PMATH 450 WINTER 2021

Lebesgue Integration and Fourier Analysis

Instructor: Blake Madill

Lecture Notes

by Justin Li

Contents

1	Outer Measure	5
1.1	Borel Sets	5
1.2	Outer Measure 1	6
1.3	Outer Measure 2	7
1.4	Properties	8
2	Lebesgue Measure	10
2.1	Measurable Sets	10
2.2	Countable Additivity	12
2.3	Borel Implies Measurable	13
2.4	Properties	14
2.5	Non-Measurable Set	18
2.6	Cantor-Lebesgue Function	19
2.7	Non-Borel Set	21
3	Measurable Functions	23
3.1	Measurable Functions	23
3.2	Simple Approximation	27

4	Littlewood Principles	
4.1	Littlewood Principle I	29
4.2	Littlewood Principle III	30
4.3	Littlewood Principle II	31
5	Integration	
5.1	Integration I	34
5.2	Integration II	36
5.3	Bounded Convergence Theorem	38
5.4	Integration III	40
5.5	Fatou's Lemma and MCT	42
5.6	Integration IV	44
5.7	Riemann Integration	46
5.8	Riemann Integral VS Lebesgue Integral	47
6	L^p Spaces	51
6.1	L^p Spaces	51
6.2	Completeness	56
6.3	Separability	56
7	Hilbert Spaces	
7.1	Hilbert Spaces	59
7.2	Orthogonality	61
7.3	Big Theorems	63
7.4	Appendix	65
8	Fourier Analysis	
8.1	Fourier Series	67
8.2	Fourier Coefficients	69
8.3	Vector-Valued Integration	71
8.4	Summability Kernels	72
8.5	Dirichlet Kernel	74
8.6	Fejer Kernel	75
8.7	Fejer's Theorem	77

4	4			
9	Homogeneous Banach Spaces	80		
9.1	Homogeneous Banach Spaces	80		
9.2	Additional Materials	81		

1.1 Borel Sets

Definition 1.1.1 — σ -algebra.

Let X be a set, we call $Q \subseteq \mathcal{P}(X)$ a σ -algebra of the subset X if

$$\begin{array}{l} (1) \ \emptyset \in Q \\ (2) \ A \in Q \Longrightarrow X \setminus A \in Q \\ (3) \ A_1, A_2, \ldots \in Q \Longrightarrow \bigcup_{i=1}^{\infty} A_i \in Q \end{array}$$

Remark 1.1 For $Q \in \mathcal{P}(X)$ is a σ -algebra:

1. $X \in Q$ and $X \setminus \emptyset = X \in Q$ 2. $A, B \in Q \Longrightarrow A \cup B \in Q$ by using $A \cup B = A \cup B \cup \emptyset \cup \emptyset \dots \in Q$ 3. $A_1, A_2, \dots \in Q \Longrightarrow \bigcap_{i=1}^{\infty} A_i \in Q$ by using $\bigcap_{i=1}^{\infty} A_i = X \setminus \left(\bigcup_{i=1}^{\infty} X \setminus A_i\right)$ 4. $A, B \in Q \Longrightarrow A \cap B \in Q$

- **Example 1.1** $\{\emptyset, X\}$ is the smallest σ -algebra where given a set X
- **Example 1.2** Q = P(X) is a σ -algebra

Example 1.3 $Q = \{A \subseteq \mathbb{R} : A \text{ is open}\}$ is not a σ -algebra. We take $A = (0,1) \in Q$ but $\mathbb{R} \setminus A = (-\infty, 0] \cup [1, \infty) \notin Q$

• Example 1.4 $Q = \{A \subseteq \mathbb{R} : A \text{ is open or closed}\}$ is not a σ -algebra. $\mathbb{Q} = \bigcup_{q \in \mathbb{Q}} \{q\} \notin Q$ because \mathbb{Q} is neither open or closed set.

Proposition 1.1.1

Let X be a set, $C \subseteq \mathcal{P}(X)$, then $Q \coloneqq \bigcap \{B : B \text{ is a } \sigma\text{-algebra}, C \subseteq B\}$ is a $\sigma\text{-algebra}$, and it's also the smallest $\sigma\text{-algebra}$ containing C

Definition 1.1.2 — Borel Set.

The elements of $Q = \bigcap \{B : C \subseteq B, B \text{ is } \sigma\text{-algebra}\}$ (Borel $\sigma\text{-algebra}$) are called Borel sets where $C = \{A \subseteq \mathbb{R} : A \text{ is open}\}$

Remark 1.2

- 1. Open set \Longrightarrow Borel set
- 2. Closed set \Longrightarrow Borel set
- 3. Countable set \Longrightarrow Borel set i.e. $\{X_1,\} = \bigcup_{i=1}^{\infty} X_i \Longrightarrow$ Borel set 4. $[a,b] = [a,b] \setminus \{b\} = \underbrace{[a,b]}_{\text{closed}} \cap \underbrace{(\mathbb{R} \setminus \{b\}}_{\text{open})} \Longrightarrow$ Borel set

1.2 Outer Measure 1

Definition 1.2.1 — Measure. (on \mathbb{R}) A function $m : \mathcal{P}(\mathbb{R}) \longrightarrow [0, \infty) \cup \{\infty\}$ called a **measure** if:

(1) m(a,b) = m([a,b]) = m((a,b]) = b - a(2) $m(A \cup B) \le m(A) + m(B)$ (3) $A \cap B = \emptyset \Longrightarrow m(A \cup B) = m(A) + m(B)$

Definition 1.2.2 — (Lebegue) Outer Measure.

