

∫
ΓR

1
z4 +1

dz

Let CR be the upper semicircle running from R to −R, note ΓR +CR is simple closed positive oriented tour. so
we can sue residue theorem. Consider∣∣∣∣∫CR

1
z4 +1

dz
∣∣∣∣≤ ∣∣∣∣∫CR

1
R4 dz

∣∣∣∣≤ |πiR| · 1
R4 ≤

π

R3 → 0 as R→ ∞

Next we locate the poles of 1
z4+1 and find their residues. Note that z4 +1 = 0 ⇐⇒ z ∈

{
e

kπi
4 : k = 1,3,5,7

}
.

Then

resz0( f ) =
1

4z3 where z0 ∈
{

e
kπi
4 : k = 1,3,5,7

}
Then we have ∮

CR+ΓR

1
z4 +1

dz =
π√
2

so

2I = lim
R→∞

∫
ΓR

= lim
R→∞

(∫
ΓR+CR

f (z)dz−
∫

CR

f (z)dz
)
=

π√
2
−0 =

π√
2

�

Definition 3.6.1
Extended complex plane C∪{∞}= Ĉ

Definition 3.6.2
Define the behavior of f (z) at ∞ to behavior of f (1

z ) at 0.
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� Example 3.34 For example, let f (z) = z2 + 1, so that f (1
z ) =

1
z2 + 1 = 1

z2 +
0
z + 1, so it has order 2 and

residue 0 and
lim
R→∞

∫
CR(0)

z2 +1dz = 0

also ∫
−C∞(0)

f (z)dz =−2πires∞( f )

�

� Example 3.35 Let f (z) = z+1
z−i , so that f (1

z ) =
1
z +1
1
z−i

= 1+z
1−iz at z = 0 and f (1

z ) = 1 so f is analytic at ∞. �

� Example 3.36 Let f (z) = sin(z) so f (1
z ) = sin 1

z does not converge as z→ 0, so sin(z) has essential singu-
larity at ∞

At an isolated singularity z0

lim
z→z0

f (z) = c ∈ C =⇒ f analytic at z0 (or removeable singularity)

lim
z→z0
| f (z)|= ∞ =⇒ f has a pole at z0

lim
z→z0

f (z) does not exist in Ĉ =⇒ f has an essential singularity at z0

�

� Example 3.37 Consider the following ∫
∞

0

1
x3 +1

dx

Let f (z) = 1
z3+1 so f has poles at z =−1,e

iπ
3 ,e

5iπ
3 . We define

I =
∫

∞

0

1
x3 +1

dx = lim
R→∞

∫
Γ1

f (z)dz

and we can see that ∣∣∣∣∫CR

1
z3 +1

dz
∣∣∣∣∼ R · 1

R3 = R−2→ 0 as R→ ∞

Let Γ2 : r2(t) = t · e 2πi
3 for t ∈ [0,R],∫
Γ2

1
z3 +1

dz =
∫ R

0

1(
t · e 2πi

3

)3
+1
· e

2πi
3 dt =

∫ R

0

e
2πi
3

t3 +1
dt = e

2πi
3

∫
∞

0
f

Now ∫
Γ1+CR−Γ2

f = 2πires
e

iπ
3
( f ) =

2πi
3

e−
2πi
3

This gives us that
2πi
3

e−
2πi
3 = I +0− e

2πi
3 I =⇒ I =

2
√

3π

9
�
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Definition 3.6.3 — Cauchy Principal Value.

Given a continuous function f : R→ R, define the Cauchy Principal Value of
∫

∞

−∞

f (x)dx is

p.v.
∫

∞

−∞

f (x)dx = lim
R→∞

∫ R

−R
f (x)dx

Note that
∫

∞

−∞

f (x)dx exists, then

p.v.
∫

∞

−∞

f (x)dx =
∫

∞

−∞

f (x)dx

� Example 3.38 Find p.v. for ∫
∞

−∞

cos(x)
1+ x2 dx

Let f (z) = cos(z)
1+z2 , then ∣∣∣∣∫CR

cos(z)
1+ z2 dz

∣∣∣∣=
∣∣∣∣∣
∫

CR

1
2(e

iz + e−iz)

