PMATH 352 Spring 2022

Complex Analysis Instructor: Alan Talmage

Lecture Notes

Latex by Justin Li

Contents

1	Complex Number and Functions	3
1.1	Complex Number	3
1.2	Basic Topology, Limit, Continuity and Differentiability	5
1.3	Modulus and Argument	8
2	Holomorphic functions and CR equations	10
2.1	Holomorphic Function	10
2.2	Smooth Curve	18
3	Integration and Series	21
3 3.1	Integration and Series Integration	21 21
	-	
3.1	Integration	21
3.1 3.2	Integration Cauchy's Theorem and its Integration Formula	21 29
3.1 3.2 3.3	Integration Cauchy's Theorem and its Integration Formula Liouvlle Theorem and Maximum Modulus Principle	21 29 32

1.1 Complex Number

Definition 1.1.1 — Complex Number. The **complex number** is defined as

 $\mathbb{C} = \{a + bi : a, b \in \mathbb{R}\}$ where $i^2 = -1$

Note: There is no prior distinction between *i* and -i, then all behavior in \mathbb{C} should be invariant under the map $i \longleftrightarrow -i$

Question: Is this a good definition? For any $a, b, c, d \in \mathbb{R}$, we have

(a+bi)+(c+di)=(a+c)+(b+d)i closed under addition

(a+bi)(c+di) = (ac-bd) + (bc+ad)i closed under multiplication

For $a, b, c, d \in \mathbb{R}$ with $c, d \neq 0$, we have

 $\frac{a+bi}{c+di} = \frac{a+bi}{c+di} \cdot \frac{c-di}{c-di} = \frac{ac+bd}{c^2+d^2} + \frac{bc-ad}{c^2+d^2}i$ closed under division

The complex number are closed under its operations, then it's a good defintion.

Definition 1.1.2 — Conjugation. The conjugation in \mathbb{C} is defined as

 $\overline{a+bi} = a-bi$

where $a, b \in \mathbb{R}$.

Moreover, we have

$$(a+bi)(\overline{a+bi}) = (a+bi)(a-bi) = a^2 + b^2$$

Remark 1.1 There is a conical bijection between \mathbb{C} and \mathbb{R}^2 , that is

$$a + bi \longleftrightarrow (a, b)$$

we usually can write it as $\mathbb{C} \cong \mathbb{R}^2$

Definition 1.1.3 — Norm. The norm in \mathbb{C} is defined as

$$|a+bi| = \sqrt{(a+bi)(\overline{a+bi})} = \sqrt{a^2+b^2}$$

Remark 1.2 The i^n for $n \in \mathbb{N}$ has a cycle 4, that is

$$\underline{i = i \quad i^2 = -1 \quad i^3 = -i \quad i^4 = 1}_{cycle4}$$
 $i^5 = i \quad \dots$

■ **Remark 1.3** The polar coordinate is defined differently in \mathbb{C} and \mathbb{R}^2 . For $(x, y) \in \mathbb{R}^2$ we have

$$x = r\cos\theta$$
 $y = r\sin\theta$ $r = \sqrt{x^2 + y^2} = ||(x, y)||$ $\theta = \arctan\frac{y}{x}$

For $a + bi \in \mathbb{C}$ we have

$$a = r\cos\theta$$
 $b = r\sin\theta$ $r = \sqrt{a^2 + b^2} = |a + bi|$ $\theta = \arctan\frac{b}{a}$

Behaviors in \mathbb{R} and \mathbb{C} function operation:

Let $x \in \mathbb{R}$ and z = a + bi, then

$$x^{3} + 2x + 1 \implies z^{3} + 2z + 1$$

For $z, w \in \mathbb{C}$, we insist that $\frac{d}{d}e^z = e^z$ and $e^{w+z} = e^w \cdot e^z$, then we have

~

$$e^x \implies e^z = e^{a+bi} = e^a \cdot e^{bi}$$

Note that *i* is a constant, so for $y \in \mathbb{R}$ we have

$$\frac{d}{d(iy)}e^{iy} = \frac{1}{i} \cdot \underbrace{\frac{d}{dy}e^{iy}}_{=ie^{iy}} = e^{iy} \quad \text{and} \quad \frac{d^2}{dy^2}e^{iy} = \frac{d}{dy}(ie^{iy}) = i \cdot \frac{d}{dy}e^{iy} = i^2e^{iy} = -e^{iy}$$

Therefore, the $f(y) = e^{iy}$ satisfies $\frac{d^2}{dy^2} = -f$, then by **ODE** the *f* must be:

 $f(y) = A \sin y + B \cos y$ and $f'(y) = A \cos y - B \sin y$

but we can see that $f(0) = B = e^{i0} = 1$, $f'(0) = ie^{i0} = i$. This gives us that

$$f(y) = e^{iy} = \cos y + i \sin y$$

Therefore, we have

$$e^{a+bi} = e^a e^{bi} = e^a (\cos b + i \sin b) = e^a \cos b + i e^a \sin b$$

1.2 Basic Topology, Limit, Continuity and Differentiability

Definition 1.2.1 — Distance.

The **distance** between two points $w, z \in \mathbb{C}$ is

|w-z| (or |z-w|)

Thus \mathbb{C} and \mathbb{R}^2 are isomorphic as metric spaces.

Definition 1.2.2 — Open Set and Closed Set.

An **open set** $S \subseteq \mathbb{C}$ is a set such that for every $z \in S$, there exists $\varepsilon > 0$ s.t.

 $|z-w| < \varepsilon \implies w \in S$

A set $S \subseteq \mathbb{C}$ is **closed** if $\mathbb{C} \setminus S$ is open.

Definition 1.2.3 — Limit. Let $f : \mathbb{C} \to \mathbb{C}$, we say

$$\lim_{z \to w} f(z) = L$$

if $\forall \varepsilon > 0$, $\exists \delta > 0$ s.t. $|z - w| < \delta$, then

$$|f(z) - f(w)| < \varepsilon$$

Example 1.1 Calculate the following:

$$\lim_{z \to 0} \frac{\overline{z}}{z}$$

Let's try to approach in different directions. Let $z = x \in \mathbb{R}$, then

$$\lim_{z \to 0} \frac{\overline{z}}{z} = \lim_{x \to 0} \frac{\overline{x}}{x} = \lim_{x \to 0} \frac{x}{x} = 1$$

Let z = iy for $y \in \mathbb{R}$, then we have

$$\lim_{z \to 0} \frac{\bar{z}}{z} = \lim_{y \to 0} \frac{iy}{iy} = \lim_{y \to 0} \frac{-iy}{iy} = -1$$

so the limit does not exist.

Definition 1.2.4 — Continuity. A function is **continuous at point** z_0 if

$$\lim_{z \to z_0} f(z) = f(z_0)$$

A function is **continuous on a set** *S* if it's continuous at each point of *S*

• Example 1.2 Let $f : \mathbb{C} \to \mathbb{C}$ where $f(z) = z^2$. Consider $\Delta z = z - z_0$, then $\lim_{z \to z_0} f(z) = \lim_{z \to z_0} z^2 = \lim_{\Delta z \to 0} (z_0 + \Delta z)^2 = \lim_{\Delta z \to 0} z_0^2 + 2z_0 \Delta z + \Delta z^2 = z_0^2$

so f is continuous everywhere.

Definition 1.2.5 — Correctness, Path-Correctness and Domain.

A set *S* is **connected** if *S* there is no open sets S_1, S_2 with $S_1 \cap S_2 = \emptyset$ such that

$$S \subseteq S_1 \cup S_2$$

A set *S* is **path-connected** if $\forall z_1, z_2 \in S$, there exists a path from z_1 to z_2 lying in *S* where a **path** is the image of [0,1] under a continuous

A domain is a path-connected open set.

Example 1.3 Consider a set $S \subseteq \mathbb{R}^2$ where

$$S = \left\{ \left(x, \sin\left(\frac{1}{x}\right) \right) : x > 0 \right\} \cup \{ (0, y) : y \in \mathbb{R} \}$$

is a connected set.

Proposition 1.2.1 Path connected \implies connected

Proof: Let *X* be a path-connected set and $x_0 \in X$. For each $y \in X$, find a continuous map $f : [0,1] \to X$ such that

$$f(0) = x_0$$
 and $f(1) = y$

Since an interval is connected and the image of continuous map preserve correctness, then f([0,1]) is connected. Therefore, *y* belongs to the largest connected set that contains x_0 , so *X* is connected.

Definition 1.2.6 — Differentiability.

Let $f : \mathbb{C} \to \mathbb{C}$ if

$$\lim_{z \to z_0} \frac{f(z) - f(z_0)}{z - z_0} \quad \text{exists}$$

we say that f is differentiable at z_0 and that the limit is its derivative $f'(z_0)$

• Example 1.4 Let $f(z) = z^2$, then we have

$$\lim_{\Delta z \to 0} \frac{f(z_0 + \Delta z) - f(z_0)}{\Delta z} = \lim_{\Delta z \to 0} \frac{z_0^2 + 2z_0\Delta z + \Delta z^2}{\Delta z} = \lim_{\Delta z \to 0} 2z_0 + \Delta z = 2z_0$$

-

• Example 1.5 Let f(z) = |z|, then we have

$$\lim_{\Delta z \to 0} \frac{f(z_0 + \Delta z) - f(z_0)}{\Delta z} = \lim_{\Delta z \to 0} \frac{|z_0 + \Delta z| - |z_0|}{\Delta z}$$

Let's consider $g(a,b) = \sqrt{a^2 + b^2}$, then we have

$$\frac{\partial g}{\partial a} = \frac{a}{\sqrt{a^2 + b^2}}$$
 (*) and $\frac{\partial g}{\partial b} = \frac{b}{\sqrt{a^2 + b^2}}$ (**)

Now we try $\Delta z = x \in \mathbb{R}$ and $z_0 = a + bi$ where $a, b \in \mathbb{R}$, then

$$\lim_{x \to 0} \frac{|x+a+bi| - |a+bi|}{x} = \lim_{x \to 0} \frac{\sqrt{(a+x)^2 + b^2} - \sqrt{a^2 + b^2}}{x} = \frac{a}{\sqrt{a^2 + b^2}} \quad \text{by (*)}$$

Similarly, if we let $\Delta z = yi$ for $y \in \mathbb{R}$, then by (**) we have

$$\lim_{y \to 0} \frac{\sqrt{a^2 + (b+y)^2} - \sqrt{a^2 + b^2}}{yi} = \frac{1}{i} \frac{\partial g}{\partial y} = \frac{1}{i} \frac{b}{\sqrt{a^2 + b^2}} = -\frac{bi}{\sqrt{a^2 + b^2}}$$

Therefore, f(z) = |z| is **differentiable nowhere**

Proposition 1.2.2 Let $f, g : \mathbb{C} \to \mathbb{C}$ and $c \in \mathbb{C}$, then we have $(f+g)(z)' = f'(z) + g'(z) \qquad (cf)'(z) = cf'(z)$ $(fg)'(z) = f(z)g'(z) + f'(z)g(z) \qquad (f \circ g)'(z) = f'(g(z))g'(z)$

Definition 1.2.7 — Real Part and Imaginary Part.

Let $z \in \mathbb{C}$ with z = a + bi where $a, b \in \mathbb{R}$, then *a* and *b* are call **real and imaginary parts** of *z* respectively denoted Re(z) and Im(z).

Example 1.6 Let $f(z) = \operatorname{Re}(z)$, what's the differentiability of f? We look at $\lim_{z \to 0} f(z+h) - f(z)$

$$\lim_{h \to 0} \frac{f(z+h) - f(z)}{h}$$

Let $h = h_x \in \mathbb{R}$, then

$$\lim_{h_x \to 0} \frac{\text{Re}(a + h_x + bi) - \text{Re}(a + bi)}{h_x} = \lim_{h_x \to 0} \frac{a + h_x - a}{h_x} = 1$$

Let $h = ih_y$ for $h_y \in \mathbb{R}$, then

$$\lim_{h_y \to 0} \frac{\operatorname{Re}(a+ih_y+bi) - \operatorname{Re}(a+bi)}{ih_y} = \lim_{h_y \to 0} \frac{a-a}{ih_y} = 0$$

Therefore, f(z) = Re(z) is differentiable nowhere. Similarly, Im(z) is differentiable nowhere.

Remark 1.4

$$\operatorname{Im}(z) = \operatorname{Re}(-iz)$$
 and $\overline{z} = \operatorname{Re}(z) - i\operatorname{Im}(z)$

differentiable nowhere.

Intuition: Differentiable functions are those that acts on z and are blind to Re(z) and Im(z)

- **Example 1.7** The function $f : \mathbb{C} \to \mathbb{C}$ with $f(z) = \overline{z}$ is a reflection by real-axis
- **Example 1.8** The function $f : \mathbb{C} \to \mathbb{C}$ with $f(z) = z^2$, if we write z = a + bi, then

$$f(z) = z^2 = (a+bi)^2 = (a^2 - b^2) + 2abi$$

Recall $z = a + bi = re^{i\theta}$, so let $z = re^{i\theta}$, then

$$f(z) = z^2 = r^2 e^{i(2\theta)}$$

	Question:	What	is	$i^{\frac{1}{2}}?$
--	-----------	------	----	--------------------

$$i = e^{i\frac{\pi}{2}} = \cos\frac{\pi}{2} + i\sin\frac{\pi}{2} = 0 + i = i \qquad \Longrightarrow \qquad i^{\frac{1}{2}} = (e^{i\frac{\pi}{2}})^{\frac{1}{2}} = e^{i\frac{\pi}{4}} = \cos\frac{\pi}{4} + i\sin\frac{\pi}{4} = \frac{1}{\sqrt{2}} + \frac{i}{\sqrt{2}}$$

1.3 Modulus and Argument

Definition 1.3.1 — Modulus. Let $z = re^{i\theta}$ with $0 \le r \in \mathbb{R}$ and $\theta \in \mathbb{R}$. The **modulus** (or **magnitude** or **absolute value**) of z is r = |z|

Definition 1.3.2 — Argument.

Let $z = re^{i\theta}$ with $0 \le r \in \mathbb{R}$ and $\theta \in \mathbb{R}$. The **argument** of z is $\theta = \arg(z)$

Remark 1.5 The argument of *z* is **not** unique. That's because

$$i = e^{i\frac{\pi}{2}} = e^{i(\frac{\pi}{2} + 2\pi)} = e^{i(\frac{\pi}{2} + 4\pi)} = \dots = e^{i(\frac{\pi}{2} + n\pi)}$$
 for $n \in \mathbb{Z}$

We also note that

$$i = e^{i(\frac{\pi}{2} + 2\pi)} \implies i^{\frac{1}{2}} \in \left\{ e^{i(\frac{\pi}{2} + 2\pi)}, e^{i(\frac{\pi}{2} + 4\pi)} \right\} = \left\{ e^{\frac{i\pi}{4}}, e^{\frac{i5\pi}{4}} \right\}$$

Proposition 1.3.1

More generally, if n > 0 and $n \in \mathbb{Z}$, $z = re^{i\theta}$, then

$$z^{\frac{1}{n}} = (re^{i\theta})^{\frac{1}{n}} = \left\{ r^{\frac{1}{n}}e^{i\frac{\theta}{n}}, r^{\frac{1}{n}}e^{i\frac{\theta+2\pi}{n}}, r^{\frac{1}{n}}e^{i\frac{\theta+4\pi}{n}}, \dots, r^{\frac{1}{n}}e^{i\frac{\theta+2(n-1)\pi}{n}} \right\}$$

so any non-zero $z \in \mathbb{C}$, has **exactly** n distinct n^{th} roots:

 $r^{\frac{1}{n}}e^{i\frac{\theta+2k\pi}{n}}$ where $0 \le k < n$

2.1 Holomorphic Function

Definition 2.1.1 — Holomorphic.

If $f : \mathbb{C} \to \mathbb{C}$ is differentiable on a domain *D*, we say *f* is **holomorphic** on D. Also called (complex) analytic regular.

Sloppy terminology warning: A function is said holomorphic at point z_0 if it is holomorphic on some open set containing z_0

Proposition 2.1.1 Let $f : \mathbb{C} \to \mathbb{C}$ be holomorphic on a domain *D* and let $z \in D$, then

$$f'(z) = \lim_{h \to 0} \frac{f(z+h) - f(z)}{h}$$
 extsts

Consider $h = h_x \in \mathbb{R}$, then

$$f'(z) = \lim_{h \to 0} \frac{f(z+h_x) - f(z)}{h_x}$$

and let z = x + iy, then

$$f'(z) = \lim_{h \to 0} \frac{f(x + h_x + iy) - f(x + iy)}{h_x}$$

Let
$$f(z) = f(x+iy) = u(x,y) + iv(x,y)$$
, where $u, v : \mathbb{R}^2 \to \mathbb{R}$, then

$$f'(x+iy) = \lim_{h_x \to 0} \frac{u(x+h_x,y) + iv(x+h_x,y) - u(x,y) - iv(x,y)}{h_x}$$

$$= \lim_{h_x \to 0} \frac{u(x+h_x,y) - u(x,y)}{h_x} + i \cdot \lim_{h_x \to 0} \frac{v(x+h_x,y) - v(x,y)}{h_x}$$

$$= \frac{\partial u}{\partial x} + i \frac{\partial v}{\partial x}$$

$$= f'(x+iy)$$

Now let $h = ih_y$ where $h_y \in \mathbb{R}$, then

$$f'(x+iy) = \lim_{h_y \to 0} \frac{u(x, y+h_y) + iv(x, y+h_y) - u(x, y) - iv(x, y)}{ih_y}$$

=
$$\lim_{h_y \to 0} \frac{u(x, y+h_y) - u(x, y)}{ih_y} + \cdot \lim_{h_y \to 0} \frac{iv(x, y+h_y) + iv(x, y)}{ih_y}$$

=
$$\frac{1}{i} \frac{\partial u}{\partial y} + i \frac{\partial v}{\partial y}$$

=
$$\frac{\partial v}{\partial y} - i \frac{\partial u}{\partial y}$$

Therefore, we have

$$f'(x+iy) = \frac{\partial u}{\partial x} + i\frac{\partial v}{\partial x} = \frac{\partial v}{\partial y} - i\frac{\partial u}{\partial y} \implies \frac{\partial u}{\partial x} = \frac{\partial v}{\partial y} \text{ and } \frac{\partial v}{\partial x} = -\frac{\partial u}{\partial y}$$

These are the **Cauchy-Riemann equations**. If f = u + iv is holomorphic on *D*, then *u* and *v* satisfy the **CR** equations on *D*.