Outer Measure is a function $m^* : \mathcal{P}(\mathbb{R}) \Longrightarrow [0, \infty) \cup \{\infty\}$ where

$$m^*(A) = \inf \left\{ \sum_{i=1}^{\infty} \ell(I_i) : A \subseteq \bigcup_{i=1}^{\infty} I_i \text{ where } I_i \text{ is bounded, open interval} \right\}$$

• $\ell(I_i)$ is the length of the interval I_i

Example 1.5 For $\varepsilon > 0$, $\emptyset \subseteq (0, \varepsilon) \Longrightarrow m^*(\emptyset) \le \ell(0, \varepsilon) = \varepsilon$ and $m^*(\emptyset) \ge 0 \Longrightarrow m^*(\emptyset) = 0$

Example 1.6 $m^*(A) = 0$ where $A = \{X_1, X_2, \dots\}$ Note that $A \subseteq \bigcup_{i=1}^{\infty} \left(X_i - \frac{\varepsilon}{2^{i+1}}, X_i + \frac{\varepsilon}{2^{i+1}} \right)$ for $\varepsilon > 0$, then Proof:

$$m^*(A) \le \sum_{i=1}^{\infty} \frac{\varepsilon}{2^i} = \frac{\varepsilon}{2} \cdot \sum_{i=1}^{\infty} \frac{1}{2^{i-1}} = \frac{\varepsilon}{2} \cdot \left\{ \frac{1}{1 - \frac{1}{2}} \right\} = \varepsilon$$

Since $\varepsilon > 0$ is arbitrary, so we have $m^*(A) = 0$ as desired.

1.3 **Outer Measure 2**

Proposition 1.3.1 If $A \subseteq B$, then $m^*(A) \leq m^*(B)$

Lemma 1.3.2 If $a, b \in \mathbb{R}$ with $a \leq b$, then $m^*([a, b]) = b - a$

Proof. Let $\varepsilon > 0$ be given, since $[a, b] \subseteq (a - \frac{\varepsilon}{2}, b + \frac{\varepsilon}{2})$, we have $m^*([a, b]) \leq b - a + \varepsilon$. Since $\varepsilon > 0$ is arbitrary, so by definition of outer measure we have $m^*([a, b]) \leq b - a$. Let I_i $(i \in \mathbb{N})$ be bounded open interval s.t. $[a, b] \subseteq \bigcup_{i=1} I_i$. Note that [a, b] is compact, so $\exists n \in \mathbb{N}$ s.t.

$$[a,b] \subseteq \bigcup_{i=1} I_i$$
. Then we have

$$b - a \le \sum_{i=1}^{n} \ell(I_i) \le \sum_{i=1}^{\infty} \ell(I_i) \implies m^*([a, b]) \ge b - a$$

so we have $b - a \le m^*([a, b]) \le b - a$, this gives us $m^*([a, b]) = b - a$

Proposition 1.3.3 If *I* is an interval, then $m^*(I) = \ell(I)$

Proof. When I is bounded with endpoints where $a \leq b$, so for $\varepsilon > 0, I \subseteq [a, b] \Longrightarrow m^*(I) \leq b-a$ and $[a + \frac{\varepsilon}{2}, b - \frac{\varepsilon}{2}] \subseteq I \Longrightarrow b - a - \varepsilon \leq m^*(I)$ By definition of outer measure we have $b - a \leq m^*(I)$. Then we have $m^*(I) + b - a = \ell(I)$ as desired

When I is unbounded, $\forall n \in \mathbb{N}, \exists I_n \subseteq I$ such that $\ell(I_n) = n$. This gives us that $m^*(I) \ge m^*(I_n) = n$, then $m^*(I) = \infty = \ell(I)$ as desired.

Hence, we have $m^*(I) = \ell(I)$, which completes the proof.

1.4 Properties

Proposition 1.4.1 — Outer Measure is Translation Invariant. i.e. $m^*(x + A) = m^*(A)$

$$m^*(x+A) = \inf\left\{\sum \ell(I_i): x+A \subseteq \bigcup_{i=1}^{\infty} I_i\right\} = \inf\left\{\sum \ell(I_i): A \subseteq \bigcup_{i=1}^{\infty} (I_i-x)\right\}$$
$$= \inf\left\{\sum \underbrace{\ell(I_i-x)}_{J_i}: A \subseteq \bigcup_{i=1}^{\infty} (I_i-x)\right\}$$
$$= \inf\left\{\sum \ell(J_i): A \subseteq \bigcup_{i=1}^{\infty} J_i\right\}$$
$$= m^*(A)$$

Proposition 1.4.2 — Outer Measure has Countably Subadditivity. That means if $A_i \subseteq \mathbb{R}$, then $m^*\left(\bigcup_{i=1}^{\infty} A_i\right) \leq \sum_{i=1}^{\infty} m^*(A_i)$