1+ z2 dz

∣∣∣∣∣
but consider e−iz at z is iR, as R→ ∞ e−i(iR) = eR→ ∞

Consider

I = p.v.
∫

∞

−∞

eiz

1+ z2 dz

then ∣∣∣∣∫CR

eiz

1+ z2 dz
∣∣∣∣∼ 1

R2 ·R =
1
R
→ ∞

and ∫
CR+Γ

f (z)dz = 2πiresi( f ) = 2πi
[

eiz

2z

]
z=i

= 2πi
e−1

2i
=

π

e

so I = π

e −0 = π

e

Now we consider

I2 = p.v.
∫

∞

−∞

e−iz

1+ z2 dz

then ∣∣∣∣∫CR

eiz

1+ z2 dz
∣∣∣∣∼ 1

R2 R∼ 1
R
→ 0

then similarly we have ∫
CR+Γ

f =−2πires−i( f ) =−2πi
[

e−iz

2z

]
z=−i

=
π

e

so I2 =
π

e −0 = π

e .
Then we have ∫

∞

−∞

cos(x)
1+ x2 dx =

1
2

I +
1
2

I2 =
π

e
�
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� Example 3.39 Consider ∫ 2π

0
sin2

θdθ

Let z = eiθ = cos(θ)+ isin(θ), then sin(θ) = 1
2i(z+

1
z ), then

∫ 2π

0
sin2

θdθ =
∫

C1(0)

(
1
2i
(z+

1
z
)

)2 dθ

dz
dz =

∫
C1(0)

(
1
2i
(z+

1
z
)

)2

· 1
iz

dz

=− 1
4i

∫
C1(0)

z+
2
z
+

1
z3 dz

=− 1
4i

res0

(
z+

2
z
+

1
z3

)
=− 1

4i
(2πi)(−2) = π

�

� Example 3.40 Let f be continuous on [a,b] except at c with a < c < b, then

p.v.
∫ b

a
f (x)dz = lim

ε→0

(∫ c−ε

a
f (x)dx+

∫ b

c+ε

f (x)dx
)

�

� Example 3.41 Consider

p.v.
∫ 2π

0

cos2 θ

1−3sinθ
dθ

Let z = eiθ , then cosθ = 1
2(z+

1
z ) and sinθ = 1

2i(z−
1
z ),

dθ

dz = 1
iz . Now we can rewrite it as

∫
C1(0)

(
z+ 1

z
2

)2

1− 3
2i(z−

1
z )

1
iz

dz =
1
4i

z4 +2z2 +1
z2(− 3

2i z
2 + z+ 3

2i)
dz

Note that

− 3
2i

z2 + z+
3
2i

= 0 =⇒ z =
−i±2

√
2

−3

�

Proposition 3.6.2 Let p(z), q(z) be polynomial with deg(p)≤ deg(q)−2, then for any arc CR of CR(0),

lim
R→∞

∣∣∣∣∫CR

p(z)
q(z)

dz
∣∣∣∣= 0

This is because ∣∣∣∣∫CR

p(z)
q(z)

∣∣∣∣∼ R · R
deg(p)

Rdeg(q) = R ·R−2 =
1
R
→ ∞ as R→ ∞
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Lemma 3.6.3
Let a > 0 a d deg(q)≥ 1+deg(p), let CR be the upper half of CR(0), then

lim
R→∞

eiaz p(z)
q(z)

dz = 0

Proof: Parameterize CR by Reit with t ∈ [0,π], now∫
CR

eiaz p(z)
q(z)

dz =
∫

π

0
eiaReit · p(Reit)

q(Reit)
·Rieitdt

Note that ∣∣∣eiaReit
∣∣∣= ∣∣∣eiaR(cos(t)+isin(t))

∣∣∣= e−aRsin(t)

Then for large enough R, exists K ∈ R such that∣∣∣∣ p(Reit)

q(Reit)