Example 2.1 Let *f* be holomorphic on a domain *D* and let v(x,y) = Im(f) = xy on *D*, find u(x,y). Let f = u + iv, then

$$\frac{\partial u}{\partial x} = \frac{\partial v}{\partial y} = x$$
 and $-\frac{\partial u}{\partial y} = \frac{\partial v}{\partial x} = y$

so that

$$\frac{\partial u}{\partial x} = x$$
 $\frac{\partial u}{\partial y} = -y$ \Longrightarrow $u = \frac{1}{2}x^2 + C_1(y)$ $u = -\frac{1}{2}y^2 + C_2(x)$

This gives us that

$$u(x,y) = \frac{1}{2}x^2 - \frac{1}{2}y^2 + C$$

so we have

$$f(x+iy) = \left(\frac{1}{2}x^2 - \frac{1}{2}y^2 + C\right) + xyi$$

Note that

$$\frac{(x+iy)^2}{2} = \frac{x^2 - y^2 + 2xyi}{2} = \left(\frac{1}{2}x^2 - \frac{1}{2}y^2 + C\right) + xyi$$

then

$$f(z) = \frac{z^2}{2} + C$$
 and $f'(z) = z$

where z = x + iy

Example 2.2 Let f be holomorphic on a domain D and let $\text{Re}(f) = x^2y$. Let z = x + iy and f(x + iy) = u(x, y) + iv(x, y), $u(x, y) = x^2y$. Then we have

$$\frac{\partial v}{\partial y} = \frac{\partial u}{\partial x} = 2xy \implies v = \int 2xy dy = xy^2 + \underbrace{C_1(x)}_{\text{cause contradiction}}$$
$$\frac{\partial v}{\partial x} = -\frac{\partial u}{\partial y} = x^2 \implies v = \int x^2 dx = \frac{1}{3}x^3 + \underbrace{C_2(y)}_{\text{cause contradiction}}$$

this implies that there is no such v exists, so this is a contradiction, there is no such function f.

Proposition 2.1.2

$$f'(z) = \frac{\partial u}{\partial x} + i\frac{\partial v}{\partial x} = \frac{\partial v}{\partial y} - i\frac{\partial u}{\partial y} = \frac{\partial v}{\partial y} + i\frac{\partial v}{\partial x} = \frac{\partial u}{\partial x} - i\frac{\partial u}{\partial y}$$

Example 2.3 Let $f(z) = e^z$, so consider

$$f(x+iy) = e^x e^{iy} = e^x \cdot (\cos(y) + i\sin(y)) = e^x \cos(y) + ie^x \sin(y)$$

Then

$$\frac{\partial u}{\partial x} = e^x \cos(y) = \frac{\partial v}{\partial y}$$
 $\frac{\partial u}{\partial y} = -e^x \sin(y) = \frac{\partial v}{\partial x}$

Theorem 2.1.3 Let $u, v : \mathbb{R}^2 \to \mathbb{R}$ has continuous particle derivatives at (x_0, y_0) which satisfy

$$\frac{\partial u}{\partial x} = \frac{\partial v}{\partial y} \qquad \qquad \frac{\partial u}{\partial y} = -\frac{\partial v}{\partial x}$$

at (x_0, y_0) . Then f(x + iy) = u(x, y) + iv(x, y) is holomorphic at $z_0 = x_0 + iy_0$

Proof: Let $D \subseteq \mathbb{C}$ be domain with $z_0 \in D$. Let $z = x + iy \in D$. Then

$$u(x,y) = u(x_0,y_0) + (x-x_0) \left(\frac{\partial u}{\partial x}(x_0,y_0) - \varepsilon_1(x,y)\right) + (y-y_0) \left(\frac{\partial u}{\partial y}(x_0,y_0) - \varepsilon_2(x,y)\right)$$

where $\varepsilon_1, \varepsilon_2$ are continuous at (x_0, y_0) and $\varepsilon_1(x_0, y_0) = \varepsilon_2(x_0, y_0) = 0$. Similarly, we have

$$v(x,y) = v(x_0,y_0) + (x-x_0) \left(\frac{\partial v}{\partial x}(x_0,y_0) - \varepsilon_3(x,y)\right) + (y-y_0) \left(\frac{\partial v}{\partial y}(x_0,y_0) - \varepsilon_4(x,y)\right)$$

so

$$f(x+iy) = u(x,y) + iv(x,y) = f(z_0) + (z-z_0) \left(\frac{\partial u}{\partial x}(x_0,y_0) + i\frac{\partial v}{\partial x}(x_0,y_0) + \varepsilon(z)\right)$$

where

$$\varepsilon(z) = \frac{x - x_0}{z - z_0} (\varepsilon_1 + i\varepsilon_3) + \frac{y - y_0}{z - z_0} (\varepsilon_2 + i\varepsilon_4)$$

satisfying ε continuous at z_0 with $\varepsilon(z_0) \rightarrow 0$. Then

$$\lim_{z \to z_0} \frac{f(z) - f(z_0)}{z - z_0} = \lim_{z \to z_0} \frac{\partial u}{\partial x} (x_0, y_0) + i \frac{\partial v}{\partial x} (x_0, y_0) + \varepsilon(z) = \frac{\partial u}{\partial x} (x_0, y_0) + i \frac{\partial v}{\partial x} (x_0, y_0) = f'(z_0)$$

Example 2.4 Let $f(z) = \overline{z}$ so f(x+iy) = x - iy so u = x and v = -y. Note that

$$\frac{\partial u}{\partial x} = 1 \neq \frac{\partial v}{\partial y} = -1$$
 $\frac{\partial u}{\partial y} = 0 = -\frac{\partial v}{\partial y}$

This holds nowhere, so f is holomorphic **nowhere**

Example 2.5 Let $f(z) = \frac{1}{z}$ so

$$f(x+iy) = \frac{1}{x+iy} \cdot \frac{x-iy}{x-iy} = \frac{x-iy}{x^2+y^2} = \frac{x}{x^2+y^2} - i\left(\frac{y}{x^2+y^2}\right)$$

Then we have

$$\frac{\partial u}{\partial x} = \frac{y^2 - x^2}{(x^2 + y^2)^2} \qquad \qquad \frac{\partial v}{\partial y} = \frac{y^2 - x^2}{(x^2 + y^2)^2} \qquad \qquad \frac{\partial u}{\partial y} = \frac{-2xy}{(x^2 + y^2)^2} \qquad \qquad -\frac{\partial v}{\partial x} = \frac{-2xy}{(x^2 + y^2)^2}$$

so f is holomorphic everywhere except $\{0\}$

Note: $f(z) = \frac{1}{z} = \frac{\overline{z}}{z\overline{z}} = \frac{\overline{z}}{|z|^2}$ (*)

Proposition 2.1.4 Let $f, g : \mathbb{C} \to \mathbb{C}$ holomorphic at z_0 with $g(z_0) \neq 0$, then

$$\frac{f}{g}$$
 is holomorphic at z_0

The converse is false because of the Example 1.13, so let f be holomorphic, h is not holomorphic, then $\frac{fh}{h}$ is holomorphic at z while $h(z) \neq 0$.

Example 2.6 Let $f(z) = \frac{1}{z}$ and $z = re^{i\theta}$, then

$$f(re^{i\theta}) = \frac{1}{re^{\theta}} = \frac{1}{r}e^{-i\theta}$$

Let $z = re^{i\theta}$, $z_0 = r_0e^{i\theta_0}$ and f(z) be holomorphic and let $f(z) = u(r, \theta) + iv(r, \theta)$ we have

$$f'(z_0) = \lim_{z \to z_0} \frac{f(z) - f(z_0)}{z - z_0}$$

First fix $\theta = \theta_0$ and $r \rightarrow r_0$, then

$$f'(re^{i\theta_0}) = \lim_{r \to r_0} \frac{u(r, \theta_0) + iv(r, \theta_0) - u(r_0, \theta_0) - iv(r_0, \theta_0)}{re^{i\theta_0} - r_0 e^{i\theta_0}}$$
$$= e^{-i\theta_0} \lim_{r \to r_0} \frac{u(r, \theta_0) - u(r_0, \theta_0)}{r - r_0} + i\frac{v(r, \theta_0) - v(r_0, \theta_0)}{r - r_0}$$
$$= e^{-i\theta_0} \cdot \left(\frac{\partial u}{\partial r} (r_0, \theta_0) + i\frac{\partial v}{\partial r} (r_0, \theta_0)\right)$$

Next let $r = r_0$ and $\theta \to \theta_0$, so similarly we have

$$\begin{aligned} f'(r_0 e^{i\theta}) &= \frac{1}{r_0} \lim_{\theta \to \theta_0} \left[\frac{u(r_0, \theta) - u(r_0, \theta_0)}{\theta - \theta_0} + i \frac{v(r_0, \theta) - v(r_0, \theta_0)}{\theta - \theta_0} \right] \left(\frac{\theta - \theta_0}{e^{i\theta} - e^{i\theta_0}} \right) \\ &= \frac{1}{r} \frac{1}{ie^{i\theta}} \left(\frac{\partial u}{\partial \theta} + i \frac{\partial v}{\partial \theta} \right) \\ &= \frac{1}{r} e^{-i\theta} \left(\frac{\partial v}{\partial \theta} - i \frac{\partial u}{\partial \theta} \right) \\ &= f'(re^{i\theta}) \\ &= e^{-i\theta} \left(\frac{\partial u}{\partial r} + i \frac{\partial v}{\partial r} \right) \end{aligned}$$

Therefore, we have

$$\frac{\partial u}{\partial r} = \frac{1}{r} \frac{\partial v}{\partial \theta} \qquad \qquad \frac{\partial v}{\partial r} = -\frac{1}{r} \frac{\partial u}{\partial \theta}$$

Polar Form of CR-Equation

Example 2.7 Consider

$$z^{\frac{1}{n}} = r^{\frac{1}{n}}\cos\left(\frac{\theta}{n}\right) + i\sin\left(\frac{\theta}{n}\right)$$

so we have

$$u(r,\theta) = r^{\frac{1}{n}} \cos\left(\frac{\theta}{n}\right)$$
 $v(r,\theta) = \sin\left(\frac{\theta}{n}\right)$

so that

$$\frac{\partial u}{\partial r} = \frac{1}{n} r^{\frac{1}{n}-1} \cos\left(\frac{\theta}{n}\right) = \frac{1}{r} \frac{\partial v}{\partial \theta}$$

and

$$\frac{\partial v}{\partial r} = \frac{1}{n} r^{\frac{1}{n}-1} \sin\left(\frac{\theta}{n}\right) = -\frac{1}{r} \frac{\partial u}{\partial \theta}$$

Definition 2.1.2 — Branch and Principal Branch.

Let's define

 $\operatorname{Arg}(re^{i\theta}) = \theta \qquad -\pi \leq \theta \leq \pi$

This is a branch of the multvalued function arg. In particular, Arg is called the principal branch

Other breanches:

$$f(re^{i\theta}) = \theta$$
 $\pi < \theta \le 3\pi = \operatorname{Arg}(re^{i\theta}) + 2\pi$

so we have the value

$$\operatorname{Arg}(z) + 2\pi m$$
 for $m \in \mathbb{Z}$

is a **branch** of arg(z)

Consider the branches $z^{\frac{1}{n}} = r^{\frac{1}{n}} e^{i\frac{\theta}{n}}$ for $-\pi < \theta \pi$ **Question:** Where is this function holomorphic? **Answer:** This function is not continuous along $\operatorname{Arg}(z) = \pi$, but it's holomorphic on $\mathbb{C} \setminus \mathbb{R}_{\leq 0}$, this is called **branch cut**

• **Example 2.8** The function $f(re^{i\theta}) = r^{\frac{1}{n}}e^{i\frac{\theta}{n}}$ for $-\pi < \theta \le \pi$ has a branch cut along $\mathbb{R}_{\le 0}$ but holomorphic on $\mathbb{C} \setminus \mathbb{R}_{\le 0}$

We use branches in \mathbb{R} as well: $\sqrt{4} = 2$ because $\sqrt{\cdot}$ means principal branch of the function $x^{\frac{1}{n}}$

We can put a branch cut somewhere else:

$$f(re^{i\theta}) = r^{\frac{1}{n}}e^{i\frac{\theta}{n}}$$
 for $0 < \theta < 2\pi$

Remark 2.1 Some times we can define a branch cut that is not a straight line.

Example 2.9 Let's consider the log function, that is

$$\log(z) = \log\left(re^{i\theta}\right) = \log(r) + \log\left(e^{i\theta}\right) = \log(r) + i\theta = \ln|z| + i\operatorname{Arg}(\theta) + 2\pi im = \ln|z| + i\operatorname{Arg}(z) + 2\pi im$$

for $m \in \mathbb{Z}$. Use log for the multivalued function and log for the principal branch. That is

$$\log(z) = \log|z| + i\operatorname{Arg}(z) = \log|z| + 2\pi im$$

for $m \in \mathbb{Z}$

• Example 2.10 Let's consider $\log(z^{\frac{1}{2}})$, so we have

$$\log(z^{\frac{1}{2}}) = \log(r^{\frac{1}{2}}e^{i\frac{\theta}{2}}) = \ln|r^{\frac{1}{2}}| + i\frac{\theta}{2} = \frac{1}{2}(\ln|z| + i\theta) = \frac{1}{2}\log(z)$$

■ Remark 2.2 Note that for $w, z \in \mathbb{C}$:

$$\log(wz) \neq \log(w) + \log(z)$$

in general. We can see that

$$\log\left(e^{\frac{2\pi i}{3}}e^{\frac{2\pi i}{3}}\right) = -\frac{2\pi i}{3} \neq \frac{4\pi}{3} = \frac{2\pi i}{3} + \frac{2\pi i}{3}$$

That is because of the branches we use.

Remark 2.3

$$\cos(y) = \frac{e^{iy} + e^{-iy}}{2}$$
 $\sin(y) = \frac{e^{iy} - e^{-iy}}{2i}$

are holomorphic. Moreover

$$\frac{d}{dz}\sin(z) = \frac{d}{dz}\left(\frac{e^{iz} - e^{-iz}}{2i}\right) = \frac{ie^{iz} + ie^{-iz}}{2i} = \frac{e^{iz} + e^{-iz}}{2} = \cos(z)$$

and

$$\frac{d}{dz}\cos(z) = \frac{d}{dz}\left(\frac{e^{iz} + e^{-iz}}{2}\right) = \frac{ie^{iz} - ie^{-iz}}{2} = \frac{-e^{iz} + e^{-iz}}{2} = -\sin(z)$$

Remark 2.4 If two holomorphic functions are equal on "enough" of a set, they must agree on their domains.

Definition 2.1.3 — Tangent Function.

$$\tan(z) = \frac{1}{2} \cdot \frac{e^{iz} - e^{-iz}}{e^{iz} + e^{-iz}}$$

and all trig identities carry over in the obvious way.

Remark 2.5 Trig function are not bounded. Consider cos(iy) for $y \in \mathbb{R}$, then

$$\left|\cos(iy)\right| = \left|\frac{e^{i(iy)} + e^{-i(iy)}}{2}\right|$$

so we have $|\cos(iy)| \to \infty$ as $y \to \pm \infty$. The sin function is similar. Therefore, cos, sin are unbounded in \mathbb{C} .

Remark 2.6

$$\sinh(z) = \frac{e^z - e^{-z}}{2}$$
 $\cosh(z) = \frac{e^z + e^{-z}}{2}$ and $\sinh(iz) = i\sin(z)$ $\cosh(iz) = \cos(z)$

Question: What is i^i ? Since $\log(i) = \log e^{i\frac{\pi}{2}} = \frac{i\pi}{2} + 2\pi k$ for $k \in \mathbb{Z}$, then

$$i^{i} = \left(e^{\log(i)}\right)^{i} = e^{i\log(i)} = e^{i\cdot\left(\frac{i\pi}{2} + 2\pi k\right)} = e^{-\frac{\pi}{2} - 2\pi k}$$

Define

$$z^{2} = e^{w\log(z)} = \frac{d}{dz}(z^{w}) = \frac{d}{dz}e^{w\log(z)} = e^{w\log(z)}\frac{d}{dz}(w\log(z)) = w \cdot \frac{1}{z} \cdot e^{w\log(z)} = \frac{w}{z} \cdot z^{w} = w \cdot z^{w-1}$$

as expected.

Question: How many values does z^w have?

For $k \in \mathbb{Z}$ we have

$$z^{w} = e^{w \log(z)} = e^{w (\log(z) + 2\pi ik)} = e^{w \log(z)} \cdot e^{2\pi ikw}$$

When is $e^{2\pi i k w} = e^{2\pi i n w}$?

Then are equal when for some $n \in \mathbb{Z}$

$$e^{2\pi i k w} = e^{2\pi i n w + 2\pi i n w}$$

Consider $e^z = 1$, then $e^z = 1e^{i \cdot 0} = e^{x+iy} = e^x e^{iy}$ implies $e^x = 1$ and $y = 2\pi n$. Now we can see that kw = nw + m for some $m \in \mathbb{Z}$, then

$$w = \frac{m}{k-n}$$

for $n, m, k \in \mathbb{Z}$, so the powers z^w repeats if and only if $w \in \mathbb{Q}$. Now if $w = \frac{p}{q}$, so $z^2 = z^{\frac{p}{q}} = (z^p)^{\frac{1}{q}}$ has q distinct values. If $z \neq 0$, we have

$$z^{w} = \begin{cases} 1 & \text{if } w \in \mathbb{Z} \\ q & \text{if } w = \frac{p}{q} \in \mathbb{Q} \\ \infty & \text{otherwise} \end{cases}$$

Proposition 2.1.5 — Rotalion Approximation.