Proof. **WLOG**, we assume $m^*(A_i) < \infty$. Let $\varepsilon > 0$ be given and fix $i \in \mathbb{N}$. Then there exists open bounded intervals $I_{i,j}$ s.t. $A \subseteq \bigcup_{j=1}^{\infty} I_{i,j}$ and $\sum_{i=1}^{\infty} \ell(I_{i,j}) \leq m^*(A_i) + \frac{\varepsilon}{2^i}$. We can see that $\bigcup_{i=1}^{\infty} A_i \subseteq \bigcup_{i,j}^{\infty} I_{i,j}$ and so

$$m^*\left(\bigcup_{i=1}^{\infty} A_i\right) \le \sum_{i,j} \ell(I_{i,j}) = \sum_{i=1}^{\infty} \sum_{j=1}^{\infty} \ell(I_{i,j}) \le \sum_{i=1}^{\infty} \left(m^*(A_i) + \frac{\varepsilon}{2}\right) = \sum_{i=1}^{\infty} m^*(A_i) + \varepsilon$$

Since $\varepsilon > 0$ is arbitrary, so we have $m^*\left(\bigcup_{i=1}^{\infty} A_i\right) \le \sum_{i=1}^{\infty} m^*(A_i)$ as desired.

Corollary 1.4.3 — Outer Measure has Finitely Subadditivity. If $A_1, A_2, \dots, A_n \subseteq \mathcal{P}(\mathbb{R})$, then

$$m^*(A_1 \cup \ldots \cup A_n) \le m^*(A_1) + \ldots + m^*(A_n)$$

1.4 Properties

Exercise 1.4.1

Prove that if $A \subseteq \mathbb{R}$ has positive outer measure, then there exists a bounded subset of A which also has positive outer measure.

Solution: For sake of contradiction, we suppose every bounded subset of A has 0 outer measure. Since $A \subseteq \mathbb{R}$ has positive outer measure, so we say $m^*(A) > 0$. Now we construct a sequence of bounded subset of A. Consider $A_i = A \cap [n, n+1]$ for all $n \in \mathbb{Z}$, then we have $A = \bigcup_{i \in \mathbb{Z}} A_i$. Then we have

$$0 < m^*(A) = m^*\left(\bigcup_{i \in \mathbb{Z}} A_i\right) \le \sum_{i \in \mathbb{Z}} m^*(A_i) = \sum_{i \in \mathbb{Z}} 0 = 0$$

That gives 0 < 0, which is a **contradiction!** Hence, there exists a bounded subset of A has positive outer measure, which completes the proof.

2.1 Measurable Sets

Goal: Restrict the domain of m^* to only include sets s.t. whenever $A \cap B = \emptyset$ we have

$$m^*(A \cup B) = m^*(A) + m^*(B)$$

Definition 2.1.1 — Measurable Set.

We say a set $A \subseteq \mathbb{R}$ is **measurable** if $\forall X \subseteq \mathbb{R}$, $m^*(X) = m^*(X \cap A) + m^*(X \setminus A)$

- **Remark 2.1** Since $X = (X \cap A) \cup (X \setminus A)$, so we always have $m^*(X) \leq m^*(X \cap A) + m^*(X \setminus A)$
- **Remark 2.2** If $A \subseteq \mathbb{R}$ is measurable and $B \subseteq \mathbb{R}$ with $A \cap B = \emptyset$, then

$$m^*(\underbrace{A \cup B}_X) = m^*(X \cap A) + m^*(X \setminus A) = m^*(A) + m^*(B)$$

Goal: Show a lot of sets are measurable

Proposition 2.1.1 If $m^*(A) = 0$, then A is measurable

Proof: Let $X \subseteq \mathbb{R}$, since $X \cap A \subseteq A$, we have $0 \le m^*(X \cap A) \le m^*(A) = 0$. Then we have that $m^*(X \cap A) = 0$, so

$$m^*(X \cap A) + m^*(X \setminus A) = m^*(X \setminus A) \le m^*(X)$$

Proposition 2.1.2

 A_1, A_2, \dots, A_n are measurable, then $\bigcup_{i=1} A_i$ is measurable.

Proof: It suffices to prove the result when n = 2. Let $A, B \subseteq \mathbb{R}$ be measurable. Let $X \subseteq \mathbb{R}$, then

$$\begin{split} n^*(X) &= m^*(X \cap A) + m^*(X \setminus A) \\ &= m^*(X \cap A) + m^*((X \setminus A) \cap B) + m^*((X \setminus A) \setminus B) \\ &= m^*(X \setminus A) + m^*((X \setminus A) \cap B) + m^*(X \setminus (A \cup B)) \\ &\ge m^*((X \cap A) \cup ((X \setminus A) \cap B)) + m^*(X \setminus (A \cup B)) \\ &= m^*(X \cap (A \cup B)) + m^*(X \setminus (A \cup B)) \end{split}$$

Note that $X = (X \cap (A \cup B)) \cup (X \setminus (A \cup B))$, then

I

$$m^*(X) \le m^*(X \cap (A \cup B)) + m^*(X \setminus (A \cup B))$$

Therefore, we have $\forall X \subseteq \mathbb{R}, m^*(X) = m^*(X \cap (A \cup B)) + m^*(X \setminus (A \cup B))$ as desired.