∣∣∣∣≤ K
R

so that∣∣∣∣∫ π

0
eiaReit · p(Reit)

q(Reit)
·Rieitdt

∣∣∣∣≤ ∫ π

0
e−aRsin(t) K

R
Rdt = K

∫
π

0
e−aRsin(t)dt = 2K

∫ π

2

0
e−aRsin(t)dt

Since sin(t)≥ 2t
π

on [0, π

2 ], then e−Rsin(t) ≤ e−aR 2t
π , so

K
∫

π

0
e−aRsin(t)dt = 2K

∫ π

2

0
e−aRsin(t)dt ≤ K

∫
π

0
e−aRsin(t)dt = 2K

∫ π

2

0
e−aR 2t

π dt

= 2K ·
(
− π

2aR

)
(e−aR−1)→ πK

aR
→ 0 as R→ ∞

� Remark 3.8 ∫
∞

−∞

p(z)
q(z)

dz Need deg(q)≥ 2+deg(p)

∫
∞

−∞

cos(z)
p(z)
q(z)

dz Need deg(q)≥ 1+deg(p)

Lemma 3.6.4 — Jordan’s Lemma.
Let f be meromorphic with a simple pole at z0, and Γr be parametrized by r(t) = z0+reiθ with θ1 < θ < θ2,
then

limr→ 0+
∫

Γr

f (z)dz = i(θ2−θ1)resz0( f )

Proof:
f (z) =

a−1

z− z0
+

∞

∑
n=0

an(z− z0)
n =

a−1

z− z0
+g(z)
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where g is analytic so g is continuous then ∃R such that for 0 < r ≤ R, ∃M > 0 s.t. |g(z)| ≤M, so that∣∣∣∣∫
Γr

g(z)dz
∣∣∣∣≤M · length(Γr) = M · (θ2−θ1)r→ 0 as r→ 0+

Then ∫
Γr

f (z)dz =
∫

Γr

a−1

z− z0
dz+0 = a−1

∫
θ2

θ1

1
reiθ rieiθ dθ = a−1

∫
θ2

θ1

idθ i · resz( f )

� Example 3.42 Consider ∫
∞

0

x
1
3

1+ x2 dx

Let f (z) = z
1
3

1+z2 with branch cut along the positive real axis, then∣∣∣∣∣
∫

CR

z
1
3

1+ z2 dz

∣∣∣∣∣∼ R
1
3

R2 ∼ R−
2
3 → 0 as R→ ∞

Similarly, ∣∣∣∣∣
∫

CR

z
1
3

1+ z2 dz

∣∣∣∣∣∼ r
1
3

1
r ∼ r

4
3 → 0 as r→ 0+

Let
∫

Γ

f →
∫

∞

0
f (z)dz = I, then

∫
Γ2

f (z)dz =
∫

Γ2

z
1
3

1+ z2 dz =
∫

Γ1

(ze2πi)
1
3

1+ z2 dz = I · e
2πi
3

Let f has simple pole at z =±i with residues, so that resz( f ) = z
1
3

2z , then

resi( f ) =−i

√
3

4
res−i( f ) =−1

2

Then we have∮
CR+Cr+Γ1−Γ2

f = 2πi

(
1
4
− i

√
3

4
− 1

2

)
= 0+0+ I− Ie

2πi
3 = I

(
1− e

2πi
3

)
=⇒ I =

πie−
2πi
3

1− e
2πi
3

=
π√
3

�

� Example 3.43

p.v.
∫

∞

−∞

eix

x
dx = lim

R→∞,r→0+

(∫ −r

−R

eix

x
dx+

∫ R

r

eix

x
dx
)

then by Jordan’s Lemma ∫
Cr

eiz

z
dz = i(0−π)res0( f ) =−πi

Let Γ : [−R,R], then

lim
R→∞,r→0+

∫
Γ

f (z)dz =
∮

CR+Cr+Γ

f −
∫

CR

f −
∫

Cr

f = 0−0− (−πi) = πi

�
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� Remark 3.9
Two techniques, either:
1. convert everything to rectangular, clear denominator.
2. convert to a trig function