Let f be holomorphic at z_0 , so that

$$f'(z_0) = \lim_{z \to z_0} \frac{f(z) - f(z_0)}{z - z_0}$$

The modolus and argument must converge individually.

$$|f'(z_0)| = \left|\lim_{z \to z_0} \frac{f(z) - f(z_0)}{z - z_0}\right| \implies |f(z) - f(z_0)| \approx |f'(z_0)||z - z_0|$$

and

$$\arg(f'(z_0)) = \lim_{z \to z_0} \arg\left(\frac{f(z) - f(z_0)}{z - z_0}\right)$$

for some branch of arg holomorphic near z_0 , $f(z_0)$, $f'(z_0)$ so

$$\arg(f'(z_0)) = \arg(f(z) - f(z_0)) - \arg(z - z_0) \implies \arg(f(z) - f(z_0)) \approx \arg(f'(z_0)) + \arg(z - z_0)$$

near z_0 we have

$$f(x) \approx f(z_0) + e^{i \arg(f'(z_0))} |f'(z_0)| (z - z_0)$$

this is a rotalion of $z - z_0$ by $\arg(f'(z_0))$ and a scaling by $|f'(z_0)|$

Example 2.11 Consider $f(z) = z^2$ so $f(re^{i\theta}) = r^2 e^{i2\theta}$. Let $z_0 = 1 + i = \sqrt{2}e^{i\frac{\pi}{4}}$, so $f(z_0) = 2i$ and $f'(z_0) = 2\sqrt{2}e^{i\frac{\pi}{4}}$ so for small $h = z - z_0$ we have

$$f(z_0+h) \approx f(z_0) + e^{i \arg(f'(z_0))}$$

Remark 2.7

If f is differentiable on an open interval (a,b) and f'(x) = 0 on (a,b), then f is constant on (a,b)

Theorem 2.1.6

If f is holomorphic on a domain D and f'(z) = 0 for all $z \in D$, then f is constant on D

Proof:

$$f'(z) = 0 = \frac{\partial u}{\partial x} + i\frac{\partial v}{\partial x} = \frac{\partial v}{\partial y} - i\frac{\partial u}{\partial y}$$

so that

$$\frac{\partial u}{\partial x} = \frac{\partial u}{\partial y} = \frac{\partial v}{\partial x} = \frac{\partial v}{\partial y} = 0$$

so u, v are constant on any horizontal or vertical line segment in D, but D is a domain so it's open and path connected. Then any two points in D can be connected by a path of horizontal and vertical line segment, so u and v are constant on D, that means f = u + iv is constant on D.

Example 2.12 Find a branch of $(z^2 - 1)^{\frac{1}{2}}$ holomorphic on |z| > 1Note that the principal branch of $z^{\frac{1}{2}}$ does not work:

 $e^{\frac{1}{2}\log(z^2-1)}$

Its branch cut is where $z^2 - 1 \in \mathbb{R}$ with $z^2 - 1 \le 0$. But let z = 2i, so $z^2 - 1 = -5 \le 0$.

Consider the principal branch of $f(z) = z(1 - \frac{1}{z^2})^{\frac{1}{2}}$, its branch cut lies wherever $1 - \frac{1}{z^2} \le 0$ in \mathbb{R} , which is $\frac{1}{z^2} \ge 1$ in $\mathbb{R} \iff z^2 \le 1$ in $\mathbb{R} \implies |z| < 1$

2.2 Smooth Curve

Definition 2.2.1 — Smooth Curve.

A smooth curve in \mathbb{C} is the image of the function $r : [a,b] \to \mathbb{C}$ satisfying:

r is continuous and differentiable on [*a*,*b*]
 r' ≠ 0 on [*a*,*b*]
 r is one to one

■ Remark 2.8 The definition of smooth curve results gaps, sharp corners, pausing, retracing and selfintersection are not smooth curve.

Definition 2.2.2 — Directed Smooth Curve.

A **directed smooth curve** is a smooth curve with a fixed direction. i.e. The points on the curve are ordered and and *r* must trace them in order.

Definition 2.2.3 — Contour.

A **contour** is a directed piecewise smooth curve. i.e. $\Gamma = \bigcup_{i=1}^{n} C_i$ where each C_i is directed smooth curve and the terminal point of C_i is the initial point of C_{i+1} .

Definition 2.2.4 A contour is **simple** if it has no self-intersection

Definition 2.2.5

A contour is **closed** if its initial point coincides with its terminal point.

Definition 2.2.6 A simple closed contour is a contour both simple and closed.

finition: A contour is Det inition has no Self-intersections (except for initial point roinciding with terminal point) th simple and A contour is (losed its initial point (MINO PAINT

Example 2.13 Let Γ : $r_1(t) = z_0t + z_1(1-t)$ for $t \in [0,1]$ where z_0, z_1 are constants. Note: Parametrizations are **not** unique. That means we have

$$r_2(t) = z_0(2t) + z_1(1-2t)$$
 for $t \in [0, \frac{1}{2}]$ $r_3(t) = z_0t^2 + z_1(1-t^2)$ for $t \in [0, 1]$

Example 2.14 Consider Γ : $r(t) = R \cdot e^{it} + z_0$ for $t \in [0, 2\pi]$

Definition 2.2.7 If $C_r(z_0) = r \cdot e^{it} + z_0$ for $t \in [0, 2\pi]$ is the circular contour with radius *r* and center z_0 , traversed counterclockwise

Example 2.15 Consider $\Gamma = C_1 \cup C_2 \cup C_3$ where

$$C_1: r_1(t) = t$$
 $C_2: r_2(t) = ti + (1 = t)$ $C_3: r_3(t) = (1 - t)i$

where $t \in [0, 1]$ so we can parametrize Γ by

$$r(t) = \begin{cases} r_1 & t \in [0,1] \\ r_2 & t \in [0,1] \\ r_3 & t \in [0,1] \end{cases}$$

Theorem 2.2.1 — Jordan Curve Theorem.

A simple closed contour divides $\mathbb C$ into two disjoint regions, a bounded interior and an unbounded exterior.

Definition 2.2.8

A simple closed contour is **positively oriented** if its interior is to the left when traversed, **negatively oriented** clockwise otherwise.

3. Integration and Series

3.1 Integration

Definition 3.1.1 — Partition. Let Γ be a directed with initial point w_0 and terminal point w_1 . A **partition** of Γ is a set of points where

 $w_0 = z_0, z_1, z_2, \dots, z_n = w_1$

such that for all $0 \le i < n$, z_{i+1} is further along Γ than z_i .

Definition 3.1.2 — Mesh. The **mesh** of a partition is the largest distance between two consecutive points z_i, z_{i+1} along Γ

Definition 3.1.3 — Riemann Sum. Let Γ lie on a domain D and let $f : D \to \mathbb{C}$. The **Riemann sum** of f with respect to P_n is

$$S_f(P_n) = \sum_{i=1}^n f(z_i) \cdot (z_i - z_{i-1})$$

Definition 3.1.4 f is **integrable** along Γ if

$$\lim_{\mathbf{mesh}(P_n)\to 0} S(P_n) \quad \mathbf{exists}$$

Definition 3.1.5 — integral.

If f is integrable along Γ the **integral** of f along Γ is

$$\int_{\Gamma} f = \lim_{\mathbf{mesh}(P_n) \to 0} S(P_n)$$

Remark 3.1 This definition does not reference a parametrization of Γ , thus the integral is independent of

the choice of parametrization of the curve.

Let Γ parametrized by $r: [a,b] \to \Gamma$, then

$$\lim_{\mathbf{mesh}(P_n)\to 0}\sum_{i=0}^{n-1}f(z_i)(z_{i+1}-z_i)$$

Let $t_0, t_1, ..., t_n$ be the partition of [a, b] s.t. $r(t_i) = z_i$ and $0 \le i \le n$. This gives us

$$\lim_{\mathbf{mesh}(P_n)\to 0}\sum_{i=0}^{n-1}f(r(t_i))\Delta z_i$$

where $\Delta t_i = t_{i+1} - t_i$ and $\Delta z_i = z_{i+1} - z_i$, so that

$$\lim_{\mathbf{mesh}(P_n)\to 0} \sum_{i=0}^{n-1} f(r(t_i)) \Delta z_i = \lim_{\Delta t_i\to 0} \sum_{i=0}^{n-1} f(r(t_i)) r'(t_i) \Delta t_i = \int_a^b f(r(t)) r'(t) dt$$

That is

$$\int_{\Gamma} f(z)dz = \int_{a}^{b} f(r(t))r'(t)dt \qquad \text{very important}$$

Remark 3.2 Let's define the integral over a contour. First we consider

$$\Gamma = \Gamma_1 + \Gamma_2 + \dots + \Gamma_n$$

where the Γ_i are smooth directed curves, to be

$$\int_{\Gamma} f = \int_{\Gamma_1} f + \int_{\Gamma_2} f + \ldots + \int_{\Gamma_n} f$$

The contour integral immediately satisfies the followings

$$\int_{\Gamma} f + g = \int_{\Gamma} f + \int_{\Gamma} g \qquad \quad \int_{\Gamma_1 + \Gamma_2} f = \int_{\Gamma_1} f + \int_{\Gamma_2} f \qquad \quad \int_{\Gamma} c \cdot f = c \cdot \int_{\Gamma} f$$

for some constant $c \in \mathbb{C}$

Example 3.1 Let Γ : $r(t) = e^{it}$ where $t \in [0, \pi]$, then by **Remark 1.14** we have

$$\int_{\Gamma} z dz = \int_0^{\pi} e^{it} (ie^{it}) dt = i \int_0^{\pi} e^{2it} dt = i \left[\frac{1}{2i} e^{2it} \right]_0^{\pi} = \frac{1}{2} (e^{2\pi i} - e^0) = 0$$

also we have

$$\int_{\Gamma} z^2 dz = \int_0^{\pi} (e^{it})^2 (ie^{it}) dt = i \int_0^{\pi} e^{3it} dt = \frac{1}{3} (e^{3i\pi} - e^{3i\cdot 0}) = -\frac{2}{3}$$

Example 3.2 Let $C_1(0) = r(t) = e^{it}$ for $t \in [0, 2\pi]$, then by **Remark 1.14** we have

$$\int_{C_1(0)} z dz = \int_0^{2\pi} e^{it} (ie^{it}) dt = \frac{1}{2} (e^{4\pi i} - e^0) = 0$$

and

$$\int_{C_1(0)} = \int_0^{2\pi} \frac{1}{e^{it}} i e^{it} dt = \int_0^{2\pi} i dt = 2\pi i$$

Example 3.3 Let's define $\Gamma_1 : r_1(t) = t$ with $t \in [0, 1]$ and $\Gamma_2 : r_2(t) = 1 + it$ with $t \in [0, 1]$, then by **Remark 1.14** we have

$$\int_{\Gamma} z^2 dz = \int_{\Gamma_1} z^2 dz + \int_{\Gamma_2} z^2 dz$$

= $\int_0^1 t^2 (1) dt + \int_0^1 (1+it)^2 (i) dt$
= $-\frac{2}{3} + \frac{2}{3}i$

Example 3.4 Let $C_1(z_0) : r(t) = z_0 + e^{it}$ for $t \in [0, 2\pi]$, then by **Remark 1.14** we have

$$\int_{C_1(z_0)} (z-z_0)^n dz = \int_0^{2\pi} (z_0 + e^{it} - z_0)^n (ie^{it}) dt = \int_0^{2\pi} e^{nit} \cdot ie^{it} dt = i \int_0^{2\pi} e^{i(n+i)t} dt$$

by solving the integral we get

$$\int_{C_1(z_0)} (z - z_0)^n dz = i \int_0^{2\pi} e^{i(n+i)t} dt = \begin{cases} \frac{1}{n+1} (e^{2\pi i(n+1)} - e^0) & \text{if } n \neq -1 \\ 2\pi i & \text{otherwise} \end{cases} = \begin{cases} 0 & \text{if } n \neq -1 \\ 2\pi i & \text{otherwise} \end{cases}$$

Definition 3.1.6 — Length.

The **length** of a contour Γ parametrized by $r : [a,b] \to \Gamma$ with

 $\int_{a}^{b} \left| r'(t) \right| dt$

Theorem 3.1.1

Let *f* be integrable on Γ and $|f(z)| \leq M$ on Γ , then

$$\left| \int_{\Gamma} f(z) dz \right| = \left| \int_{a}^{b} f(r(t)) r'(t) dt \right| \le \int_{a}^{b} \left| f(r(t)) r'(t) \right| dt = \int_{a}^{b} \left| f(r(t)) \right| \left| r'(t) \right| dt$$

Definition 3.1.7 — Primitive.

A function *F* is **primitive** (or antiderivative) for a function *f* on a domain *D* if *F* is holomorphic on *D* and for all $z \in D$ with F'(z) = f(z)

Let f have a primitive F on D and Γ lie on D, consider

$$\int_{\Gamma} f(z)dz = \int_{\Gamma} F'(z)dz$$

Let $r : [a,b] \to \Gamma$ parametrize Γ , then

$$\int_{\Gamma} F'(z) dz = \int_{a}^{b} F'(r(t))r'(t) dt = \int_{a}^{b} \frac{dF}{dr}(r(t)) \frac{dr}{dt} dt = \int_{r(a)}^{r(b)} \frac{dF}{dr} dr = F(r(b)) - F(r(a))$$

by the fundamental theorem of calculus in $\mathbb R$

Theorem 3.1.2

Fundamental Theorem of Calculus in \mathbb{C} : If *f* has a primitive *F* on a domain *D* and Γ lies in *D* with initial point *z*₀ and terminal point *z*, then

$$\int_{\Gamma} f(z)dz = F(z_1) - F(z_0)$$

Example 3.5 Let f(z) = z so it has primitive $F(z) = \frac{1}{2}z^2$ on all of \mathbb{C} . Then for Γ containing from z_0 to z_1 ,

$$\int_{\Gamma} z dz = \frac{1}{2} z^2 \mid_{z_0}^{z_1}$$

If $z_1 = 1 + i$ and $z_0 = 0$, so we get

$$\int_{\Gamma} z dz = \frac{1}{2} z^2 \mid_0^{1+i} = i$$

• Example 3.6 Let $f(z) = \frac{1}{z}$ has a primitive $\log(z)$, that is any branch of $\log(z)$ is a primitive of $\frac{1}{z}$ on its domain. so $\log(z)$ is primitive of $\frac{1}{z}$ on the domain $\mathbb{C} \setminus \mathbb{R}_{\leq 0}$, then

$$\int_{\Gamma} \frac{1}{z} dz = \log(i) - \log(-i) = \log\left(e^{\frac{i\pi}{2}}\right) - \log\left(e^{\frac{-i\pi}{2}}\right) = i\pi$$

but for $f(z) = \frac{1}{z}$ has no primitive valid on all of $C_1(0)$

Corollary 3.1.3

If f has a primitive on a domain D and Γ is a closed contour lying in D, then

$$\int_{\Gamma} f(z) dz = 0$$

Proof: Note that

$$\int_{\Gamma} f = F(z_1) - F(z_0) = F(z_0) - F(z_0) = 0$$

that is **primitive** implies $\oint f = 0$

Lemma 3.1.4

Let f be continuous on a domain D and let

$$\oint_{\Gamma} f = 0$$

for any closed Γ lying in D. Then given Γ_1, Γ_2 in D with the same initial and terminal points, then

$$\int_{\Gamma_1} f = \int_{\Gamma_2} f$$

Proof: Note that $\Gamma_1 + (-\Gamma_2)$ is closed, so

$$\int_{\Gamma_1 + (-\Gamma_2)} f = 0 = \int_{\Gamma_1} f - \int_{\Gamma_2} f = 0$$

Lemma 3.1.5 Let f be continuous on a domain D such that for Γ_1 , Γ_2 in D sharing initial and terminal point

$$\int_{\Gamma_1} f = \int_{\Gamma_2} f$$

then f has a primitive on D

Proof: Fix $z_0 \in D$ and define

$$F(z) = \int_{\Gamma} f(z) dz$$

where Γ is a contour lying in *D* with initial point z_0 and terminal point *z*. This is well-defined by pathindependent (and path-connectedness of *D*). Now consider

$$F'(z) = \lim_{|\Delta z| \to 0} \frac{F(z + \Delta z) - F(z)}{\Delta z} = \lim_{|\Delta z| \to 0} \frac{\int_E f(z) dz}{\Delta z}$$

where *E* is the line segment running from *z* to $z + \Delta z$, that is $E : r(t) = z + t\Delta z$ for $t \in [0, 1]$. Then we have

$$F'(z) = \lim_{\Delta z \to 0} \frac{\int_E f(z)dz}{\Delta z} = \lim_{|\Delta z| \to 0} \frac{1}{\Delta z} \int_0^1 f(z+t\Delta z)\Delta z dt = \lim_{|\Delta z| \to 0} \int_0^1 f(z+t\Delta z)dt$$

since f is continuous, so

$$\lim_{\Delta z \to 0} f(z + t\Delta z) = f(z)$$

so for all $\varepsilon > 0 \exists \delta > 0$ s.t. as $\Delta z < \delta$, then $f(z + t\Delta z) - f(z) < \varepsilon$. Now we can see that

$$0 \leq \lim_{|\Delta z| \to 0} \int_0^1 f(z + t\Delta z) dt \leq \lim_{|\Delta z| \to 0} \int_0^1 f(z) + \varepsilon dt = \lim_{\varepsilon \to 0} f(z) + \varepsilon = f(z)$$

Theorem 3.1.6

Let *f* be continuous on a domain *D*, **TFAE**:

1. f has a primitive on D

2. For all closed contours Γ lying in D, $\int_{\Gamma} f = 0$

3. For any two contours Γ_1, Γ_2 in *D* that sharing initial and terminal points, then

$$\int_{\Gamma_1} f = \int_{\Gamma_2} f$$

Definition 3.1.8 — Cauchy Sequence.