Proposition 2.1.3

 A_1, \dots, A_n are measurable and $A_i \cap A_j = \emptyset$ for $i \neq j$. Let $A = A_1 \cup \dots \cup A_n$, if $X \subseteq \mathbb{R}$, then

$$m^*(X \cap A) = \sum_{i=1}^n m^*(X \cap A_i)$$

Proof: It suffices to prove the result when n = 2. Let $A, B \subseteq \mathbb{R}$ be measurable set with $A \cap B = \emptyset$. Let $X \subseteq \mathbb{R}$, then

$$m^*(X \cap (A \cup B)) = m^*((X \cap (A \cup B)) \cap A) + m^*((X \cap (A \cup B)) \setminus A)$$
$$= m^*(X \cap A) + m^*(X \cap B)$$

Corollary 2.1.4 — Finite Additivity.

Let A_1, \ldots, A_n be measurable sets and $A_i \cap A_j \neq \emptyset$ for $i \neq j$, then

$$m^*(A_1 \cup \ldots \cup A_n) = \sum_{i=1}^n m^*(A_i)$$

2.2 Countable Additivity

Lemma 2.2.1

Let $A_i \subseteq \mathbb{R}$ be measurable sets for $i \in \mathbb{N}$, if $A_i \cap A_j \neq \emptyset$ for $i \neq j$, then

$$A \coloneqq \bigcup_{i=1}^{\infty} A_i$$

is measurable.

Proof: Let $B_n \coloneqq A_1 \cup \ldots \cup A_n$, so for $X \subseteq \mathbb{R}$ we have

$$m^{*}(X) = m^{*}(X \cap B_{n}) + m^{*}(X \setminus B_{n})$$

$$\geq m^{*}(X \cap B_{n}) + m^{*}(X \setminus A)$$

$$\stackrel{\mathbf{prop}}{=} \sum_{i=1}^{n} m^{*}(X \cap A_{i}) + m^{*}(X \setminus A)$$

By taking $n \to \infty$, we have

$$m^*(X) \ge \sum_{i=1}^{\infty} m^*(X \cap A_i) + m^*(X \setminus A)$$
$$\ge m^*\left(\bigcup_{i=1}^{\infty} (X \cap A_i)\right) + m^*(X \setminus A)$$
$$= m^*(X \cap A) + m^*(X \setminus A)$$

as desired.

Proposition 2.2.2

If $A \subseteq \mathbb{R}$ is measurable, then $\mathbb{R} \setminus A$ is measurable.

Proof: Let $X \subseteq \mathbb{R}$, so

$$m^*(X \cap (\mathbb{R} \setminus A)) + m^*(X \setminus (\mathbb{R} \setminus A)) = m^*(X \setminus A) + m^*(X \cap A)$$
$$= m^*(X)$$

Proposition 2.2.3 Let $A_i \subseteq \mathbb{R}$ me measurable for $i \in \mathbb{N}$, then $A = \bigcup_{i=1}^{\infty} A_i$ is measurable. **Proof:** Let $B_n = A_n \setminus (A_1 \cup \ldots A_n)$ for $n \ge 2$, so we have

$$B_n = \underbrace{A_n}_{\text{measurable}} \cap \left(\underbrace{\mathbb{R} \setminus (A_1 \cup \dots A_{n-1})}_{\text{measurable}} \right)$$

Then we have B_n is measurable and for $i \neq j$, $B_i \cap B_j = \emptyset$. This gives us that $\bigcup_{i=1}^{\infty} B_i = \bigcup_{i=1}^{\infty} A_i$ is measurable as desired.

Corollary 2.2.4

The collection \mathscr{L} of (Lebesgue) measurable sets is a σ -algebra of sets in \mathbb{R}

Proposition 2.2.5 — Countable Additivity. Let $A_i \subseteq \mathbb{R}$ be measurable for $i \in \mathbb{N}$, if $A_i \cap A_j \neq \emptyset$ for $i \neq j$, then $m^*\left(\bigcup_{i=1}^{\infty} A_i\right) = \sum_{i=1}^{\infty} m^*(A_i)$ Proof: Obviously we have $m^*\left(\bigcup_{i=1}^{\infty} A_i\right) \leq \sum_{i=1}^{\infty} m^*(A_i)$, and note that $m^*\left(\bigcup_{i=1}^{\infty} A_i\right) \geq m^*\left(\bigcup_{i=1}^n A_i\right) = \sum_{i=1}^n m^*(A_i)$ By taking $n \to \infty$ we have $m^*\left(\bigcup_{i=1}^{\infty} A_i\right) \geq \sum_{i=1}^{\infty} m^*(A_i)$, which completes the proof.

2.3 Borel Implies Measurable

Goal 1: Show Borel sets are measurable.

Proposition 2.3.1 If $a \in \mathbb{R}$, then (a, ∞) is measurable.

Proof: Let $X \subseteq \mathbb{R}$, we want to show that $m^*(X \cap (a, \infty)) + m^*(X \setminus (a, \infty)) \leq m^*(X)$

Case 1: $a \notin X$, we will show $m^*(\underbrace{X \cap (a, \infty)}_{X_1}) + m^*(\underbrace{X \cap (-\infty, a)}_{X_2}) \leq m^*(X)$ Let (I_i) be a sequence of bounded open intervals s.t. $X \subseteq \bigcup_{i=1}^{\infty} I_i$. Define $I'_i = I_i \cap (a, \infty)$ and $I''_i = I_i \cap (-\infty, a)$. Note that

$$X_1 \subseteq \bigcup_{i=1}^{\infty} I'_i$$
 and $X_2 \subseteq \bigcup_{i=1}^{\infty} I'_i$

so we have

$$m^*(X_1) \le \sum_{i=1}^{\infty} \ell(I'_i)$$
 and $m^*(X_2) \le \sum_{i=1}^{\infty} \ell(I''_i)$