� Example 3.44 Consider

I =
∫

∞

0

1
1+ x3 dx

we let f (z) = log(z)
1+z3 , branch cut along the positive real axis., then∫

Γ1

log(z)
1+ z3 dz =

∫ R

r

ln(x)
1+ x3 dx

and ∫
Γ2

log(z)
1+ z3 dz =

∫ R

r

log
(
xe2πi

)
1+ x3 dx =

∫ R

r

ln(x)+2πi
1+ x3 dx

then we have ∫
Γ1

f −
∫

Γ2

f =
∫ R

r

ln(x)
1+ x3 dx−

∫ R

r

ln(x)+2πi
1+ x3 = 2πi · I

�

� Remark 3.10 Let f 6= 0 be meromorphic on D and let Γ be a simple, positively oriented closed contour
with Γ and its interior is in D. Consider f ′

f is meromorphic and its poles can only lie at poles and zeros of f .
Let z0 be an order-m zeros of f , then

f (z) = (z− z0)
mg(z) g(z0) 6= 0 g is analytic

Now we have
f ′(z) = m(z− z0)

m−1g(z)+(z− z0)
mg′(z)

so that
f ′(z)
f (z)

=
m(z− z0)

m−1g(z)+(z− z0)
mg′(z)

(z− z0)mg(z)
=

m
z− z0

+
g′(z)
g(z)

Let z0 be an order-m pole of f , then

f (z) =
h(z)

(z− z0)n h(z0) 6= 0 h is analytic

so that

f ′ =
−m(z− z0)

m−1h(z)+(z− z0)
mh′(z)

(z− z0)2m =− m
z− z0

+
h′(z)
h(z)

Theorem 3.6.5 — The Argument Principle. Let f be meromorphic and inside a simple, close, positively
oriented contour Γ. Let N0( f ) be the number of zeros in Γ and Np( f ) be the number of poles in Γ (both
couted with multiplicity), then

1
2πi

∫
Γ

f ′(z)
f (z)

dz = N0( f )−Np( f )
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Definition 3.6.4 — Curling Number.
Let Γ be a closed contour and let z0 6= Γ. The curling number of Γ about z0, denoted n(Γ,z0) is the unique
integer n such that Γ is homeomorphic to

C1(z0)+C1(z0)+ ...+C1(z0)︸ ︷︷ ︸
n in total

in C\{z0}

Lemma 3.6.6 For z0 ∈ Γ, ∮
Γ

1
z− z0

dz = 2πi ·n(Γ,z0)

Proposition 3.6.7 Let f (Γ) be which Γ : γ(t) : [a,b]→ Γ, then∫
Γ

1
z− z0

dz =
∫ b

a

1
γ(t)− z0

γ
′(t)dt

so that ∫
Γ

1
f (z)− z0

dz =
∫ b

a

1
f (γ(t))− z0

f ′(γ(t))γ ′(t)dt =
∫

f (Γ)

f ′(z)
f (z)− z0

dz

This gives us that
1

2πi

∫
Γ

f ′(z)
f (z)− z0

dz = n( f (Γ),z0)

Moreover, for z0 = 0 we have that

1
2πi

∫
Γ

f ′(z)
f (z)− z0

dz = n( f (Γ),z0)

� Example 3.45 Note that
d
dz

log( f (z)) =
f ′(z)
f (z)

then ∮
Γiθ

f ′(z)
f (z)

dz = [log( f (z))]z1
z0
= 2πi ·n( f (Γ),0)

Let f = reiθ we have
log( f (z)) = +iθ

�

Theorem 3.6.8 — The Dog-walking Theorem.
Let Γ1,Γ2 be parametrized by γ1,γ2 : [a,b] → C and ∀t ∈ [a,b] with |γ1(t)− γ2(t)| < |γ1(t)|. Then
n(Γ1,0) = n(Γ2,0)
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Proof: NOte that γ1,γ2 6= 0, consider Γ : γ(t) = γ2(t)
γ1(t)

, then

|1− γ(t)|=
∣∣∣∣1− γ2(t)

γ1(t)

∣∣∣∣= ∣∣∣∣γ1(t)− γ2(t)
γ1(t)