A Cauchy sequence is a sequence $\{z_n\}_{n=1}^{\infty}$ such that $\forall \varepsilon > 0 \exists N > 0$ such that $n_1, n_2 > N$

$$|z_{n_1}-z_{n_2}|<\varepsilon$$

Lemma 3.1.7 A Cauchy seugence in a compact set $S \subseteq \mathbb{R}^n$ converges to a point in *S*

Lemma 3.1.8 Any closed and bounded subset of \mathbb{R}^n is compact

Lemma 3.1.9 Let f be holomorphic at z_0 , then

$$f(z) = f(z_0) + f'(z_0)(z - z_0) + \varepsilon(z)(z - z_0)$$

for some $\varepsilon(z)$ satisfying $\lim_{z \to z_0} \varepsilon(z) = 0$

Proof: Let

$$\varepsilon(z) = \frac{f(z) - f(z_0)}{z - z_0} - f'(z_0)$$

then take $\lim_{z\to z_0}$.

Theorem 3.1.10 — Goursat's Theorem.

Let f be the holomorphic on a domain D and let T be a triangle lying D with interior in D then

$$\int_T f(z)dz = 0$$

Proof: Divide T into four triangles by connecting the midpoints of its sides. Now

$$\int_{T} f = \int_{T_1} f + \int_{T_2} f + \int_{T_3} f + \int_{T_4} f$$

there exists a T_i such that

$$\left|\int_{T} f\right| \leq 4 \left|\int_{T_{i}} f\right|$$

Note that $length(T_1) \le \frac{1}{2} length(T)$ and $diam(T_1) \le \frac{1}{2} diam(T)$. Repeat this process, yielding $T = T^{(0)}, T^{(1)}, \dots$ such that

$$\left|\int_{T} f\right| \le 4^{n} \left|\int_{T^{(n)}} f\right|$$

with $length(T^{(n)}) \leq \frac{1}{2^n} length(T)$ and $diam(T^{(n)}) \leq \frac{1}{2^n} diam(T)$. Let z_n be a point in the interior of $T^{(n)}$ for each n, then $\{z_n\}$ is a Cauchy sequence. Then $\lim_{n \to \infty} z_n = w$ where

w lies in the interior of each $T^{(n)}$. Since f is hlomorphic at w, then

$$f(z) = f(w) - f'(w)(z - w) + \varepsilon(z)(z - w)$$

 $\lim_{z \to w} \varepsilon(z) = 0.$ Now consider

$$\int_{T^{(n)}} f(z) dz = \int_{T^{(n)}} f(w) + f'(w)(z-w) + \varepsilon(z)(z-w) dz$$

Note that f(w) has primitive zf(w) and f'(w)(z-w) has primitive $\frac{1}{2}f'(w)(z-w)^2$ so

$$\int_{T^{(n)}} f(w) + f'(w)(z - w)dz = 0$$

so that

$$\int_{T^{(n)}} f(z) dz = \int_{T^{(n)}} \varepsilon(z) (z - w) dz$$

Let's define $\varepsilon_n = \sup_{z \in T^{(n)}} |\varepsilon(z)|$ and then

$$|z-w| \le diam(T^{(n)}) \le \frac{1}{2^n} diam(T)$$

and

$$length(T^{(n)}) \le \frac{1}{2^n} length(T^{(n)})$$

so that

$$\left| \int_{T^{(n)}} f(z) dz \right| = \left| \int_{T^{(n)}} \varepsilon(z) (z - w) dz \right| \le \varepsilon_n diam(T^{(n)}) length(T^{(n)}) \le \varepsilon_n \frac{1}{4^n} diam(T) length(T)$$

thus

$$\left| \int_{T} f(z) dz \right| \le 4^{n} \left| \int_{T^{(n)}} f(z) dz \right| \le 4^{n} \varepsilon_{n} \frac{1}{4^{n}} diam(T) length(T) = \varepsilon_{n} diam(T) length(T)$$

let $n \to \infty$ and $\varepsilon_n \to 0$, we get

$$\left| \int_{T^{(n)}} f(z) dz \right| \to 0 \qquad \implies \qquad \int_{T^{(n)}} f(z) dz = 0$$

which completes the proof.

Corollary 3.1.11

The Goursat's Theorem also works for retangles and polygons.

Corollary 3.1.12

If f is holomorphic on an open disk, then f has a primitive on that disk

Proof: Choose $z_0 \in D$ and define

$$F(z) = \int_{\Gamma} f(z) dz$$

so that

$$F(z+h) - F(z) = \int_{\Gamma_n} f(z) dz + \underbrace{\int_{\Delta} f + \int_{\Box} f}_{0}$$

so that

$$\frac{d}{dz}\int_{\Gamma_n} f(z)dz = f(z)$$

as in last lecture.

Example 3.7 f holomorphic on domain D does not imply f has primitive on D.

Let $f(z) = \frac{1}{z}$ is holomorphic on

$$\{z \in \mathbb{C} : 1 < |z| < 2\}$$

and

$$\int_{C_1(0)} \frac{1}{z} dz = 2\pi i$$

Definition 3.1.9 — Homotopic.

Let Γ_1, Γ_2 be two contours in a domain *D* with the same initial and terminal point. Γ_1 is **homotopic** (or continuously deformable) if there exists $r : [0, 1]^2 \to \mathbb{C}$ satisfying:

r is continuous on [0,1]²
 For a fixed *s*, *r*(*s*,*t*) is a parametrization of a contour in *D* with initial and terminal point shared with Γ₁, Γ₂
 r(0,*t*) parmetrizes Γ₁, *r*(1,*t*) parmetrizes Γ₂

Definition 3.1.10 — Simply Connected.

A domain *D* is **simply connected** if any two contours in *D* sharing initial and terminal point are homotopic to each other.

3.2 Cauchy's Theorem and its Integration Formula

Theorem 3.2.1 — Cauchy's Theorem.

Let f be holomorphic on a simply connected domain D and let Γ be a closed contour in D, then

$$\int_{\Gamma} f = 0$$

Proof: Γ is homotopic and triangle.

Example 3.8 Let $f(z) = z^2$, since z^2 is entire so by Cauchy's Theorem,

$$\int_{\Gamma} f(z)dz = \int_{\Gamma_1} f(z)dz = \int_{\Gamma_1}^{-1} x^2 dx = -\frac{2}{3}$$

Example 3.9 Let $f(z) = \frac{1}{z^2-1}$, so f is holomorphic on $\mathbb{C} \setminus \{1, -1\}$, then

$$\int_{C_2(0)} f(z)dz = \int_{C_{\varepsilon}(-1)} f(z)dz + \int_{C_{\varepsilon}(1)} f(z)dz$$

for $\varepsilon \in (0,2)$. Note that

$$\frac{1}{z^2 - 1} = \frac{1}{2} \cdot \left(\frac{1}{z - 1} - \frac{1}{z + 1}\right)$$

then

$$\int_{C_{\varepsilon}(1)} f(z)dz = \frac{1}{2} \cdot \left(\int_{C_{\varepsilon}(1)} \frac{1}{z-1}dz - \underbrace{\int_{C_{\varepsilon}(1)} \frac{1}{z+1}dz}_{=0} \right) = \frac{1}{2} \cdot 2\pi i = \pi i$$

Similarly, we have

$$\int_{C_{\varepsilon}(-1)} f(z)dz = \frac{1}{2} \cdot \left(\underbrace{\int_{C_{\varepsilon}(-1)} \frac{1}{z-1} dz}_{=0} - \int_{C_{\varepsilon}(-1)} \frac{1}{z+1} dz \right) = \frac{1}{2} \cdot -2\pi i = -\pi i$$
$$\int_{C_{2}(0)} f(z)dz = 0$$

so

Example 3.10 Say f has a taylor series at z_0 :

$$f(z) = f(z_0) + a_1(z - z_0) + a_2(z - z_0)^2 + \dots$$

Then we get

$$\frac{1}{2\pi i} \int_{\Gamma} \frac{f(z)}{z - z_0} dz = \frac{1}{2\pi i} \int_{\Gamma} \left(\frac{f(z_0)}{z - z_0} + \underbrace{a_1 + a_2(z - z_0) + \dots}_{holomorphic} \right) dz$$
$$= \frac{f(z_0)}{2\pi i} \int_{\Gamma} \frac{1}{z - z_0} dz$$
$$= \frac{f(z_0)}{2\pi i} \cdot 2\pi i$$
$$= f(z_0)$$

Theorem 3.2.2 — Cauchy Integral Formula.

Let *f* be function holomorphic on a domain $\Omega \subseteq \mathbb{C}$, Γ is a jordan curve (closed contour) contained in Ω and whose interior in contained in Ω . Let $z_0 \in$ the interior of Γ , then

$$f(z_0) = \frac{1}{2\pi i} \int_{\Gamma} \frac{f(z)}{z - z_0} dz$$

Proof: WE can replace Γ with $C(r) = \{z \in \mathbb{C} : |z - z_0| = r\}$ for small enough *r*, then

$$\frac{1}{2\pi i} \int_{\Gamma} \frac{f(z)}{z - z_0} dz = \frac{1}{2\pi i} \int_{C(r)} \frac{f(z)}{z - z_0} dz$$
$$= \frac{1}{2\pi i} \int_{C(r)} \frac{f(z_0)}{z - z_0} dz + \int_{C(r)} \frac{f(z) - f(z_0)}{z - z_0} dz$$
$$= f(z_0) + \int_{C(r)} \frac{f(z) - f(z_0)}{z - z_0}$$

We will show that

$$\int_{C(r)} \frac{f(z) - f(z_0)}{z - z_0} = 0$$

Since

$$f'(z_0) = \lim_{z \to z_0} \frac{f(z) - f(z_0)}{z - z_0}$$

exists and $\left|\frac{f(z)-f(z_0)}{z-z_0}\right|$ is bounded on C(r) and its interior S_0 , so

$$\int_{C(r)} \frac{f(z) - f(z_0)}{z - z_0} dz \to 0$$

as $r \rightarrow 0$. so since this integral is independent of r and it must equal 0, which complete the proof.

• Example 3.11 Say g is holomorphic on 0 < |z| < R, which of the following implies that

$$\int_{C(r)} g(z) dz = 0$$

(a) g is holomorphic at 0 (b) g is identically 0 on 0 < |z| < R(c) |g| is bounded on 0 < |z| < R(d) $g(z) = 2\pi i$ on 0 < |z| < R(e) g is defined and continuous at 0 (f) $\lim_{z \to 0} g(z) = \infty$

Answer: (a)(b)(c)(d)(e)

• Example 3.12 Let $\Gamma = \{z \in \mathbb{C} : |z| = 1\}$, compute (a) $\int_{\Gamma} \frac{\cos(z)}{z} dz$

- (b) $\int_{\Gamma} \frac{e^z}{z-2} dz$
- (c) $\int \frac{\cos(2\pi z)}{2z-1} dz$

By Cauchy Integral Thm/Formula, (a)(b) are 0.

Proposition 3.2.3 — Cauchy Integral Formula for Derivatives. Note that $\left(\frac{1}{1-x}\right)' = \frac{1}{(1-x)^2}$, then the **CIF**:

$$f(w) = \frac{1}{2\pi i} \int_{\Gamma} \frac{f(z)}{z - w} dz \qquad \Longrightarrow \qquad \frac{d}{dw} f(w) = \frac{1}{2\pi i} \frac{d}{dw} \int_{\Gamma} \frac{f(z)}{z - w} dz = \frac{1}{2\pi i} \int_{\Gamma} \frac{d}{dw} \frac{f(z)}{z - w} dz$$

Taking devaritive again:

$$f'(w) = \frac{1}{2\pi i} \int_{\Gamma} \frac{f(z)}{(z-w)^2} dz \qquad \Longrightarrow \qquad \frac{2}{2\pi i} \int_{\Gamma} \frac{f(z)}{z-w} dz$$

Taking devaritive *n* times:

$$f^{(n)}(w) = \frac{n!}{2\pi i} \int_{\Gamma} \frac{f(z)}{(z-w)^{n+1}} dz$$

so f is **infinitely** differentiable!

Proposition 3.2.4 Let *f* be holomorphic on Ω with $D = \{|z - z_0| < R\} \subseteq \Omega$, then

$$\left|f^{(n)}(z_0)\right| \le \frac{n!M}{r^n}$$

where $M = \max_{|z|=r} |f(z)|$.

Proof: Take $\Gamma = \{|z - z_0| = r\}$ then apply **prop 3.1.15**, then we have

$$\left|f^{(n)}(z_0)\right| \le \left|\frac{n!}{2\pi i} \int_{\Gamma} \frac{f(z)}{(z-z_0)^{n+1}} dz\right| \le \left|\frac{n!}{2\pi i} \int_{\Gamma} \frac{M}{r^n} dz\right| = \left|\frac{n!}{2\pi i} \frac{M}{r^n} \cdot 2\pi i\right| = \frac{n!M}{r^n}$$

3.3 Liouvlle Theorem and Maximum Modulus Principle

Theorem 3.3.1 — Liouivlle.

A bounded entire (holomorphic on \mathbb{C}) function is constant.

Proof: By the **CIF** for derivatives we have $|f'(z)| \le \frac{n!M}{r}$ for any r > 0, so since *M* can be taken independent of *r*, we get $|f'(z_0)| = 0$ for all z_0 so *f* is constant.

Theorem 3.3.2 — Maximum Modulus Principle.

A non-constant holomorphic function on a domain Ω cannot chieve its supremum on Ω . More precisely, for all $z_0 \in \Omega$, there is some $z_1 \in \Omega$ with $|f(z_1)| > |f(z_0)|$

Theorem 3.3.3

Every non-constant complex polynomials has a root in $\ensuremath{\mathbb{C}}$

Proof: Let p be a complex polynomial with no root in \mathbb{C} , we will show that p is constant. Then we have $\frac{1}{p}$ is **entire**, let

$$m(r) = \max_{|z|=r} |p(z)|$$

then m(r) increases as $r \to \infty$, so $g(r) = \min_{|z|=r} |p(z)|$ decreases as $r \to \infty$, but $\lim_{z \to \infty} |p(z)| = \infty$ is p is not constant, which they couldn't true at the same time, so it's a contradiction. That means p is constant.

Example 3.13

If f is entire and non-constant, which of the followings are true?

(a) Image $(f) = f(\mathbb{C})$ must intersect the upper half plane.

(b) Image(f) must intersect every straight line.

- (c) Image(f) must intersect every non-empty open set.
- (d) Image(f) must contain every point.

Answer: (a)(b)(c)

Example 3.14

If *p* is a polynomial satisfying $|p(z)| \le |e^z|$ for all *z*, what is p(z)?

Answer: Only p(z) = 0 by taking negative z with |z| large.

Theorem 3.3.4 — Maximum Modulus Priciple.

Let *f* be holomorphic on an open set Ω . If *f* achieves its maximum on Ω , then *f* is a constant. That is, if there is some $z_0 \in \Omega$ such that $|f(z_0)| \ge |f(z)|$ for all $z \in \Omega$, then *f* is constant.

Proof: Let z_0 be a local max of |f| on Ω , let

$$D = \{|z - z_0| \le r\} \subseteq \Omega$$

be a disc around z_0 . Then the Cauchy integral formula says for $C(r) = \partial D = \{|z - z_0| = r\}$:

$$f(z) = \frac{1}{2\pi i} \int_{C(r)} \frac{f(z)}{z - z_0} dz = \frac{1}{2\pi i} \int_0^{2\pi} \frac{f(z_0 + re^{i\theta})}{re^{i\theta}} d(z_0 + re^{i\theta})$$
$$= \frac{1}{2\pi i} \int_0^{2\pi} \frac{f(z_0 + re^{i\theta})}{re^{i\theta}} re^{i\theta} d\theta$$
$$= \frac{1}{2\pi i} \int_0^{2\pi} f(z) d\theta$$

This gives us that

$$|f(z_0)| \le \frac{1}{2\pi} \int_0^{2\pi} |f(z)| d\theta \le \max_{z \in C(r)} |f(z)|$$

with equality **iff** |f| is constant on C(r) with $|f(z_0)| = \max_{z \in C(r)} |f(z)|$ because r is arbitrary (as long as $D \subseteq \Omega$), we will show f is constant on D. Write f = u + iv then $u^2 + v^2$ is constant on D.

$$2uu_x + 2vv_x = 0$$
 $2uu_y + 2vv_y = 0$ since $u_x = v_y$ and $u_y = -v_x$

then we get $-2uv_x + 2vu_x = 0$. That is to solve

$$\underbrace{\begin{bmatrix} u & v \\ v & -u \end{bmatrix}}_{\det = -u^2 - v^2} \begin{bmatrix} u_x \\ v_x \end{bmatrix} = \begin{bmatrix} 0 \\ 0 \end{bmatrix}$$

so either $u^2 + v^2 = 0$ or $u_x = v_x = 0$. The $u^2 + v^2 = 0$ implies f = 0 is a constant or $u_x = v_x = u_y = v_y = 0$ implies f is constant. Therefore, f is constant on D, since D is arbitrary so f is constant on Ω .

3.4 Morera's Theorem

Theorem 3.4.1 — Morera's Theorem.

If *f* is continuous on a domain Ω with

$$\int_{\Gamma} f(z) dz = 0$$

for all simple closed curves $\Gamma \subseteq \Omega$ whose interiors are contained in Ω , then *f* is holomorphic on Ω .