Then we see that

$$m^*(X_1) + m^*(X_2) \le \sum_{i=1}^{\infty} \ell(I'_i) + \sum_{i=1}^{\infty} \ell(I''_i) = \sum_{i=1}^{\infty} \left[\ell(I'_i) + \ell(I''_i)\right] = \sum_{i=1}^{\infty} \ell(I_i)$$

By the definition of inf, we have

$$m^*(X_1) + m^*(X_2) \le m^*(X)$$

Case 2: $a \in X$, left it as exercise. Hint: $X' = X \setminus \{a\}$

Theorem 2.3.2 — Every Borel Set is measurable.

Proof: omitted

Definition 2.3.1 — Lebesgue Measure.

A function $m: \mathscr{L} \to [0,\infty) \cup \{\infty\}$ defined by $m(A) = m^*(A)$ is called **Lebesgue Measure**

2.4 Properties

Proposition 2.4.1 — Excision Property. If $A \subseteq B$ and A is measurable with $m(A) < \infty$. Then

$$m^*(B \setminus A) = m^*(B) - m(A)$$

Proof:

$$m^{*}(B) = m^{*}(B \cap A) + m^{*}(B \setminus A)$$

= $\underbrace{m(A)}_{<\infty} + m^{*}(B \setminus A)$ since $m^{*}(B \cap A) = m^{*}(A) = m(A)$

Theorem 2.4.2 — Continuity of Measure.

1. If $A_1 \subseteq A_2 \subseteq A_3 \subseteq \ldots$ are measurable, then

$$m\left(\bigcup_{i=1}^{\infty} A_i\right) = \lim_{n \to \infty} m(A_n)$$

2. If $B_1 \supseteq B_2 \supseteq B_3 \supseteq \ldots$ are measurable and $m(B_1) < \infty$, then

$$m\left(\bigcap_{i=1}^{\infty} B_i\right) = \lim_{n \to \infty} m(B_n)$$

Proof for 1: Since $m(A_k) \leq m\left(\bigcup_{i=1}^{\infty} A_i\right)$ for all $k \in \mathbb{N}$, we have $\lim_{n \to \infty} m(A_n) \leq m\left(\bigcup_{i=1}^{\infty} A_i\right)$. If $\exists k \in \mathbb{N}$ such that $m(A_k) = \infty$, then $\lim_{n \to \infty} m(A_n) = \infty$ and we are done. Then we may assume each $m(A_k) < \infty$. For each $k \in \mathbb{N}$, let $D_k = A_k \setminus A_{k-1}$ and $A_0 = \emptyset$. Note that D_k 's are measurable and they are pairwise disjoint. We also have $\bigcup_{i=0}^{\infty} D_i = \bigcup_{i=0}^{\infty} A_i$, then

$$n\left(\bigcup_{i=0}^{\infty} A_i\right) = m(\bigcup_{i=0}^{\infty} D_i)$$

= $\sum_{i=0}^{\infty} m(D_i)$ by Prop 2.2.5
= $\sum_{i=1}^{\infty} (m(A_i) - m(A_{i-1}))$ by Prop 2.4.1
= $\lim_{n \to \infty} \sum_{i=1}^{n} (m(A_i) - m(A_{i-1}))$
= $\lim_{n \to \infty} m(A_n) - \underbrace{m(A_0)}_{=0}$ since $A_0 = \emptyset$
= $\lim_{n \to \infty} m(A_n)$

as desired.

Proof for 2: For $k \in \mathbb{N}$, we define $D_k = B_1 \setminus B_k$. Note that D_k 's are measurable and

 $D_1 \subseteq D_2 \subseteq D_3 \subseteq \dots$ Then by **1** we have

$$m\left(\bigcup_{i=1}^{\infty} D_i\right) = \lim_{n \to \infty} m(D_n)$$

and we see that

$$\bigcup_{i=1}^{\infty} D_i = \bigcup_{i=1}^{\infty} B_1 \setminus B_i = B_1 \setminus \left(\bigcap_{i=1}^{\infty} B_i\right)$$

and so

$$\lim_{n \to \infty} m(D_n) = m\left(\bigcup_{i=1}^{\infty} D_i\right) = m\left(B_1 \setminus \left(\bigcap_{i=1}^{\infty} B_i\right)\right)$$
$$= m(B_1) - m\left(\bigcap_{i=1}^{\infty} B_i\right)$$

However, we note that

$$\lim_{n \to \infty} m(D_n) = \lim_{n \to \infty} m(B_1) - m(B_n) = m(B_1) - \lim_{n \to \infty} m(B_n)$$

This gives us that

$$m(B_1) - m\left(\bigcap_{i=1}^{\infty} B_i\right) = m(B_1) - \lim_{n \to \infty} m(B_n)$$

That is

$$m\left(\bigcap_{i=1}^{\infty} B_i\right) = \lim_{n \to \infty} m(B_n)$$

which completes the proof.