∣∣∣∣< 1

so Γ lies in D1(1) so n(Γ,0) = 0. Let γ1 = r1eiθ1 and γ2 = r1eiθ2 where r1,r2,θ1,θ2 are functions of t, then

γ =
γ2

γ1
=

r2

r1ei(θ1−θ2)

and
n(Γ1,0) = θ1(b)−θ1(a) and n(Γ2,0) = θ2(b)−θ2(a)

so that
0 = n(Γ,0) = θ2(b)−θ2(a)− (θ1(b)−θ1(a)) = n(Γ2,0)−n(Γ1,0)

which is n(Γ2,0) = n(Γ1,0)

Theorem 3.6.9 — The Generalized Dog-walking Theorem.
Let Γ1,Γ2 be parametrized by γ1,γ2 : [a,b]→ C and ∀t ∈ [a,b] with

|γ1(t)− γ2(t)|< |γ1(t)|+ |γ2(t)|

then n(Γ2,0) = n(Γ1,0)

Proof: Let γ(t) = γ1(t)
γ2(t)

, assume for contradiction that exist c > 0 abd t ∈ [a,b] such that γ(t) = −c.
Then γ1(t) =−cγ2(t), so that

|γ1(t)− γ2(t)|= |(−c−1)γ2(t)|= (c+1)|γ2(t)|

but |γ2(t)|+ |γ1(t)| = |γ2(t)|+ |−cγ2(t)| = (1+ c)|γ2(t)|, which contradicts the Dog-walking Theorem,
so there is no such c exists. Then Γ : γ(t) lies in the C\R≤0, so n(Γ,0) = 0, that is n(Γ2,0) = n(Γ1,0).

Theorem 3.6.10 — Rouche’s Theorem.
Let f ,g be analytic on and inside a simple closed contour Γ. Let |g(z)|< | f (z)| for all z ∈ Γ, then f +g
and f have the same number of zeros (connted with multiplicity inside)

Proof: Let h = f +g then
|h(z)+(− f (z))|= |g(z)|< |− f (z)|

on Γ. Then
n(h(Γ),0) = n( f (γ),0) that is N0(h) = N0( f )

� Example 3.46 All 5 zeros of h(z) = z5+3z+1 lie inside |z|< 2. Let f (z) = z5 and g(z) = 3z+1 on C2(0),
so | f (z)|= 32 and |g(z)|= 7 < | f (z)|, so by Rouche’s Theorem h and f have same number of zeros inside
C2(0) �
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� Example 3.47 How many zeros does z+ 3+ 2ez have in the left half-plane Re(z) < 0? Let ΓR be the
contour as "D" reflect by y-axis. Let f (z) = z+3 and g(z) = 2ez, so |g(z)|= 2eRe(z) so |g(z)| ≤ 2 on ΓR for
all R and

| f (z)| ≥

{
|3+ iy| z = iy

R−3 |z|= R
≥

{
3 z = iy

R−3 |z|= R

so for all R > 5 we have | f (z)|> |g(z)| on ΓR, then f has the same number of zeros inside ΓR as z+3+2ez,
f (z) = z+3 has one zero inside ΓR namely −3, so z+3+2ez has exactly one zero in the left half-plane. �

Definition 3.6.5
A point z is a limit point of a set if there exists a sequence {zn} ⊆ S with zn 6= z but lim

n→∞
zn = z

Theorem 3.6.11 Let f be holomorphic on a domain D, let Z ⊆ D be the set of zeros of D if Z has a limit
point in D, f is identically zero on D

Proof: Let z0 be the limit of {wn} ⊆ Z and z0 6= wn for all n, conside Dε(z0) for some sufficiently
small ε > 0, that is

f (z) =
∞

∑
n=0

zn(z− z0)
n

on Dε(z0). If f is not identically 0 on Dε(z0), then there exists a minimal m≥ 0 such that am 6= 0, write

f (z) = am(z− z0)
m(1+g(z− z0))

where g(z− z0)→ 0 as z→ z0. Let k be sufficiently large that wk ∈Dε(z0), wk ∈Dε(z0) for all K ≥ k. Now
f (wk) = 0 but