Proof: We will find a holomorphic *F* with F' = f. This will prove that *f* is holomorphic. Since holomorphicity is local, we can assume that $\Omega = D$ is a disc. Now choose $z_0 \in D$ we define

$$F(z) = \int_{\Gamma} f(z) dz$$

where Γ is any path from z_0 to z because D is simply connected, this F is well defined by hypothesis. Compute

$$F'(z) = \lim_{x \to z} \frac{F(z) - F(x)}{z - x} = \lim_{x \to z} \frac{1}{z - x} \left(\int_{z_0}^z f(y) dy - \int_{z_0}^x f(y) dy \right)$$

=
$$\lim_{x \to z} \frac{1}{z - x} \int_x^z f(y) dy$$

=
$$\lim_{x \to z} \left(\int_x^z \frac{f(y) - f(z)}{z - x} dy + \int_x^z \frac{f(z)}{z - x} dy \right)$$

=
$$\lim_{x \to z} f(x) + \int_x^z \frac{f(y) - f(x)}{z - x} dy$$

=
$$f(z) + 0$$

because the

$$\int_{x}^{z} \frac{f(y) - f(x)}{z - x} dy \le |z - x| \left| \frac{f(m) - f(x)}{z - x} \right| = |f(m) - f(x)|$$

where m = the max value of f on (x, z), completes the proof.

Lemma 3.4.2 — Symmetry Principle.

Let *D* be a domain symmetric across \mathbb{R} , let D^+, D^-, I be as indicated. Let f^+ be holomorphic on D^+, f^- be holomorphic on *D*, both extend continuously to *I* and $f^+(z) = f^-(z)$ for $z \in I$, then

$$f(z) = \begin{cases} f^+(z) & z \in D^+ \\ f^+(z) = f^-(z) & z \in I \\ f^-(z) & z \in D^- \end{cases}$$

is holomorphic on *D*.

Proof: Note that if f is continuous on D, then

$$\left| \int_{T} f(z) - \int_{T_{\varepsilon}} f(z) \right| \le \varepsilon \cdot \left(\max_{z \in T} \left| f'(z) \right| \right) \cdot \operatorname{length}(\mathbf{T}) \to 0$$

as $\varepsilon \to 0$

Proposition 3.4.3 — Schwarz Reflection Principle.

Let D^+, D^-, I as be the ones defined in Lemma 3.1.22. Let f^+ be holomorphic on D^+ and extend continuously to I, then there exists f such that $f(z) = f^+(z)$ on D^+ and f is holomorphic on D

Proof: Let $f^+(z) = \overline{f(\overline{z})}$, by A2 we have f^- is holomorphic on D^- , then apply the Symmetry Principle

Lemma 3.4.4 — Schwarz's Lemma.

Let $D = \{z \in \mathbb{C} : |z| < 1\}$ and f be holomorphic on D, f(0) = 0 and $|f(z)| \le 1$ for all $z \in D$. Then $|f(z)| \le |z|$ for all $z \in D$ and $|f'(0)| \le 1$. Furthermore, if |f(z)| = |z| for some $0 \ne z \in D$, then f is rotation $f(z) = \lambda z$ for some constant $|\lambda| \le 1$.

Proof: Let

$$g(z) = \begin{cases} \frac{f(z)}{z} & z \neq 0\\ f'(0) & \mathbf{z} = \mathbf{0} \end{cases}$$

Note that g is holomorphic on D, since

$$\lim_{z \to 0} \frac{f(z)}{z} = \lim_{z \to 0} \frac{f(z) - f(0)}{z - 0} = f'(0)$$

Now consider *g* on |z| < r < 1, then

$$|g(z)| \le \max_{|w|=r} |g(w)| \le \max_{|w|=r} \frac{|f(w)|}{|w|} \le \frac{1}{r} \to 1$$

as $r \to 1$. so we have $|g(z)| \le 1$ on *D*, then for $z \ne 0$

$$\frac{|f(z)|}{|z|} \le 1 \quad \Longrightarrow \quad |f(z)| \le |z|$$

for z = 0 we have $|g(0)| = |f'(0)| \le 1$. If |f(z)| = |z| at some $z \in D$, then |g(z)| = 1, so by maximum modulus theorem g is constant on D. Let $g(z) = \lambda$ and |z| = 1, then we have $f(z) = \lambda z$ as desired.

Remark 3.3 If f is holomorphic on domain D, then f is infinitely differential be on D

Remark 3.4 In \mathbb{R} , an infinitely differentiable function has a Taylor series representation.

3.5 Series

Definition 3.5.1 — Convergent Series.
A series
$$\sum_{n=1}^{\infty} z_n$$
 is convergent if $\lim_{n \to \infty} \sum_{i=1}^{n} z_i$ converges.

Definition 3.5.2 — Cauchy Series.

A series $\sum_{n=1}^{\infty} z_n$ is **Cauchy** if $\lim_{k \to \infty} \sum_{n=k}^{\infty} z_n = 0$.

Definition 3.5.3 — Uniformly Convergent.

A sequence $\{f_n\}$ is **uniformly convergent** on a set if $\forall \varepsilon > 0$, $\exists N > 0$, $\forall z \in S$, $\exists L$, $\forall n > 0$

 $|f_n(z) - L| < \varepsilon$

Lemma 3.5.1 If $f_n \to f$ uniformly on *S*, then

$$\int_{S} f_n \to \int_{S} f$$

Definition 3.5.4 — Uniformly Convergent Series. A series is **uniformly convergent** if its sequence of partial sum is **uniformly convergent**.

Definition 3.5.5 — Absolutely Convergent Series. A series is absolutely convergent if the series $\sum_{n=0}^{\infty} z_n$ converges.

Definition 3.5.6 Let's define

$$D_r(z_0) = \{ z \in \mathbb{C} : |z - z_0| < r \}$$

be the open disk of radius r centered at z_0 . Let $\overline{D_r(z_0)} = D_r(z_0) \cup C_r(z_0)$ be its closure.

Definition 3.5.7 Let $\{x_n\} \subseteq \mathbb{R}$, then

$$\limsup_{n \to \infty} x_n = \limsup_{n \to \infty} x_k x_k$$

Proposition 3.5.2 — **Ratio Test.** If $\limsup \left| \frac{z_{n+1}}{z_n} \right| < 1$, then $\sum_{n=0}^{\infty} z_n$ converges absolutely. If $\limsup \left| \frac{z_{n+1}}{z_n} \right| > 1$, then $\sum_{n=0}^{\infty} z_n$ diverges.

Proposition 3.5.3 — Root Test. If $\limsup |z_n|^{\frac{1}{n}} < 1$, then then $\sum_{n=0}^{\infty} z_n$ converges absolutely. If $\limsup |z_n|^{\frac{1}{n}} > 1$, then $\sum_{n=0}^{\infty} z_n$ diverges
Proposition 3.5.4 — Comparison Test. If $\sum_{n=0}^{\infty} x_n$ converges with $x_n \in \mathbb{R}$ and $|z_n| \le x_n$ for all *n*, then $\sum_{n=0}^{\infty} z_n$ converges absolutely.

Proposition 3.5.5 — Weierstrass M Test. Let $\{f_n\}_{n=1}^{\infty}$ satisfy $|f_n(z)| \le M_n$ for all $z \in S$. If $\sum_{n=1}^{\infty} M_n$ converges, then $\sum_{n=1}^{\infty} f_n(z)$ converges uniformly on S**Proof:** Let $g_n(z) = \sum_{k=0}^n f_k(z)$, then g_n is uniformly Cauchy on S

Definition 3.5.8 — Power Series.

A **Power Series** about z_0 is a series of the form $\sum_{n=0}^{\infty} a_n(z-z_0)^n$ where $z_n \in \mathbb{C}$

Theorem 3.5.6

If a power series $\sum_{n=0}^{\infty} a_n (z-z_0)^n$ converges at point z with $|z-z_0| = R$, then it converges absolutely on $D_R(z_0)$ and converges uniformly on any closed subdisk of $D_r(z_0)$

Proof: Let $w \in D_R(z_0)$ and $|w - z_0| < r < R$, then

$$|a_n(w-z_0)^n| = \underbrace{|a_n(z-z_0)^n|}_{\text{so is bounded} \le M} \cdot \underbrace{\left|\frac{a_n(w-z_0)^n}{a_n(z-z_0)^n}\right|}_{\le \frac{r}{R}} \le \underbrace{M \cdot \left(\frac{r}{R}\right)^n}_{\frac{r}{R} < 1}$$

Now we can see that $M\left(\frac{r}{R}\right)^n$ is a convergent geometric series so $\sum_{n=0}^{\infty} a_n (w-z_0)^n$ converges absolutely by comparison. Apply the Weierstrass M-Test to the above to get uniformly convergence on $\overline{D}_r(z_0)$

Theorem 3.5.7 — Taylor's Theorem.

Let *f* be holomorphic on $D_r(z_0)$, then for all $z \in D_R(z_0)$,

$$f(z) = \sum_{n=0}^{\infty} \frac{f^{(n)}(z_0)}{n!} (z - z_0)^n$$

Proof: Choose $z \in D_R(z_0)$ and let $|z - z_0| < r < R$, by Cauchy Integration formula

$$f(z) = \frac{1}{2\pi i} \int_{C_r(z_0)} \frac{f(w)}{w - z} dw$$

for all $w \in C_r(z)$. Then

$$\frac{f(w)}{w-z} = \frac{f(w)}{(w-z_0) - (z-z_0)} = \frac{f(w)}{w-z_0} \cdot \frac{1}{1 - \frac{z-z_0}{w-z_0}} = \frac{f(w)}{w-z_0} \sum_{n=0}^{\infty} \left(\frac{z-z_0}{w-z_0}\right)^n = \sum_{n=0}^{\infty} f(w) \cdot \left(\frac{(z-z_0)^n}{(w-z_0)^{n+1}}\right)^{n-1} = \frac{f(w)}{w-z_0} \sum_{n=0}^{\infty} f(w) \cdot \left(\frac{(z-z_0)^n}{(w-z_0)^{n+1}}\right)^{n-$$

Now we have

$$\left| f(w) \cdot \left(\frac{(z-z_0)^n}{(w-z_0)^{n+1}} \right) \right| \le \max_{w \in C_r(z_0)} |f(w)| \cdot \frac{|z-z_0|^n}{r^{n+1}} = \frac{1}{r} \cdot \max_{w \in C_r(z_0)} |f(w)| \left(\frac{z-z_0}{r} \right)^n$$

Since $\left|\frac{z-z_{j}}{r}\right| < 1$, then by weierstrass M-test, this series converges uniformly on $C_{r}(z_{0})$, thus we may integrate term by term. Then

$$f(z) = \frac{1}{2\pi i} \int_{C_r(z_0)} \sum_{n=0}^{\infty} f(w) \frac{(z-z_0)^n}{(w-z_0)^{n+1}} dw = \frac{1}{2\pi i} \sum_{n=0}^{\infty} \int_{C_r(z_0)} \frac{f(w)}{(w-z_0)^{n+1}} dw (z-z_0)^n = \sum_{n=0}^{\infty} \frac{f^{(n)(z_0)}}{n!} (z-z_0)^n$$

Remark 3.5 The term "analytic" means expressible as n power series many text will use "analytic" in place of "holomorphic".

■ Example 3.15

$$e^{z} = \sum_{n=0}^{\infty} \frac{z^{n}}{n!} = 1 + z + \frac{z^{2}}{2!} + \dots$$

with $R = \infty$

$$\sin(z) = \sum_{n=0}^{\infty} (-1)^n \frac{z^{2n+1}}{(2n+1)!} = z - \frac{z^3}{3!} + \frac{z^5}{5!} + \dots$$

with $R = \infty$

$$\cos(z) = \sum_{n=0}^{\infty} (-1)^n \frac{z^{2n}}{(2n)!} = 1 - \frac{z^2}{2!} + \frac{z^4}{4!} + \dots$$

with $R = \infty$

$$\frac{1}{1-z} = \sum_{n=0}^{\infty} z^n = 1 + z + z^2 + \dots$$

with R = 1

Example 3.16 Taylor series for e^{2z} about 0, we have

$$e^{(2z)} = \sum_{n=0}^{\infty} \frac{(2z)^n}{n!} = 1 + 2z + \frac{4z^2}{2!} + \frac{8z^3}{3!} + \dots$$

Converges for $|2z| < \infty$, implies that $R = \infty$.

Example 3.17 Let's look at $\frac{1}{\frac{1}{2}z^2+1}$, let $w = -\frac{1}{2}z^2$, then

$$\frac{1}{\frac{1}{2}z^2 + 1} = \frac{1}{1 - w} = \sum_{n=0}^{\infty} w^n = \sum_{n=0}^{\infty} \left(-\frac{1}{2}z^2\right)^n = \sum_{n=0}^{\infty} \frac{(-1)^n}{2^n} z^{2n}$$

and $\left|\frac{1}{2}z^2\right| < 1$ implies $|z| < \sqrt{2}$, so $R = \sqrt{2}$

• Example 3.18 Taylor series for $\cos(z) + i\sin(z)$ about 0:

$$\cos(z) + i\sin(z) = \sum_{n=0}^{\infty} (-1)^n \frac{z^{2n}}{(2n)!} + i \cdot \sum_{n=0}^{\infty} (-1)^n \frac{z^{2n+1}}{(2n+1)!} = 1 + iz - \frac{z^2}{2!} - i\frac{z^3}{3!} + \frac{z^4}{4!} + \dots = \sum_{n=0}^{\infty} \frac{i^n z^n}{n!} = e^{iz}$$

Example 3.19 Recall for r > 0

$$\int_{C_r(z_0)} (z - z_0)^n = \begin{cases} 0 & n \neq 1\\ 2\pi i & n = -1 \end{cases}$$

Let f be analytic on $D_R(z_0)$, then

$$f(z) = \sum_{n=0}^{\infty} \frac{f^{(n)}(z_0)}{n!} (z - z_0)^n$$

uniform convergence on $\overline{D_r(z_0)}$ and the convergence is uniform on closed subdisks. so for all r < R we have

$$\int_{C_r(z_0)} f(z)dz = \int_{C_r(z_0)} \sum_{n=0}^{\infty} a_n (z-z_0)^n dz = \sum_{n=0}^{\infty} a_n \cdot \int_{C_r(z_0)} (z-z_0)^n dz = 0$$

Example 3.20 Find a series representation for $\frac{e^z}{z^2}$ about z = 0.

$$\frac{e^{z}}{z^{2}} = \frac{1}{z^{2}} \sum_{n=0}^{\infty} \frac{z^{n}}{n!} = \frac{1}{z^{n}} (1 + z + \dots) = \sum_{n=0}^{\infty} \frac{z^{n}}{(n+2)!}$$

Now consider for r > 0

$$\int_{C_r(0)} \frac{e^z}{z^2} = \int_{C_r(0)} \sum_{n=0}^{\infty} \frac{z^n}{(n+2)!} = \sum_{n=0}^{\infty} \int_{C_r(0)} \frac{z^n}{(n+2)!} = 2\pi i \cdot \frac{1}{(-1+2)!} = 2\pi i$$

Lemma 3.5.8 If $f_n \to f$ is uniformly on *S*, then

$$\int_S f_n \to \int_S f$$

Theorem 3.5.9

Let *f* be holomorphic on a domain $\{z \in \mathbb{C} : r_1 < |z - z_0| < r_2\}$, then on that annulus, *f* has a **Laurent** Series (generalized Cauchy series)

$$f(z) = \sum_{-\infty}^{\infty} a_n (z - z_0)'$$

which converges on the annulus and converges uniformly on closed subannuli.

Definition 3.5.9 — Isolated Singnlarity.

An isolated singularity of a function f is a point z_0 where f is not holomorphic, but where f is holomorphic on some punnetured disk $0 < |z - z_0| < r$

Remark 3.6 If f(z) has zero at z_0 , then $\frac{1}{f(z)}$ has singularity at z_0 .

Definition 3.5.10 — Zero of Order m.

An analytic function f has a zero of order m at z_0 if $\frac{f(z)}{(z-z_0)^m}$ is analytical at z_0 but $\frac{f(z)}{(z-z_0)^{m+1}}$ is not.

Equivalently if $f(z) = \sum_{n=0}^{\infty}$ the order is the smallest *n* such that $a_n \neq 0$

Definition 3.5.11 — Singularity.

A singularity of f is a point where f is not analytic but is a limit point of the points where f is analytic.

Definition 3.5.12

Let z_0 be an isolated singularity of f, let $\sum_{n=0}^{\infty} a_n (z-z_0)^n$ be the Laurrent series of f at z_0

If $a_{-m} \neq 0$ but $a_n = 0$ for all n > m, we call z_0 a **pole order of m** $\iff (z - z_0)^m f(z)$ is analytic at z_0 but $(z - z_0)^{m+1} f(z)$ is not

If $a_{-n} = 0$ for all n > 0, we call this a **removable singularity**. In this case, we have

$$g(z) = \begin{cases} f(z) & z \neq z_0\\ \lim_{z \to z_0} f(z) & z = z_0 \end{cases}$$

is analytic at z_0 .

If $a_{-n} \neq 0$ for infinitely many n > 0, we call this **essential singularity**.

Example 3.21 Removable singularity examples:

$$f(z) = \frac{z}{z} \quad f(z) = \frac{\sin(z)}{z} = \frac{1}{z} \cdot \left(z - \frac{z^3}{3!} + \frac{z^5}{5!} - \dots\right) = 1 - \frac{z^2}{3!} + \frac{z^4}{5!} - \dots$$

Example 3.22 Let a function

$$f(z) = \sum_{n=-m}^{\infty} a_n (z - z_0)^n \quad \text{with} \ a_m \neq 0$$

on a punctured disk $0 < |z - z_0| < r$. Let Γ be a simple, closed positively oriented contour in the annulus with z_0 inside the loop, then

$$\int_{\Gamma} f(z) dz = \int_{\Gamma} \sum_{n=-m}^{\infty} a_n (z - z_0)^n dz = \sum_{n=-m}^{\infty} \int_{\Gamma} a_n (z - z_0)^n = 2\pi i \cdot a_{-1}$$

Definition 3.5.13 — Residue.