Example 2.1

Let $B_i = (i, \infty)$ then we have

$$m\left(\bigcap_{i=1}^{\infty} B_i\right) = m(\emptyset) = 0$$
 and $\lim_{n \to \infty} m(B_n) = \infty$

Why this does not fit Theorem 2.4.2? Because $m(B_1) = \infty$

16

Exercise 2.4.1

Let $A \subseteq \mathbb{R}$ has finite outer measure, prove that A is measurable if and only if

$$b - a = m^*((a, b) \cap A) + m^*((a, b) \setminus A)$$

for any open bounded interval (a, b)

Solution: \implies Assume that A is measurable, then for any $X \subseteq \mathbb{R}$ we have

$$m^*(X) = m^*(X \cap A) + m^*(X \setminus A)$$

Now we can just take X be an arbitrary open bounded interval (a, b), so we have

$$m^*((a,b)) = m^*((a,b) \cap A) + m^*((a,b) \setminus A)$$

Note that $m^*((a, b)) = \ell((a, b)) = b - a$, then we have

$$b - a = m^*((a, b) \cap A) + m^*((a, b) \setminus A)$$

as desired.

 \Leftarrow Assume that

$$b - a = m^*((a, b) \cap A) + m^*((a, b) \setminus A)$$

for any open bounded interval (a, b). Since $m^*(A) < \infty$, so for any $\varepsilon > 0$ and by the definition of outer measure we have

$$\sum_{i=1}^{\infty} \ell(I_i) < m^*(A) + \varepsilon$$

where $A \subseteq \bigcup_{i=1}^{\infty} I_i$. Since each I_i is open bounded interval so it's a Borel set. We also note that $m^*(I_i) = \ell(I_i)$ for each *i*, then we have

$$m^*(I_i) = m^*(I_i \cap A) + m^*(I_i \setminus A)$$

Consider to sum each i for the equation above, we get

$$\sum_{i=1}^{\infty} m^*(I_i) = \sum_{i=1}^{\infty} m^*(I_i \cap A) + \sum_{i=1}^{\infty} m^*(I_i \setminus A)$$

this gives us that

$$\sum_{i=1}^{\infty} m^*(I_i) \ge m^*\left(\bigcup_{i=1}^{\infty} I_i \cap A\right) + m^*\left(\bigcup_{i=1}^{\infty} (I_i \setminus A)\right)$$

Notice that

$$\bigcup_{i=1}^{\infty} I_i \cap A = A \quad \text{and} \quad \bigcup_{i=1}^{\infty} (I_i \setminus A) = \left(\bigcup_{i=1}^{\infty} I_i\right) \setminus A$$

Then we have that

$$m^*(A) + m^*\left(\left(\bigcup_{i=1}^{\infty} I_i\right) \setminus A\right) \le \sum_{i=1}^{\infty} m^*(I_i) = \sum_{i=1}^{\infty} \ell(I_i) < m^*(A) + \varepsilon$$

This gives us that

$$m^*\left(\left(\bigcup_{i=1}^{\infty} I_i\right) \setminus A\right) < \varepsilon$$

Note that $\bigcup I_i$ is an open set and contains A, then by **A1Q5b** the set A is measurable, i=1which completes the proof.

Non-Measurable Set 2.5

Lemma 2.5.1

Let $A \subseteq \mathbb{R}$ be bounded and measurable, $\Lambda \subseteq \mathbb{R}$ be bounded and countably infinite. If $\lambda + A$ with $\lambda \in \Lambda$ are pairwise disjoint, then m(A) = 0

Proof: Note that $\bigcup_{\lambda} (\lambda + A)$ is bounded and measurable. Then we have $m\left(\bigcup_{\lambda} (\lambda + A)\right) < \infty$,

so that

$$m\left(\bigcup_{\lambda}(\lambda+A)\right) = \sum_{\lambda}m(\lambda+A) = \sum_{\lambda}m(A) < \infty$$

Then m(A) = 0

Construction

We start with $\emptyset \neq A \subseteq \mathbb{R}$, consider

 $a \sim b \iff a - b \in \mathbb{O}$

Then this \sim is an equivalence relation.

Let C_A denote a single choice of equivalence class representatives for A relative to \sim .

Remark 2.3 The sets $\lambda + C_A$ with $\lambda \in \mathbb{Q}$ are pairwise disjoint. Because

$$x \in (\lambda_1 + C + A) \cap (\lambda_2 + C_A)$$

implies $x = \lambda_1 + a = \lambda_2 + b$ where $a, b \in C_A$, then $a - b = \lambda_2 - \lambda_1 \in \mathbb{Q}$. This gives us that

$$a \sim b \implies a = b \implies \lambda_1 = \lambda_2$$

Theorem 2.5.2 — Vitali Theorem.

Every set $A \subseteq \mathbb{R}$ with $m^*(A) > 0$ contains a non-measurable set.

Proof: By Quiz 1, we may assume A is bounded. Say $A \subseteq [-N, N]$ for some $N \in \mathbb{N}$.

Claim: C_A is non-measurable.

Assume C_A is measurable, let $\Lambda \subseteq \mathbb{Q}$ be bounded and countable. By the **Lemma and Remark** we have $m(C_A) = 0$. Let $a \in A$, then $a \sim b$ for some $b \in C_A$. In particular, $a - b = \lambda \in \mathbb{Q}$. Moreover, $\lambda \in [-2N, 2N]$. Taking $\Lambda_0 = \mathbb{Q} \cap [-2N, 2N]$ we have that

$$A \subseteq \bigcup_{\lambda \in \Lambda_0} \underbrace{(\lambda + C_A)}_{=0}$$

This leads to a contradiction!