0 = f (wk) = am(wk− z0)
n(1+g(wk− z0))

and am 6= 0, (wk− z0)
n 6= 0 and g(wk− z0)→ 0 as wk0 as k→∞. so for large enough k, |g(wk− z0)|< 1, so

1+g(wk− z0) 6= 0, which is a contradiction, so f = 0 on Dε(z0). Let U be the interior of Z, we just showed
that U is non-empty, U is open by definition, let {zn} ⊆U converging zn→ z, f is continuous so f (z) = 0,
by earlier argument, z ∈U . Then U is closed, so V = D\U is open we have D =U ∪V and U ∩V , U,V
are open and D is connected, so one of U,V is empty. U is non-empty, so V = /0 so U = D, then f is 0 on D

Corollary 3.6.12 Let f ,g analytic on D and f (z) = g(z) on S ⊆ D where S has limit point in D, then
f (z) = g(z) on D

Proof: apply the above theorem to f −g.

Corollary 3.6.13 Let f be analytic and non-constant on a domain D and let z0 ∈ D, f (z0) = w0, then there
exist ε > 0 such that Dε(z0)⊆ D and f (z)−w0 has zero in Dε(z0)\{z0}

Proof: Let f (z)−w0 is a non-constant analytic function, so its zero cannot have a limit point, done.
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Theorem 3.6.14 — Open Mapping Theorem.
If f is holomorphic on a domain D, then f is a open map on D (map open set to to open set)

Proof: It suffices to show f (D) is open. Let z0 ∈ D and f (z0) = w0, let w ∈ C and

g(z) = f (z)−w = f (z)−w0 +w0−w

Choose δ > 0 such that Dδ (z0)⊆ D and such that f (z) 6= w0 on the circle |z− z0|= δ which exists by the
previous corollary. Now we choose ε > 0 such that | f (z)−w0| ≥ ε on |z− z0|= δ , so for all w ∈ Dε(w0)
we have | f (z)−w0| ≥ ε > |w−w0| on the circle |z− z0|= δ , so by Rouche’s Theorem g and f (z)−w0
have the same number of zeros in Dδ (z0), namely one. Then ∃z ∈ Dδ ⊆ D, g(z) = 0 = f (z)−w =⇒
f (z) = w =⇒ w ∈ f (D), then Dε(w0)⊆ f (D)

� Example 3.48 Let f be analytic on a domain D and Re( f (z)) is constant , then f is constant, Re( f (z)) = K
contains no open set, so f must be constant by the contrapositive of open mapping theorem. �

Definition 3.6.6 — Gamma Function.
The gamma function is defined for s > 0 in R by

Γ(s) =
∫

∞

0
e−tts−1dt

Lemma 3.6.15 Γ extends to an analytic function on Re(s)> 0 and

Γ(s) =
∫

∞

0
e−tts−1dt

still holds there

Proof: It suffices to show lemma on

S = {z ∈ C : δ < Re(s)< M}

for any 0 < δ < M < ∞. Let Re(s) = σ , now

∫
∞

0
e−tts−1dt = lim

ε>0

∫ 1
ε

ε

e−tts−1dt

Consider

Fε(s) =
∫ 1

ε

ε

e−tts−1dt

Note that Fε(s) is analytic with

F ′ε(s) =
∫ 1

ε

ε

e−t(s−1)ts−2dt
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Recall that the limit of a uniformly convergent sequence of analytic function is analytic. Consider

|Γ(s)−Fε(s)|=

∣∣∣∣∣
∫

∞

0
e−tts−1dt−

∫ 1
ε

ε

e−tts−1dt

∣∣∣∣∣
=

∣∣∣∣∫ ε

0
e−tts−1dt +

∫
∞

1
ε

e−tts−1dt
∣∣∣∣

≤
∫

ε

0
e−ttσ−1dt +

∫
∞

1
ε

e−ttσ−1dt

Now for ε < 1: ∣∣∣∣∫ ε

0
e−ttσ−1dt

∣∣∣∣≤ ε · 1
δ
· εδ−1 =

εδ

δ

Similarly we have ∣∣∣∣∫ ∞

1
ε

e−ttσ−1dt
∣∣∣∣≤ ∫ ∞

1
ε

e−ttM−1dt→ 0

as 1
ε
→ 0.