Given f, z_0 , Γ as before, we define the **residue** of f at z_0 to be

$$\frac{1}{2\pi i}\int_{\Gamma}f(z)dz = a_{-1} = \operatorname{res}_{z_0}(f)$$

Definition 3.5.14 — Meromorphic.

A function f is called **meromorphic** on a domain D if it's holomorphic on all of D except for a set of isolated poles.

Theorem 3.5.10 — Residue Theorem.

Let *f* be meromorphic on a simply connected domain *D* and let Γ be a simple, closed, positively oriented contour lying in *D*. Let $z_1, ..., z_k$ be the poles of *f* inside Γ , then

$$\int_{\Gamma} f(z) dz = 2\pi i \sum_{i=1}^{k} \operatorname{res}_{z_i}(f)$$

• Example 3.23 Consider $f(z) = \frac{1}{z^2+z} = \frac{1}{z(z+1)}$, so for 0 < |z| < 1, then

$$\frac{1}{z(z+1)} = \frac{1}{z} \cdot \left(\frac{1}{1-(-z)}\right) = \frac{1}{z} \sum_{n=0}^{\infty} (-z)^n = \frac{1}{z} - 1 + z - z^2 \dots$$

so it has order 1 and residue 1 for 0 < |z+1| < 1, then

$$\frac{1}{z(z+1)} = \frac{1}{z+1} \cdot \frac{1}{z+1-1} = \frac{1}{z+1} \cdot \left(\frac{1}{1-(z+1)}\right) = -\frac{1}{z+1} \sum_{n=0}^{n} (z+1)^n = \frac{-1}{z+1} - 1 - (z+1) - (z+1)^2 - \dots$$

so is has simple pole and residue -1. for |z| > 1, then

$$\frac{1}{z(z+1)} = \frac{1}{z} \cdot \frac{1}{z+1} \cdot \frac{1}{\frac{1}{z}} = \frac{1}{z^2} + \frac{1}{1+\frac{1}{z}} = \frac{1}{z^2} \cdot \sum_{n=0}^n \left(\frac{1}{z}\right)^n = \dots + \frac{1}{z^4} + \frac{1}{z^3} + \frac{1}{z^2}$$

Remark 3.7 Recall f has pole of order m at $z_0 \iff (z-z_0)^m f(z)$ has removeable singularity at z_0 , $(z-z_0)^{m-1} f(z)$ has a pole at z_0 . That is

$$(z-z_0)^m \left(\frac{a_{-m}}{(z-z_0)^m} + \dots\right) = a_{-m} + a_{m-1}(z-z_0) + \dots$$

f has a zero of order m at $z_0 \iff \frac{f(z)}{(z-z_0)^m}$ has a removeable singgularity at z_0 , $\frac{f(z)}{(z-z_0)^{m+1}}$ has a pole at z_0 .

$$\frac{1}{(z-z_0)^m}(a_m(z-z_0)^m+\ldots))=a_m+a_{m+1}(z-z_0)+\ldots$$

Let f and g be analytic at z_0 , let f have a zero of order m at z_0 and let g have a zero pf order n at z_0 , then

$$\frac{f(z)}{g(z)} = \frac{\frac{f(z)}{(z-z_0)^m} (z-z_0)^m}{\frac{g(z)}{(z-z_0)^n} (z-z_0)^n} = (z-z_0)^{m-n} h(z) \quad \text{where } h(z) \text{ is analytic at } z_0$$

and we see that

$$\frac{f(z)}{g(z)} \text{ has } \begin{cases} \text{a zero of order } m-n \text{ at } z_0 & \text{if } m > n \\ \text{a pole of order } n-m \text{ at } z_0 & \text{if } m < n \\ \text{a removable singularity} & \text{if } m = n \end{cases}$$

Example 3.24 $\frac{1}{z(z+1)}$ has simple poles at z = 0 and z = -1

- **Example 3.25** $\frac{z+3}{z^3(z+1)^2(z-2)}$ has order 3 pole at 0, order 2 pole at -1 and simple pole at 2.
- Example 3.26

$$\frac{\cos(z) - 1}{z^2} = \frac{1}{z^2} \left(1 - \frac{z^2}{2!} + \frac{z^4}{4!} - \dots \right) = -\frac{1}{2!} + \frac{z^2}{4!} - \dots$$

so it has removeable singularity at z = 0.

• Example 3.27 Let f has a simple pole at z_0 and a Laurent series:

$$f(z) = \frac{a_{-1}}{z - z_0} + a_0 + a_1(z - z_0) + \dots$$

is same punctured disk about z_0 , then

$$(z-z_0)f(z) = a_{-1} + a_0(z-z_0) + a_1(z-z_0)^2 + \dots$$

so that

$$\lim_{z \to z_0} \left((z - z_0) f(z) \right) = a_{-1} = \operatorname{res}_{z_0}(f)$$

so if f has a simple pole at z_0 , then $\operatorname{res}_{z_0}(f) = \lim_{z \to z_0} (z - z_0) f(z)$

• Example 3.28 Let $f(z) = \frac{1}{z(z+1)}$, then $\operatorname{res}_0(f) = \lim_{z \to 0} z f(z) = \lim_{z \to 0} z \cdot \frac{1}{z(z+1)} = \frac{1}{0+1} = 1$. Similarly, we have $\operatorname{res}_{-1}(f) = \lim_{z \to -1} (z+1) \frac{1}{z(z+1)} = \frac{1}{-1} = 1$

-

Example 3.29 Now let f have a pole of order m at z_0 , then

$$f(z) = \frac{a_{-m}}{(z - z_0)^m} + \frac{a_{-m+1}}{(z - z_0)^{-m+1}} + \dots$$

so that

$$(z-z_0)^m f(z) = a_{-m} + a_{-m+1}(z-z_0) + \dots$$

so

$$\frac{a}{dz}((z-z_0)^m f(z)) = a_{-m+1} + 2a_{-m+2}(z-z_0) + \dots + (m-1)a_{-1}(z-z_0)^{m-2} + \dots$$

and

$$\frac{d^{m-1}}{dz^{m-1}}((z-z_0)^m f(z)) = a_{-1}(m-1)! + \dots$$

then

$$\lim_{z \to z_0} \frac{d^{m-1}}{dz^{m-1}} ((z - z_0)^m f(z)) = a_{-1}(m-1)!$$

and

$$a_{-1} = \operatorname{res}_{z_0}(f) = \frac{1}{(m-1)!} \lim_{z \to z_0} \frac{d^{m-1}}{dz^{m-1}} ((z-z_0)^m f(z))$$

Example 3.30 Consider $f(z) = \frac{e^z + 1}{z^3}$, then $e^0 + 1 = z \neq 0$ so f has an order 3 pole at 0, then

$$\operatorname{res}_{0}(f) = \frac{1}{(3-1)!} \lim_{z \to z_{0}} \frac{d^{2}}{dz^{2}} \left(z^{3} \cdot \frac{e^{z} + 1}{z^{3}} \right) = \frac{1}{2}$$

Example 3.31 Let $f(z) = \sum_{n=-\infty}^{\infty} a_n (z-z_0)^n$ be the Laurent series for f in some annulus, so

$$a_{-1} = \frac{1}{2\pi i} \oint_{\Gamma} f(z) dz$$

where Γ is simple, closed, positively oriented contour looping around the inner circle of annulus. Now we see

$$(z-z_0)^{-m-1}f(z) = \dots + \frac{a_m}{z-z_0} + \dots \implies a_m = \frac{1}{2\pi i} \oint \frac{f(z)}{(z-z_0)^{m+1}} dz$$

Note: for a Taylor series, this is equivalent to $\frac{f^{(n)}(z_0)}{n!}$ by Cauchy's Integration Theorem.

3.6 Integration II

Proposition 3.6.1 Let $f(z) = \frac{g(z)}{h(z)}$ where g, h are analytic at z_0 . Let $g(z_0) \neq 0$ and $h(z_0) = 0$, $h'(z_0) \neq 0$. That is f has a simple pole at z_0 , then

$$\operatorname{res}_{z_0}(f) = \lim_{z \to z_0} (z - z_0) f(z) = \lim_{z \to z_0} (z - z_0) \frac{g(z)}{h(z)} = g(z_0) \lim_{z \to z_0} \frac{z - z_0}{h(z)} = g(z_0) \lim_{z \to z_0} \frac{z - z_0}{h(z) - h(z_0)} = \frac{g(z_0)}{h'(z_0)}$$

Example 3.32 Find residues of all poles of $f(z) = \frac{1}{z^3 - 1}$, note that $z^3 - 1 = 0 \iff z \in \left\{1, e^{\frac{2\pi i}{3}}, e^{\frac{4\pi i}{3}}\right\}$, then *f* has 3 simple poles. Then residue at simple pole *z* is $\frac{1}{3z^2}$. This gives us that

$$\operatorname{res}_{1}(f) = \frac{1}{3}$$
 $\operatorname{res}_{e^{\frac{2\pi i}{3}}}(f) = \frac{1}{3}e^{\frac{2\pi i}{3}}$ $\operatorname{res}_{e^{\frac{4\pi i}{3}}}(f) = \frac{1}{3}e^{\frac{4\pi i}{3}}$

Example 3.33 Consider the following:

$$\int_{0}^{\infty} \frac{1}{x^{4} + 1} dx \quad \text{and} \quad I = \int_{0}^{\infty} \frac{1}{x^{4} + 1} dx$$

Note that

$$2I = \int_{-\infty}^{\infty} \frac{1}{x^4 + 1} dx$$

Let Γ_R be the line segment running from -R to R in \mathbb{R} , then

$$2I = \lim_{R \to \infty} \int_{\Gamma_R} \frac{1}{z^4 + 1} dz$$

Let C_R be the upper semicircle running from R to -R, note $\Gamma_R + C_R$ is simple closed positive oriented tour. so we can sue residue theorem. Consider

$$\left|\int_{C_R} \frac{1}{z^4 + 1} dz\right| \le \left|\int_{C_R} \frac{1}{R^4} dz\right| \le |\pi i R| \cdot \frac{1}{R^4} \le \frac{\pi}{R^3} \to 0 \quad \text{as} \quad R \to \infty$$

Next we locate the poles of $\frac{1}{z^4+1}$ and find their residues. Note that $z^4+1=0 \iff z \in \left\{e^{\frac{k\pi i}{4}}: k=1,3,5,7\right\}$. Then

$$\operatorname{res}_{z_0}(f) = \frac{1}{4z^3}$$
 where $z_0 \in \left\{ e^{\frac{k\pi i}{4}} : k = 1, 3, 5, 7 \right\}$

Then we have

$$\oint_{C_R+\Gamma_R} \frac{1}{z^4+1} dz = \frac{\pi}{\sqrt{2}}$$

so

$$2I = \lim_{R \to \infty} \int_{\Gamma_R} = \lim_{R \to \infty} \left(\int_{\Gamma_R + C_R} f(z) dz - \int_{C_R} f(z) dz \right) = \frac{\pi}{\sqrt{2}} - 0 = \frac{\pi}{\sqrt{2}}$$

Definition 3.6.1

Extended complex plane $\mathbb{C} \cup \{\infty\} = \hat{\mathbb{C}}$

Definition 3.6.2

Define the behavior of f(z) at ∞ to behavior of $f(\frac{1}{z})$ at 0.

• Example 3.34 For example, let $f(z) = z^2 + 1$, so that $f(\frac{1}{z}) = \frac{1}{z^2} + 1 = \frac{1}{z^2} + \frac{0}{z} + 1$, so it has order 2 and residue 0 and $\lim_{z \to -\infty} \int_{-\infty}^{\infty} z^2 + 1 dz = 0$

also

$$R \to \infty \int_{C_R(0)} f(z) dz = -2\pi i res_{\infty}(f)$$

■ Example 3.35 Let $f(z) = \frac{z+1}{z-i}$, so that $f(\frac{1}{z}) = \frac{\frac{1}{z}+1}{\frac{1}{z}-i} = \frac{1+z}{1-iz}$ at z = 0 and $f(\frac{1}{z}) = 1$ so f is analytic at ∞ .

Example 3.36 Let $f(z) = \sin(z)$ so $f(\frac{1}{z}) = \sin \frac{1}{z}$ does not converge as $z \to 0$, so $\sin(z)$ has essential singularity at ∞

At an isolated singularity z_0

$$\lim_{z \to z_0} f(z) = c \in \mathbb{C} \implies f \text{ analytic at } z_0 \text{ (or removeable singularity)}$$
$$\lim_{z \to z_0} |f(z)| = \infty \implies f \text{ has a pole at } z_0$$
$$\lim_{z \to z_0} f(z) \text{ does not exist in } \hat{\mathbb{C}} \implies f \text{ has an essential singularity at } z_0$$

Example 3.37 Consider the following

$$\int_0^\infty \frac{1}{x^3 + 1} dx$$

Let $f(z) = \frac{1}{z^3+1}$ so f has poles at $z = -1, e^{\frac{i\pi}{3}}, e^{\frac{5i\pi}{3}}$. We define

$$I = \int_0^\infty \frac{1}{x^3 + 1} dx = \lim_{R \to \infty} \int_{\Gamma_1} f(z) dz$$

and we can see that

$$\left| \int_{C_R} \frac{1}{z^3 + 1} dz \right| \sim R \cdot \frac{1}{R^3} = R^{-2} \to 0 \text{ as } R \to \infty$$

Let $\Gamma_2: r_2(t) = t \cdot e^{\frac{2\pi i}{3}}$ for $t \in [0, R]$,

$$\int_{\Gamma_2} \frac{1}{z^3 + 1} dz = \int_0^R \frac{1}{\left(t \cdot e^{\frac{2\pi i}{3}}\right)^3 + 1} \cdot e^{\frac{2\pi i}{3}} dt = \int_0^R \frac{e^{\frac{2\pi i}{3}}}{t^3 + 1} dt = e^{\frac{2\pi i}{3}} \int_0^\infty f$$

Now

$$\int_{\Gamma_1 + C_R - \Gamma_2} f = 2\pi i res_{e^{\frac{i\pi}{3}}}(f) = \frac{2\pi i}{3}e^{-\frac{2\pi i}{3}}$$

This gives us that

$$\frac{2\pi i}{3}e^{-\frac{2\pi i}{3}} = I + 0 - e^{\frac{2\pi i}{3}}I \implies I = \frac{2\sqrt{3}\pi}{9}$$

.

-

Definition 3.6.3 — Cauchy Principal Value.

Given a continuous function $f : \mathbb{R} \to \mathbb{R}$, define the **Cauchy Principal Value** of $\int_{-\infty}^{\infty} f(x) dx$ is

p.v.
$$\int_{-\infty}^{\infty} f(x)dx = \lim_{R \to \infty} \int_{-R}^{R} f(x)dx$$

Note that $\int_{-\infty}^{\infty} f(x) dx$ exists, then

p.v.
$$\int_{-\infty}^{\infty} f(x)dx = \int_{-\infty}^{\infty} f(x)dx$$

Example 3.38 Find **p.v.** for

$$\int_{-\infty}^{\infty} \frac{\cos(x)}{1+x^2} dx$$

Let $f(z) = \frac{\cos(z)}{1+z^2}$, then

$$\left| \int_{C_R} \frac{\cos(z)}{1+z^2} dz \right| = \left| \int_{C_R} \frac{\frac{1}{2}(e^{iz} + e^{-iz})}{1+z^2} dz \right|$$

but consider e^{-iz} at z is *iR*, as $R \to \infty e^{-i(iR)} = e^R \to \infty$ Consider

$$I = \mathbf{p.v.} \int_{-\infty}^{\infty} \frac{e^{iz}}{1+z^2} dz$$

then

$$\left| \int_{C_R} \frac{e^{iz}}{1+z^2} dz \right| \sim \frac{1}{R^2} \cdot R = \frac{1}{R} \to \infty$$

and

$$\int_{C_R+\Gamma} f(z)dz = 2\pi i \operatorname{res}_i(f) = 2\pi i \left[\frac{e^{iz}}{2z}\right]_{z=i} = 2\pi i \frac{e^{-1}}{2i} = \frac{\pi}{e}$$

so $I = \frac{\pi}{e} - 0 = \frac{\pi}{e}$

Now we consider

$$I_2 = \mathbf{p.v.} \int_{-\infty}^{\infty} \frac{e^{-iz}}{1+z^2} dz$$

then

$$\left| \int_{C_R} \frac{e^{iz}}{1+z^2} dz \right| \sim \frac{1}{R^2} R \sim \frac{1}{R} \to 0$$

then similarly we have

$$\int_{C_R+\Gamma} f = -2\pi i \operatorname{res}_{-i}(f) = -2\pi i \left[\frac{e^{-iz}}{2z}\right]_{z=-i} = \frac{\pi}{e}$$

so $I_2 = \frac{\pi}{e} - 0 = \frac{\pi}{e}$. Then we have

$$\int_{-\infty}^{\infty} \frac{\cos(x)}{1+x^2} dx = \frac{1}{2}I + \frac{1}{2}I_2 = \frac{\pi}{e}$$

Example 3.39 Consider

$$\int_0^{2\pi} \sin^2\theta d\theta$$

Let $z = e^{i\theta} = \cos(\theta) + i\sin(\theta)$, then $\sin(\theta) = \frac{1}{2i}(z + \frac{1}{z})$, then

$$\int_{0}^{2\pi} \sin^{2}\theta d\theta = \int_{C_{1}(0)} \left(\frac{1}{2i}(z+\frac{1}{z})\right)^{2} \frac{d\theta}{dz} dz = \int_{C_{1}(0)} \left(\frac{1}{2i}(z+\frac{1}{z})\right)^{2} \cdot \frac{1}{iz} dz$$
$$= -\frac{1}{4i} \int_{C_{1}(0)} z + \frac{2}{z} + \frac{1}{z^{3}} dz$$
$$= -\frac{1}{4i} \operatorname{res}_{0} \left(z + \frac{2}{z} + \frac{1}{z^{3}}\right) = -\frac{1}{4i} (2\pi i)(-2) = \pi$$