Corollary 2.5.3 There exists $A, B \subseteq \mathbb{R}$ s.t.

$$A \cap B = \emptyset$$
 and $m^*(A \cup B) < m^*(A) + m^*(B)$

Proof: Let C be non-measurable set, then there exists $X \subseteq \mathbb{R}$ s.t.

$$m^*(X) < m^*(X \cap C) + m^*(X \setminus C)$$

Take $A = X \cap C$ and $B = X \setminus C$, then we are done.

2.6 Cantor-Lebesgue Function

Proposition 2.6.1 — The Cantor set is Borel and has measure zero.

Proof: C is closed so it's Borel. Note that $C = \bigcap_{i=1}^{\infty} C_i$ and C_i are measurable with

 $C_1 \supseteq C_2 \supseteq C_3 \supseteq \dots$ and $m(C_1) < \infty$. By continuity of measure, we have

$$m(C) = \lim_{n \to \infty} m(C_i) = \lim_{n \to \infty} \frac{2^i}{3^i} = 0$$

Construction of Cantor-Lebesgue Function

1. For $i \in \mathbb{N}$, let \mathcal{U}_i be union of open intervals deleted in the process of constructing C_1, C_2, \dots, C_i i.e. $\mathcal{U}_i = [0,1] \setminus C_i$ 2. $\mathcal{U} = \bigcup_{i=1}^{\infty} \mathcal{U}_i$ i.e. $\mathcal{U} = [0,1] \setminus C$ 3. Say $\mathcal{U}_i = I_{i,1} \cup I_{i,2} \cup \ldots \cup I_{i,2^{i-1}}$, we define $\varphi : \mathcal{U}_i \to [0,1]$ by $\varphi \mid_{I_{i,j}} = \frac{j}{2^i}$ e.g) $\mathcal{U}_1 = \underbrace{\left(\frac{1}{3}, \frac{2}{3}\right)}_{\mapsto \frac{1}{2}}$ and $\mathcal{U}_2 = \underbrace{\left(\frac{1}{9}, \frac{2}{9}\right)}_{\mapsto \frac{1}{4}} \cup \underbrace{\left(\frac{1}{3}, \frac{2}{3}\right)}_{\mapsto \frac{2}{4}} \cup \underbrace{\left(\frac{7}{9}, \frac{8}{9}\right)}_{\mapsto \frac{3}{4}}$ 4. Define $\varphi : [0,1] \to [0,1]$ by for $0 \neq x \in C$

 $\varphi(x) = \sup \left\{ \varphi(t) : t \in \mathcal{U} \cap [0, x) \right\}$

and $\varphi(0) = 0$. This is the Cantor-Lebesgue Function:

- **Remark 2.4** Things to know about φ :
- 1. φ is increasing
- 2. φ is continuous.
- $\cdot \varphi$ is continuous on \mathcal{U}
- $\cdot x \in C$ with $x \neq 0, 1$. For large $i, \exists a_i \in I_{i,j}$ and $b_i \in I_{i,j+1}$ s.t.

 $a_i < x < b_i$

but $\varphi(b_i) - \varphi(a_i) = \frac{j+1}{2^i} - \frac{j}{2^i} = \frac{1}{2^i} \to \infty$. Then there is no jump up! The point for $x \in \{0, 1\}$'s proof is similar, so it's continuous. $\cdot \varphi : \mathcal{U} \to [0, 1]$ is differentiable and $\varphi' = 0$ $\cdot \varphi$ is onto, $\varphi(0) = 0, \varphi(1) = 1$, **IVT**

2.7 Non-Borel Set

A non-Borel Set

Let φ be the Cantor-Lebesgue Function, consider $\psi: [0,1] \to [0,2]$ defined by

$$\psi(x) = x + \varphi(x)$$

Then ψ is strictly increasing, continuous and onto. This implies ψ is invertible.

Proposition 2.7.1

1. $\psi(C)$ is measurable and has **positive** measure.

2. ψ maps a particular (measurable) subset of C to a non-measurable set.

Proof (for 1): By A1, ψ^{-1} is continuous, then $\psi(C) = (\psi^{-1})^{-1}(C)$ is closed. Then $\psi(C)$ measurable. Note that $[0,1] = C \cup \mathcal{U}$ and $C \cap \mathcal{U} = \emptyset$, so $[0,2] = \psi(C) \cup \psi(\mathcal{U})$ with $\psi(C) \cap \psi(\mathcal{U}) = \emptyset$. Then

$$2 = m(\psi(C)) + m(\psi(\mathcal{U}))$$

it's suffices to show that

$$m(\psi(\mathcal{U})) = 1$$

We say $\mathcal{U} = \bigcup_{i=1}^{\infty} I_i$ a disjoint union of open intervals, then $\psi(\mathbb{U}) = \bigcup_{i=1}^{\infty} \psi(I_i)$ so that $m(()\psi(\mathcal{U})) = \sum_{i=1}^{\infty} m(\psi(I_i))$. No that $\forall i \in \mathbb{N}, \exists r \in \mathbb{R}$ s.t. $\varphi(x) = r$ for all $x \in I_i$. In particular, $\psi(x) = x + r$ for all $x \in I_i$ and so $\psi(I_i) = r + I_i$. Then

$$m(\psi(\mathcal{U})) = \sum_{i=1}^{\infty} m(I_i) = m\left(\bigcup_{i=1}^{\infty} I_i\right) = m(\mathcal{U})$$

Since $[0,1] = \mathcal{U} \cup C$ we have that

$$1 = m(\mathbb{U}) + \underbrace{m(C)}_{=0} = m(\mathcal{U})$$

Hence, $m(\psi(\mathcal{U})) = m(\mathcal{U}) = 1 > 0$

Proof (for 2): By Vitali, $\psi(C)$ contains a subset $A \subseteq \psi(C)$ which is non-measurable. Let $B = \psi^{-1}(A) \subseteq C$, then $\psi(B) = A$ is non-measurable as resquired.