Then Fε(s)→ Γ(s) uniformly, so Γ is analytic on S so Γ is analytic on Re(s)> 0

Proposition 3.6.16
Let n ∈ Z≥0, then Γ(n+1) = n!

Lemma 3.6.17 For 0 < Re(a)< 1, then∫
∞

0

va−1

1+ v
dv =

π

sin(πa)

Proof: Let v = ex, then ∫
∞

0

va−1

1+ v
dv =

∫
∞

−∞

e(a−1)x

1+ ex dx =
∫

∞

−∞

eax

1+ ex dx

Let f (z) = eaz

1+ez and integrate over a region. That is∣∣∣∣∫
Γ2

f (z)dz
∣∣∣∣=
∣∣∣∣∣
∫ 2π

0

ea(R+it)

1+ eR+it dt

∣∣∣∣∣≤C · e
aR

eR ∼Ce(a−1)R→ 0 as R→ ∞

∣∣∣∣∫
Γ4

f (z)dz
∣∣∣∣≤Ce−aR→ 0 as R→ ∞

∫
Γ1

f (z)dz =
∫ R

−R

eax

1+ ex dx

∫
Γ3

f (z)dz =−e2πia
∫ R

−R

eax

1+ ex dx
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Note that f has a pole at z = πi, then

lim
z→πi

(z−πi) f (z) = lim
z→πi

(z−πi)
eaz

1+ ez = lim
z→πi

eaz
(

z−πi
ez− eπi

)
= eaπi

(
lim
z→πi

ez− eπi

z−πi

)−1

= eaπi · (eπi)−1

=−eaπi

= resπi( f )

Then we have ∫
Γ

f (z)dz = 2πi(−eaπi) = (1− e2πia) = I

so that

I =−2πi
eaπi

1− e2πi =
π

sin(πa)

Theorem 3.6.18
Γ(s)Γ(1− s) =

π

sin(πs)

Proof: IT suffices to show this on 0 < Re(s)< 1:

Γ(1− s) =
∫

∞

0
e−uu(1−s)−1du =

∫
∞

0
e−uu−sdu

Let u = vt, v > 0, then
Γ(1− s) = t

∫
∞

0
e−vt(vt)−sdv

This give us

Γ(s)Γ(1− s) =
∫

∞

0
e−tts−1

(∫
∞

0
te−vt(vt)−sdv

)
dt =

∫
∞

0

∫
∞

0
e−t(v+1)v−sdvdt =

∫
∞

0

v−s

v+1
dv

By the lemma from above we have

Γ(s)Γ(1− s) =
∫

∞

0

v−s

v+1
dv =

π

sin(πs)

Definition 3.6.7 — Riemann Zeta Function.
For real s > 1 as

ζ (s) =
∞

∑
i=1

1
ns

so ζ immediately has an analytic continuation to Re(s)> 1 and the formula

ζ (s) =
∞

∑
i=1

1
ns
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is still valid. If s = σ + it for σ , t ∈ R, if σ > 1+> 1, then∣∣∣∣∣ ∞

∑
i=1

1
ns

∣∣∣∣∣≤ ∞

∑
i=1

∣∣∣∣ 1
ns

∣∣∣∣= ∞

∑
i=1

∣∣∣∣ 1
es log(n)

∣∣∣∣= ∞

∑
i=1

1
eσ log(n) =

∞

∑
i=1

1
nσ
≤

∞

∑
i=1

1
n1+δ

then ζ (s) is analytic on Re(s)> 1. Consider the Euler product:

∏
p price

1
1− ps

for Re(s)> 1, then we see that

1
1− p−s =

(
1+

1
ps +

1
p2s + .....

)
=

∞

∑
i=1

1
pns

then

∏
s

1
1− p−s =

(
1+

1
2s +

1
4s +

1
8s

)(
1+

1
3s +

1
9s + ...