• Example 3.40 Let f be continuous on [a, b] except at c with a < c < b, then

p.v.
$$\int_{a}^{b} f(x)dz = \lim_{\epsilon \to 0} \left(\int_{a}^{c-\epsilon} f(x)dx + \int_{c+\epsilon}^{b} f(x)dx \right)$$

Example 3.41 Consider

$$\mathbf{p.v.} \int_0^{2\pi} \frac{\cos^2 \theta}{1 - 3\sin \theta} d\theta$$

Let $z = e^{i\theta}$, then $\cos \theta = \frac{1}{2}(z + \frac{1}{z})$ and $\sin \theta = \frac{1}{2i}(z - \frac{1}{z})$, $\frac{d\theta}{dz} = \frac{1}{iz}$. Now we can rewrite it as

$$\int_{C_1(0)} \frac{\left(\frac{z+\frac{1}{z}}{2}\right)^2}{1-\frac{3}{2i}(z-\frac{1}{z})} \frac{1}{iz} dz = \frac{1}{4i} \frac{z^4 + 2z^2 + 1}{z^2(-\frac{3}{2i}z^2 + z + \frac{3}{2i})} dz$$

Note that

$$-\frac{3}{2i}z^2 + z + \frac{3}{2i} = 0 \qquad \Longrightarrow \qquad z = \frac{-i \pm 2\sqrt{2}}{-3}$$

Proposition 3.6.2 Let p(z), q(z) be polynomial with $\deg(p) \le \deg(q) - 2$, then for any arc C_R of $C_R(0)$, $\lim_{R \to \infty} \left| \int_{C_R} \frac{p(z)}{q(z)} dz \right| = 0$

This is because

$$\left| \int_{C_R} \frac{p(z)}{q(z)} \right| \sim R \cdot \frac{R^{\deg(p)}}{R^{\deg(q)}} = R \cdot R^{-2} = \frac{1}{R} \to \infty \quad \text{as} \ R \to \infty$$

Lemma 3.6.3 Let a > 0 a d deg $(q) \ge 1 + \text{deg}(p)$, let C_R be the upper half of $C_R(0)$, then

$$\lim_{R \to \infty} e^{iaz} \frac{p(z)}{q(z)} dz = 0$$

Proof: Parameterize C_R by Re^{it} with $t \in [0, \pi]$, now

$$\int_{C_R} e^{iaz} \frac{p(z)}{q(z)} dz = \int_0^{\pi} e^{iaRe^{it}} \cdot \frac{p(Re^{it})}{q(Re^{it})} \cdot Rie^{it} dt$$

Note that

$$\left|e^{iaRe^{it}}\right| = \left|e^{iaR(\cos(t)+i\sin(t))}\right| = e^{-aR\sin(t)}$$

Then for large enough *R*, exists $K \in R$ such that

$$\left|\frac{p(Re^{it})}{q(Re^{it})}\right| \le \frac{K}{R}$$

so that

$$\left| \int_{0}^{\pi} e^{iaRe^{it}} \cdot \frac{p(Re^{it})}{q(Re^{it})} \cdot Rie^{it} dt \right| \leq \int_{0}^{\pi} e^{-aR\sin(t)} \frac{K}{R} R dt = K \int_{0}^{\pi} e^{-aR\sin(t)} dt = 2K \int_{0}^{\frac{\pi}{2}} e^{-aR\sin(t)} dt$$

Since $\sin(t) \ge \frac{2t}{\pi}$ on $[0, \frac{\pi}{2}]$, then $e^{-R\sin(t)} \le e^{-aR\frac{2t}{\pi}}$, so

$$K \int_{0}^{\pi} e^{-aR\sin(t)} dt = 2K \int_{0}^{\frac{\pi}{2}} e^{-aR\sin(t)} dt \le K \int_{0}^{\pi} e^{-aR\sin(t)} dt = 2K \int_{0}^{\frac{\pi}{2}} e^{-aR\frac{2t}{\pi}} dt$$
$$= 2K \cdot \left(-\frac{\pi}{2aR}\right) (e^{-aR} - 1) \to \frac{\pi K}{aR} \to 0 \text{ as } R \to \infty$$

Remark 3.8

$$\int_{-\infty}^{\infty} \frac{p(z)}{q(z)} dz \quad \text{Need } \deg(q) \ge 2 + \deg(p)$$
$$\int_{-\infty}^{\infty} \cos(z) \frac{p(z)}{q(z)} dz \quad \text{Need } \deg(q) \ge 1 + \deg(p)$$

Lemma 3.6.4 — Jordan's Lemma.

Let *f* be meromorphic with a simple pole at z_0 , and Γ_r be parametrized by $r(t) = z_0 + re^{i\theta}$ with $\theta_1 < \theta < \theta_2$, then

$$\lim r \to 0^+ \int_{\Gamma_r} f(z) dz = i(\theta_2 - \theta_1) \operatorname{res}_{z_0}(f)$$

Proof:

$$f(z) = \frac{a_{-1}}{z - z_0} + \sum_{n=0}^{\infty} a_n (z - z_0)^n = \frac{a_{-1}}{z - z_0} + g(z)$$

where g is analytic so g is continuous then $\exists R$ such that for $0 < r \le R$, $\exists M > 0$ s.t. $|g(z)| \le M$, so that

$$\left|\int_{\Gamma_r} g(z)dz\right| \le M \cdot \operatorname{length}(\Gamma_r) = M \cdot (\theta_2 - \theta_1)r \to 0 \quad \text{as} \ r \to 0^+$$

Then

$$\int_{\Gamma_r} f(z)dz = \int_{\Gamma_r} \frac{a_{-1}}{z - z_0} dz + 0 = a_{-1} \int_{\theta_1}^{\theta_2} \frac{1}{re^{i\theta}} rie^{i\theta} d\theta = a_{-1} \int_{\theta_1}^{\theta_2} id\theta i \cdot res_z(f)$$

Example 3.42 Consider

$$\int_0^\infty \frac{x^{\frac{1}{3}}}{1+x^2} dx$$

Let $f(z) = \frac{z^{\frac{1}{3}}}{1+z^2}$ with branch cut along the positive real axis, then

$$\left| \int_{C_R} \frac{z^{\frac{1}{3}}}{1+z^2} dz \right| \sim \frac{R^{\frac{1}{3}}}{R^2} \sim R^{-\frac{2}{3}} \to 0 \text{ as } R \to \infty$$

Similarly,

$$\left| \int_{C_R} \frac{z^{\frac{1}{3}}}{1+z^2} dz \right| \sim \frac{r^{\frac{1}{3}}}{1} r \sim r^{\frac{4}{3}} \to 0 \text{ as } r \to 0^+$$

Let $\int_{\Gamma} f \to \int_0^{\infty} f(z) dz = I$, then

$$\int_{\Gamma_2} f(z)dz = \int_{\Gamma_2} \frac{z^{\frac{1}{3}}}{1+z^2}dz = \int_{\Gamma_1} \frac{(ze^{2\pi i})^{\frac{1}{3}}}{1+z^2}dz = I \cdot e^{\frac{2\pi i}{3}}$$

Let *f* has simple pole at $z = \pm i$ with residues, so that $res_z(f) = \frac{z^{\frac{1}{3}}}{2z}$, then

$$res_i(f) = -i\frac{\sqrt{3}}{4}$$
 $res_{-i}(f) = -\frac{1}{2}$

Then we have

$$\oint_{C_R+C_r+\Gamma_1-\Gamma_2} f = 2\pi i \left(\frac{1}{4} - i\frac{\sqrt{3}}{4} - \frac{1}{2}\right) = 0 + 0 + I - Ie^{\frac{2\pi i}{3}} = I\left(1 - e^{\frac{2\pi i}{3}}\right) \implies I = \frac{\pi i e^{-\frac{2\pi i}{3}}}{1 - e^{\frac{2\pi i}{3}}} = \frac{\pi}{\sqrt{3}}$$

■ Example 3.43

$$\mathbf{p.v.} \int_{-\infty}^{\infty} \frac{e^{ix}}{x} dx = \lim_{R \to \infty, r \to 0^+} \left(\int_{-R}^{-r} \frac{e^{ix}}{x} dx + \int_{r}^{R} \frac{e^{ix}}{x} dx \right)$$

then by Jordan's Lemma

$$\int_{C_r} \frac{e^{iz}}{z} dz = i(0-\pi) \operatorname{res}_0(f) = -\pi i$$

Let $\Gamma : [-R, R]$, then

$$\lim_{R \to \infty, r \to 0^+} \int_{\Gamma} f(z) dz = \oint_{C_R + C_r + \Gamma} f(z) - \int_{C_R} f(z) dz = \int_{C_r} f(z) dz$$

Remark 3.9

Two techniques, either:

1. convert everything to rectangular, clear denominator.

2. convert to a trig function

Example 3.44 Consider

$$I = \int_0^\infty \frac{1}{1+x^3} dx$$

we let $f(z) = \frac{\log(z)}{1+z^3}$, branch cut along the positive real axis., then

$$\int_{\Gamma_1} \frac{\log(z)}{1+z^3} dz = \int_r^R \frac{\ln(x)}{1+x^3} dx$$

and

$$\int_{\Gamma_2} \frac{\log(z)}{1+z^3} dz = \int_r^R \frac{\log(xe^{2\pi i})}{1+x^3} dx = \int_r^R \frac{\ln(x) + 2\pi i}{1+x^3} dx$$

then we have

$$\int_{\Gamma_1} f - \int_{\Gamma_2} f = \int_r^R \frac{\ln(x)}{1 + x^3} dx - \int_r^R \frac{\ln(x) + 2\pi i}{1 + x^3} = 2\pi i \cdot I$$

Remark 3.10 Let $f \neq 0$ be meromorphic on D and let Γ be a simple, positively oriented closed contour with Γ and its interior is in D. Consider $\frac{f'}{f}$ is meromorphic and its poles can only lie at poles and zeros of f. Let z_0 be an order-m zeros of f, then

$$f(z) = (z - z_0)^m g(z)$$
 $g(z_0) \neq 0$ g is analytic

Now we have

$$f'(z) = m(z - z_0)^{m-1}g(z) + (z - z_0)^m g'(z)$$

so that

$$\frac{f'(z)}{f(z)} = \frac{m(z-z_0)^{m-1}g(z) + (z-z_0)^m g'(z)}{(z-z_0)^m g(z)} = \frac{m}{z-z_0} + \frac{g'(z)}{g(z)}$$

Let z_0 be an order-m pole of f, then

$$f(z) = rac{h(z)}{(z-z_0)^n}$$
 $h(z_0) \neq 0$ h is analytic

so that

$$f' = \frac{-m(z-z_0)^{m-1}h(z) + (z-z_0)^m h'(z)}{(z-z_0)^{2m}} = -\frac{m}{z-z_0} + \frac{h'(z)}{h(z)}$$

Theorem 3.6.5 — The Argument Principle. Let f be meromorphic and inside a simple, close, positively oriented contour Γ . Let $N_0(f)$ be the number of zeros in Γ and $N_p(f)$ be the number of poles in Γ (both couted with multiplicity), then

$$\frac{1}{2\pi i} \int_{\Gamma} \frac{f'(z)}{f(z)} dz = N_0(f) - N_p(f)$$

Definition 3.6.4 — Curling Number.

Let Γ be a closed contour and let $z_0 \neq \Gamma$. The **curling number** of Γ about z_0 , denoted $n(\Gamma, z_0)$ is the unique integer *n* such that Γ is homeomorphic to

$$\underbrace{C_1(z_0) + C_1(z_0) + ... + C_1(z_0)}_{n \text{ in total}}$$

in $\mathbb{C} \setminus \{z_0\}$

Lemma 3.6.6 For $z_0 \in \Gamma$,

$$\oint_{\Gamma} \frac{1}{z - z_0} dz = 2\pi i \cdot n(\Gamma, z_0)$$

Proposition 3.6.7 Let $f(\Gamma)$ be which $\Gamma : \gamma(t) : [a,b] \to \Gamma$, then

$$\int_{\Gamma} \frac{1}{z - z_0} dz = \int_a^b \frac{1}{\gamma(t) - z_0} \gamma'(t) dt$$

so that

$$\int_{\Gamma} \frac{1}{f(z) - z_0} dz = \int_a^b \frac{1}{f(\gamma(t)) - z_0} f'(\gamma(t)) \gamma'(t) dt = \int_{f(\Gamma)} \frac{f'(z)}{f(z) - z_0} dz$$

This gives us that

$$\frac{1}{2\pi i} \int_{\Gamma} \frac{f'(z)}{f(z) - z_0} dz = n(f(\Gamma), z_0)$$

Moreover, for $z_0 = 0$ we have that

$$\frac{1}{2\pi i} \int_{\Gamma} \frac{f'(z)}{f(z) - z_0} dz = n(f(\Gamma), z_0)$$

Example 3.45 Note that

$$\frac{d}{dz}log(f(z)) = \frac{f'(z)}{f(z)}$$

then

$$\oint_{\Gamma_{i\theta}} \frac{f'(z)}{f(z)} dz = [log(f(z))]_{z_0}^{z_1} = 2\pi i \cdot n(f(\Gamma), 0)$$

Let $f = re^{i\theta}$ we have

$$log(f(z)) = +i\theta$$

Theorem 3.6.8 — The Dog-walking Theorem. Let Γ_1, Γ_2 be parametrized by $\gamma_1, \gamma_2 : [a,b] \to \mathbb{C}$ and $\forall t \in [a,b]$ with $|\gamma_1(t) - \gamma_2(t)| < |\gamma_1(t)|$. Then $n(\Gamma_1, 0) = n(\Gamma_2, 0)$ **Proof:** NOte that $\gamma_1, \gamma_2 \neq 0$, consider $\Gamma : \gamma(t) = \frac{\gamma_2(t)}{\gamma_1(t)}$, then

$$|1 - \gamma(t)| = \left|1 - \frac{\gamma_2(t)}{\gamma_1(t)}\right| = \left|\frac{\gamma_1(t) - \gamma_2(t)}{\gamma_1(t)}\right| < 1$$

so Γ lies in $D_1(1)$ so $n(\Gamma, 0) = 0$. Let $\gamma_1 = r_1 e^{i\theta_1}$ and $\gamma_2 = r_1 e^{i\theta_2}$ where $r_1, r_2, \theta_1, \theta_2$ are functions of t, then

$$\gamma = \frac{\gamma_2}{\gamma_1} = \frac{r_2}{r_1 e^{i(\theta_1 - \theta_2)}}$$

and

$$n(\Gamma_1, 0) = \theta_1(b) - \theta_1(a)$$
 and $n(\Gamma_2, 0) = \theta_2(b) - \theta_2(a)$

so that

$$0 = n(\Gamma, 0) = \theta_2(b) - \theta_2(a) - (\theta_1(b) - \theta_1(a)) = n(\Gamma_2, 0) - n(\Gamma_1, 0)$$

which is $n(\Gamma_2, 0) = n(\Gamma_1, 0)$

Theorem 3.6.9 — The Generalized Dog-walking Theorem. Let Γ_1, Γ_2 be parametrized by $\gamma_1, \gamma_2 : [a,b] \to \mathbb{C}$ and $\forall t \in [a,b]$ with

$$|\gamma_1(t) - \gamma_2(t)| < |\gamma_1(t)| + |\gamma_2(t)|$$

then $n(\Gamma_2, 0) = n(\Gamma_1, 0)$

Proof: Let $\gamma(t) = \frac{\gamma_1(t)}{\gamma_2(t)}$, assume for contradiction that exist c > 0 abd $t \in [a, b]$ such that $\gamma(t) = -c$. Then $\gamma_1(t) = -c\gamma_2(t)$, so that

$$|\gamma_1(t) - \gamma_2(t)| = |(-c-1)\gamma_2(t)| = (c+1)|\gamma_2(t)|$$

but $|\gamma_2(t)| + |\gamma_1(t)| = |\gamma_2(t)| + |-c\gamma_2(t)| = (1+c)|\gamma_2(t)|$, which contradicts the **Dog-walking Theorem**, so there is no such *c* exists. Then $\Gamma : \gamma(t)$ lies in the $\mathbb{C} \setminus \mathbb{R}_{\leq 0}$, so $n(\Gamma, 0) = 0$, that is $n(\Gamma_2, 0) = n(\Gamma_1, 0)$.

Theorem 3.6.10 — Rouche's Theorem.

Let f, g be analytic on and inside a simple closed contour Γ . Let |g(z)| < |f(z)| for all $z \in \Gamma$, then f + g and f have the same number of zeros (connted with multiplicity inside)

Proof: Let h = f + g then

$$|h(z) + (-f(z))| = |g(z)| < |-f(z)|$$

on Γ . Then

 $n(h(\Gamma), 0) = n(f(\gamma), 0)$ that is $N_0(h) = N_0(f)$

• Example 3.46 All 5 zeros of $h(z) = z^5 + 3z + 1$ lie inside |z| < 2. Let $f(z) = z^5$ and g(z) = 3z + 1 on $C_2(0)$, so |f(z)| = 32 and |g(z)| = 7 < |f(z)|, so by **Rouche's Theorem** *h* and *f* have same number of zeros inside $C_2(0)$

• **Example 3.47** How many zeros does $z + 3 + 2e^z$ have in the left half-plane $\operatorname{Re}(z) < 0$? Let Γ_R be the contour as "D" reflect by y-axis. Let f(z) = z + 3 and $g(z) = 2e^z$, so $|g(z)| = 2e^{\operatorname{Re}(z)}$ so $|g(z)| \le 2$ on Γ_R for all R and

$$|f(z)| \ge \begin{cases} |3+iy| & z=iy \\ R-3 & |z|=R \end{cases} \ge \begin{cases} 3 & z=iy \\ R-3 & |z|=R \end{cases}$$

so for all R > 5 we have |f(z)| > |g(z)| on Γ_R , then f has the same number of zeros inside Γ_R as $z + 3 + 2e^z$, f(z) = z + 3 has one zero inside Γ_R namely -3, so $z + 3 + 2e^z$ has exactly one zero in the left half-plane.

Definition 3.6.5

A point *z* is a **limit point** of a set if there exists a sequence $\{z_n\} \subseteq S$ with $z_n \neq z$ but $\lim_{n \to \infty} z_n = z$

Theorem 3.6.11 Let *f* be holomorphic on a domain *D*, let $Z \subseteq D$ be the set of zeros of *D* if *Z* has a limit point in *D*, *f* is identically zero on *D*

Proof: Let z_0 be the limit of $\{w_n\} \subseteq Z$ and $z_0 \neq w_n$ for all n, conside $D_{\varepsilon}(z_0)$ for some sufficiently small $\varepsilon > 0$, that is

$$f(z) = \sum_{n=0}^{\infty} z_n (z - z_0)^n$$

on $D_{\varepsilon}(z_0)$. If f is not identically 0 on $D_{\varepsilon}(z_0)$, then there exists a minimal $m \ge 0$ such that $a_m \ne 0$, write

$$f(z) = a_m(z - z_0)^m (1 + g(z - z_0))$$

where $g(z-z_0) \to 0$ as $z \to z_0$. Let k be sufficiently large that $w_k \in D_{\varepsilon}(z_0)$, $w_k \in D_{\varepsilon}(z_0)$ for all $K \ge k$. Now $f(w_k) = 0$ but

$$0 = f(w_k) = a_m(w_k - z_0)^n (1 + g(w_k - z_0))$$

and $a_m \neq 0$, $(w_k - z_0)^n \neq 0$ and $g(w_k - z_0) \to 0$ as w_{k0} as $k \to \infty$. so for large enough k, $|g(w_k - z_0)| < 1$, so $1 + g(w_k - z_0) \neq 0$, which is a contradiction, so f = 0 on $D_{\mathcal{E}}(z_0)$. Let U be the interior of Z, we just showed that U is non-empty, U is open by definition, let $\{z_n\} \subseteq U$ converging $z_n \to z$, f is continuous so f(z) = 0, by earlier argument, $z \in U$. Then U is closed, so $V = D \setminus U$ is open we have $D = U \cup V$ and $U \cap V, U, V$ are open and D is connected, so one of U, V is empty. U is non-empty, so $V = \emptyset$ so U = D, then f is 0 on D

Corollary 3.6.12 Let f, g analytic on D and f(z) = g(z) on $S \subseteq D$ where S has limit point in D, then f(z) = g(z) on D

Proof: apply the above theorem to f - g.

Corollary 3.6.13 Let f be analytic and non-constant on a domain D and let $z_0 \in D$, $f(z_0) = w_0$, then there exist $\varepsilon > 0$ such that $\overline{D_{\varepsilon}(z_0)} \subseteq D$ and $f(z) - w_0$ has zero in $\overline{D_{\varepsilon}(z_0)} \setminus \{z_0\}$

Proof: Let $f(z) - w_0$ is a non-constant analytic function, so its zero cannot have a limit point, done.

Theorem 3.6.14 — Open Mapping Theorem.

If f is holomorphic on a domain D, then f is a open map on D (map open set to to open set)

Proof: It suffices to show f(D) is open. Let $z_0 \in D$ and $f(z_0) = w_0$, let $w \in \mathbb{C}$ and

$$g(z) = f(z) - w = f(z) - w_0 + w_0 - w$$

Choose $\delta > 0$ such that $D_{\delta}(z_0) \subseteq D$ and such that $f(z) \neq w_0$ on the circle $|z - z_0| = \delta$ which exists by the previous corollary. Now we choose $\varepsilon > 0$ such that $|f(z) - w_0| \ge \varepsilon$ on $|z - z_0| = \delta$, so for all $w \in D_{\varepsilon}(w_0)$ we have $|f(z) - w_0| \ge \varepsilon > |w - w_0|$ on the circle $|z - z_0| = \delta$, so by **Rouche's Theorem** *g* and $f(z) - w_0$ have the same number of zeros in $D_{\delta}(z_0)$, namely one. Then $\exists z \in D_{\delta} \subseteq D$, $g(z) = 0 = f(z) - w \Longrightarrow f(z) = w \Longrightarrow w \in f(D)$, then $D_{\varepsilon}(w_0) \subseteq f(D)$

Example 3.48 Let f be analytic on a domain D and Re(f(z)) is constant, then f is constant, Re(f(z)) = K contains no open set, so f must be constant by the contrapositive of open mapping theorem.

Definition 3.6.6 — Gamma Function.

The **gamma function** is defined for s > 0 in \mathbb{R} by

$$\Gamma(s) = \int_0^\infty e^{-t} t^{s-1} dt$$

Lemma 3.6.15 Γ extends to an analytic function on Re(s) > 0 and

$$\Gamma(s) = \int_0^\infty e^{-t} t^{s-1} dt$$

still holds there

Proof: It suffices to show lemma on

$$S = \{ z \in \mathbb{C} : \delta < \operatorname{Re}(s) < M \}$$

for any $0 < \delta < M < \infty$. Let $\operatorname{Re}(s) = \sigma$, now

$$\int_0^\infty e^{-t} t^{s-1} dt = \lim_{\varepsilon > 0} \int_\varepsilon^{\frac{1}{\varepsilon}} e^{-t} t^{s-1} dt$$

Consider

$$F_{\varepsilon}(s) = \int_{\varepsilon}^{\frac{1}{\varepsilon}} e^{-t} t^{s-1} dt$$

Note that $F_{\varepsilon}(s)$ is analytic with

$$F_{\varepsilon}'(s) = \int_{\varepsilon}^{\frac{1}{\varepsilon}} e^{-t} (s-1) t^{s-2} dt$$

Recall that the limit of a uniformly convergent sequence of analytic function is analytic. Consider

$$|\Gamma(s) - F_{\varepsilon}(s)| = \left| \int_{0}^{\infty} e^{-t} t^{s-1} dt - \int_{\varepsilon}^{\frac{1}{\varepsilon}} e^{-t} t^{s-1} dt \right|$$
$$= \left| \int_{0}^{\varepsilon} e^{-t} t^{s-1} dt + \int_{\frac{1}{\varepsilon}}^{\infty} e^{-t} t^{s-1} dt \right|$$
$$\leq \int_{0}^{\varepsilon} e^{-t} t^{\sigma-1} dt + \int_{\frac{1}{\varepsilon}}^{\infty} e^{-t} t^{\sigma-1} dt$$

Now for $\varepsilon < 1$:

$$\left|\int_0^{\varepsilon} e^{-t} t^{\sigma-1} dt\right| \leq \varepsilon \cdot \frac{1}{\delta} \cdot \varepsilon^{\delta-1} = \frac{\varepsilon^{\delta}}{\delta}$$

Similarly we have

$$\left|\int_{\frac{1}{\varepsilon}}^{\infty} e^{-t} t^{\sigma-1} dt\right| \leq \int_{\frac{1}{\varepsilon}}^{\infty} e^{-t} t^{M-1} dt \to 0$$

as $\frac{1}{\varepsilon} \to 0$. Then $F_{\varepsilon}(s) \to \Gamma(s)$ uniformly, so Γ is analytic on S so Γ is analytic on $\operatorname{Re}(s) > 0$

Proposition 3.6.16 Let $n \in \mathbb{Z}_{\geq 0}$, then $\Gamma(n+1) = n!$

Lemma 3.6.17 For 0 < Re(a) < 1, then

$$\int_0^\infty \frac{v^{a-1}}{1+v} dv = \frac{\pi}{\sin(\pi a)}$$

Proof: Let $v = e^x$, then

$$\int_0^\infty \frac{v^{a-1}}{1+v} dv = \int_{-\infty}^\infty \frac{e^{(a-1)x}}{1+e^x} dx = \int_{-\infty}^\infty \frac{e^{ax}}{1+e^x} dx$$

Let $f(z) = \frac{e^{az}}{1+e^z}$ and integrate over a region. That is

$$\begin{split} \left| \int_{\Gamma_2} f(z) dz \right| &= \left| \int_0^{2\pi} \frac{e^{a(R+it)}}{1+e^{R+it}} dt \right| \le C \cdot \frac{e^{aR}}{e^R} \sim C e^{(a-1)R} \to 0 \text{ as } R \to \infty \\ \left| \int_{\Gamma_4} f(z) dz \right| \le C e^{-aR} \to 0 \text{ as } R \to \infty \\ \int_{\Gamma_1} f(z) dz = \int_{-R}^R \frac{e^{ax}}{1+e^x} dx \\ \int_{\Gamma_3} f(z) dz = -e^{2\pi ia} \int_{-R}^R \frac{e^{ax}}{1+e^x} dx \end{split}$$

Note that *f* has a pole at $z = \pi i$, then

$$\lim_{z \to \pi i} (z - \pi i) f(z) = \lim_{z \to \pi i} (z - \pi i) \frac{e^{az}}{1 + e^z} = \lim_{z \to \pi i} e^{az} \left(\frac{z - \pi i}{e^z - e^{\pi i}} \right)$$
$$= e^{a\pi i} \left(\lim_{z \to \pi i} \frac{e^z - e^{\pi i}}{z - \pi i} \right)^{-1}$$
$$= e^{a\pi i} \cdot (e^{\pi i})^{-1}$$
$$= -e^{a\pi i}$$
$$= \operatorname{res}_{\pi i}(f)$$

Then we have

$$\int_{\Gamma} f(z) dz = 2\pi i (-e^{a\pi i}) = (1 - e^{2\pi i a}) = I$$

so that

$$I = -2\pi i \frac{e^{a\pi i}}{1 - e^{2\pi i}} = \frac{\pi}{\sin(\pi a)}$$

Theorem 3.6.18

$$\Gamma(s)\Gamma(1-s) = \frac{\pi}{\sin(\pi s)}$$

Proof: IT suffices to show this on 0 < Re(s) < 1:

$$\Gamma(1-s) = \int_0^\infty e^{-u} u^{(1-s)-1} du = \int_0^\infty e^{-u} u^{-s} du$$

Let u = vt, v > 0, then

$$\Gamma(1-s) = t \int_0^\infty e^{-vt} (vt)^{-s} dv$$

This give us

$$\Gamma(s)\Gamma(1-s) = \int_0^\infty e^{-t} t^{s-1} \left(\int_0^\infty t e^{-vt} (vt)^{-s} dv \right) dt = \int_0^\infty \int_0^\infty e^{-t(v+1)} v^{-s} dv dt = \int_0^\infty \frac{v^{-s}}{v+1} dv$$

By the lemma from above we have

$$\Gamma(s)\Gamma(1-s) = \int_0^\infty \frac{v^{-s}}{v+1} dv = \frac{\pi}{\sin(\pi s)}$$

Definition 3.6.7 — Riemann Zeta Function.

For real s > 1 as

$$\zeta(s) = \sum_{i=1}^{\infty} \frac{1}{n^s}$$

so ζ immediately has an analytic continuation to $\operatorname{Re}(s) > 1$ and the formula

$$\zeta(s) = \sum_{i=1}^{\infty} \frac{1}{n^s}$$

is still valid. If $s = \sigma + it$ for $\sigma, t \in \mathbb{R}$, if $\sigma > 1 + > 1$, then

$$\left|\sum_{i=1}^{\infty} \frac{1}{n^{s}}\right| \le \sum_{i=1}^{\infty} \left|\frac{1}{n^{s}}\right| = \sum_{i=1}^{\infty} \left|\frac{1}{e^{s\log(n)}}\right| = \sum_{i=1}^{\infty} \frac{1}{e^{\sigma\log(n)}} = \sum_{i=1}^{\infty} \frac{1}{n^{\sigma}} \le \sum_{i=1}^{\infty} \frac{1}{n^{1+\delta}}$$

then $\zeta(s)$ is analytic on Re(s) > 1. Consider the Euler product:

$$\prod_{\mathbf{p} \text{ price}} \frac{1}{1 - p^s}$$

for $\operatorname{Re}(s) > 1$, then we see that

.

$$\frac{1}{1-p^{-s}} = \left(1 + \frac{1}{p^s} + \frac{1}{p^{2s}} + \dots\right) = \sum_{i=1}^{\infty} \frac{1}{p^{ns}}$$

then

$$\prod_{s} \frac{1}{1 - p^{-s}} = \left(1 + \frac{1}{2^{s}} + \frac{1}{4^{s}} + \frac{1}{8^{s}}\right) \left(1 + \frac{1}{3^{s}} + \frac{1}{9^{s}} + \dots\right) \left(1 + \frac{1}{5^{s}} + \frac{1}{25^{s}} + \dots\right)$$

but we have unique factorization of positive integers:

formula above
$$= \sum_{j_1, j_2, \dots} \left(\frac{1}{2^{j_1} 3^{j_2} 5^{j_3} \dots} \right)^s = \sum_{i=1}^{\infty} \frac{1}{n^s} = \zeta(s)$$

Theorem 3.6.19 $\zeta(s) - \frac{1}{s-1}$ has an analytic continuation to $\operatorname{Re}(s) > 0$. Then $\zeta(s)$ is reremorphic on $\operatorname{Re}(s) > 0$ with a simple pole of residu 1 at s = 1

Proof: Consider

$$\sum_{1 \le n \le N} \frac{1}{n^s} - \int_1^n \frac{1}{x^s} ds$$

Let

$$n_n(s) = \int_n^{n+1} \frac{1}{n^s} - \frac{1}{x^s} ds$$

By the mean value theorem

$$\left|\frac{1}{n^s} - \frac{1}{x^s}\right| \le \frac{|s|}{n^{\sigma+1}}$$

on $n \le x \le n+1$. Then we have uniform convergence of $_n(s)$ on $1 + \sigma > 1 \iff \text{Re}(s) > 0$. Then

$$\sum_{i=1}^{\infty} \delta_n(s)$$

is analyticiction on $\operatorname{Re}(s) > 0$. Now

$$\sum_{1 \le n \le N} \frac{1}{n^s} = \sum_{n=1}^N \delta_n(s) + \int_1^N \frac{1}{x^s} ds$$

Now

$$\lim_{N \to \infty} \int_{1}^{N} \frac{1}{x^{s}} dx = \int_{1}^{\infty} \frac{1}{x^{s}} dx = \left[\frac{1}{1-s} x^{1-s} \right]_{0}^{\infty}$$

on $\operatorname{Re}(s) > 1$, this $= \frac{1}{s-1}$. Thus,

$$\sum_{i=1}^{N} {}_n(s) + \int_1^N \frac{1}{x^s} ds$$

converges uniformly and matches $\zeta(s)$ on $\operatorname{Re}(s) > 1$, so

$$\zeta(s) - \frac{1}{s-1} = \sum_{i=1}^{\infty} {}_n(s)$$

is analytic on $\operatorname{Re}(s) > 0$

Theorem 3.6.20 $\zeta(s)$ has no zeros on the line Re(s) = 1

Proof: Let $x, y \in \mathbb{R}$, $y \neq 0$ and define

$$h(x) = \zeta^3(x)\zeta^4(x+iy)\zeta(x+2yi)$$

Now

$$\zeta(s) = \prod_{s} \frac{1}{1 - p^{-s}}$$

so

$$\ln|\zeta(s)| = \ln\prod_{p} \left| \frac{1}{1 - p^{-s}} \right| = -\sum_{p} \ln|1 - p^{-s}| = -\operatorname{Re}\sum_{p} \log(1 - p^{-s})$$

Now

$$-\log(1-w) = \sum_{i=1}^{\infty} \frac{w^n}{n}$$

$$\ln|\zeta(s)| = \operatorname{Re}\sum_{p}\sum_{n}\frac{1}{n}p^{-st}$$

and then

for |w| < 1, so

$$\ln |h(x)| = 3\ln |\zeta(x)| + 4\ln |\zeta(x+iy)| + \ln |\zeta(x+2iy)|$$

= $3\operatorname{Re}\sum_{p}\sum_{p}\frac{1}{n}p^{-nx} + 4\operatorname{Re}\sum_{p}\sum_{n}\frac{1}{n}p^{-ns-iny} + \operatorname{Re}\sum_{p}\sum_{n}\frac{1}{n}p^{-nx-2iny}$
= $\sum_{p}\sum_{n}\frac{1}{n}p^{-nx}\operatorname{Re}\left(3+4p^{-iny}+p^{-2iny}\right)$

Note that

$$p^{-iny} = e^{nyi\ln(p)}$$
 has $\operatorname{Re}(p^{iny}) = \cos(-ny\ln(p))$

and

$$\operatorname{Re}(p^{-2iny}) = \cos(-2ny\ln(p))$$

so that

$$\operatorname{Re}\left(3+4p^{-iny}+p^{-2iny}\right) = 3+4\cos(-ny\ln(p))+\cos(-2ny\ln(p))$$

Let $\theta = -ny \ln(p)$, so this is

Re
$$(3+4p^{-iny}+p^{-2iny}) = 3+4\cos\theta + \cos 2\theta = 2(1+\cos\theta)^2 \ge 0$$

Then we have $\ln |h(x)| \ge 0$, so $|h(x)| \ge 1$ we have

$$\frac{|h(x)|}{x-1} = |(x-1)\zeta(x)|^3 \left| \frac{\zeta(x+iy)}{x-1} \right|^4 |\zeta(x+2iy)| \ge \frac{1}{x-1}$$

As $x \to 1^+$ we have $|\zeta(x+2iy)| \to |\zeta(1+2iy)|$

$$\lim_{x \to 1} |(x-1)\zeta(x)| = 1$$

if $\zeta(1+iy) = 0$, but

$$\lim_{x \to 1^+} \frac{\zeta(x + iy)}{x - 1} = \zeta'(1 + iy)$$

so $\lim_{x\to 1^+} \frac{|h(x)|}{x-1}$ converges to some finite value. but this is $\geq \frac{1}{x-1}$ and $\lim_{x\to 1^+} \frac{1}{x-1} = \infty$, this is contradiction so $\zeta(1+iy) \neq 0$