)(
1+

1
5s +

1
25s + ...

)
but we have unique factorization of positive integers:

formula above = ∑
j1, j2,...

(
1

2 j13 j25 j3 ...

)s

=
∞

∑
i=1

1
ns = ζ (s)

Theorem 3.6.19 ζ (s)− 1
s−1 has an analytic continuation to Re(s) > 0. Then ζ (s) is rercmorphic on

Re(s)> 0 with a simple pole of residu 1 at s = 1

Proof: Consider

∑
1≤n≤N

1
ns −

∫ n

1

1
xs ds

Let

n(s) =
∫ n+1

n

1
ns −

1
xs ds

By the mean value theorem ∣∣∣∣ 1
ns −

1
xs

∣∣∣∣≤ |s|
nσ+1

on n≤ x≤ n+1. Then we have uniform convergence of n(s) on 1+σ > 1 ⇐⇒ Re(s)> 0. Then

∞

∑
i=1

δn(s)

is analyticiction on Re(s)> 0. Now

∑
1≤n≤N

1
ns =

N

∑
n=1

δn(s)+
∫ N

1

1
xs ds
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Now

lim
N→∞

∫ N

1

1
xs dx =

∫
∞

1

1
xs dx =

[
1

1− s
x1−s

]∞

0

on Re(s)> 1, this = 1
s−1 . Thus,

N

∑
i=1

n(s)+
∫ N

1

1
xs ds

converges uniformly and matches ζ (s) on Re(s)> 1, so

ζ (s)− 1
s−1

=
∞

∑
i=1

n(s)

is analytic on Re(s)> 0

Theorem 3.6.20 ζ (s) has no zeros on the line Re(s) = 1

Proof: Let x,y ∈ R, y 6= 0 and define

h(x) = ζ
3(x)ζ 4(x+ iy)ζ (x+2yi)

Now
ζ (s) = ∏

s

1
1− p−s

so

ln |ζ (s)|= ln∏
p

∣∣∣∣ 1
1− p−s

∣∣∣∣=−∑
p

ln
∣∣1− p−s

∣∣=−Re∑
p

log
(
1− p−s)

Now

− log(1−w) =
∞

∑
i=1

wn

n

for |w|< 1, so

ln |ζ (s)|= Re∑
p

∑
n

1
n

p−sn

and then

ln |h(x)|= 3ln |ζ (x)|+4ln |ζ (x+ iy)|+ ln |ζ (x+2iy)|

= 3Re∑
p

∑
p

1
n

p−nx +4Re∑
p

∑
n

1
n

p−ns−iny +Re∑
p

∑
n

1
n

p−nx−2iny

= ∑
p

∑
n

1
n

p−nx Re
(
3+4p−iny + p−2iny)

Note that
p−iny = enyi ln(p) has Re(piny) = cos(−ny ln(p))

and
Re(p−2iny) = cos(−2ny ln(p))
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so that
Re
(
3+4p−iny + p−2iny)= 3+4cos(−ny ln(p))+ cos(−2ny ln(p))

Let θ =−ny ln(p), so this is

Re
(
3+4p−iny + p−2iny)= 3+4cosθ + cos2θ = 2(1+ cosθ)2 ≥ 0

Then we have ln |h(x)| ≥ 0, so |h(x)| ≥ 1 we have

|h(x)|
x−1

= |(x−1)ζ (x)|3
∣∣∣∣ζ (x+ iy)

x−1

∣∣∣∣4|ζ (x+2iy)| ≥ 1
x−1

As x→ 1+ we have |ζ (x+2iy)| → |ζ (1+2iy)|

lim
x→1
|(x−1)ζ (x)|= 1

if ζ (1+ iy) = 0, but

lim
x→1+

ζ (x+ iy)
x−1

= ζ
′(1+ iy)

so lim
x→1+

|h(x)|
x−1

converges to some finite value. but this is ≥ 1
x−1 and lim

x→1+

1
x−1

= ∞, this is contradiction so

ζ (1+ iy) 6= 0
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