Theorem 2.7.2

The Cantor set contains an element of $\mathscr{L} \setminus \mathcal{B}$

Proof: Take $B \subseteq C$, so B is measurable, then $\psi(B)$ is not measurable. By A1, if B is Borel, then $\psi(B)$ is Borel this leads to a contradiction. Hence B is not Borel.

Exercise 2.7.1 Let $A \subseteq \mathbb{R}$ be a non-measurable set with finite outer measure. Prove that there does not exists a measurable set $B \subseteq A$ such that $m(B) = m^*(A)$

Solution: Let $A \subseteq \mathbb{R}$ is non-measurable and $m^*(A) < \infty$

For sake of contradiction, we suppose there exists a measurable set $B \subseteq A$ such that $m(B) = m^*(A)$

Since $m^*(A) < \infty$ so we have $m^*(B) \le m^*(A) < \infty$, note that B is measurable. Then we have

$$m^*(A \setminus B) = m^*(A) - m(B) = 0$$

This gives us that $A \setminus B$ is measurable, that is $A \setminus B \in \mathscr{L}$. Since $B \subseteq A$ and $B \in \mathscr{L}$, then

$$\underbrace{(A \setminus B)}_{\in \mathscr{L}} \cup \underbrace{B}_{\in \mathscr{L}} = A \in \mathscr{L}$$

That means A is measurable, it's a **contradiction**!

Hence, there does not exists $B \subseteq A$ is measurable s.t. $m(B) = m^*(A)$, which completes the proof.

3. Measurable Functions

3.1 Measurable Functions

Definition 3.1.1 — Measurable Function.

 $A \subseteq \mathbb{R}$ is measurable, we say $f : A \to \mathbb{R}$ is **measurable** if and only if for all open $\mathcal{U} \subseteq \mathbb{R}$, $f^{-1}(\mathcal{U})$ is **measurable**

Proposition 3.1.1 If $A \subseteq \mathbb{R}$ is measurable and $f : A \to \mathbb{R}$ is continuous, then f is measurable.

Proposition 3.1.2

 $A \subseteq \mathbb{R}$ is measurable, and $\mathcal{X}_A : \mathbb{R} \to \mathbb{R}$ where

$$\mathcal{X}_A = \begin{cases} 1 & x \in A \\ 0 & x \notin A \end{cases}$$

Then \mathcal{X}_A is measurable.

Proposition 3.1.3

Let $A \subseteq \mathbb{R}$ be measurable, $f : A \to \mathbb{R}$, the following are **equivalent**:

- 1. f is measurable
- 2. $\forall a \in \mathbb{R}, f^{-1}(a, \infty)$ is measurable.
- 3. $\forall a < b \text{ with } a, b \in \mathbb{R}, f^{-1}(a, b) \text{ is measurable.}$

Proof:

1 \implies 2: Trivial 2 \implies 3: Let $b \in \mathbb{R}$ so that $f^{-1}(b, \infty)$ is measurable, then $\mathbb{R} \setminus f^{-1}(b, \infty) = f^{-1}(\mathbb{R} \setminus (b, \infty)) = f^{-1}((-\infty, b])$ is measurable as well. We see that $(-\infty, b) = \bigcup_{i=1}^{\infty} \left(-\infty, b - \frac{1}{i}\right)$ and so

$$f^{-1}(-\infty, b) = \bigcup_{i=1}^{\infty} f^{-1}\left(-\infty, b - \frac{1}{i}\right)$$

is measurable. Finally, for a < b, we can write

$$(a,b) = (a,\infty) \cup (-\infty,b) \Longrightarrow f^{-1}(a,b) = f^{-1}(a,\infty) \cap f^{-1}(-\infty,b)$$

is measurable.

 $3 \Longrightarrow 1$: Trivial

Proposition 3.1.4

Let $A \subseteq \mathbb{R}$ be measurable and $f, g : A \to \mathbb{R}$ are measurable.

- 1. For all $a, b \in \mathbb{R}$, af + bg is measurable.
- 2. The function fg is measurable.

Proof for 1: Let $a \in \mathbb{R}$, for $\alpha \in \mathbb{R}$ $(af)^{-1}(\alpha, \infty) = \{x \in A : af(x) > \alpha\}$ If a > 0,

$$(af)^{-1}(\alpha,\infty) = \left\{ x \in A : f(x) > \frac{\alpha}{a} \right\} = f^{-1}\left(\frac{\alpha}{a},\infty\right)$$

is measurable.

If a < 0, $(af)^{-1}(\alpha, \infty) = f^{-1}\left(-\infty, \frac{\alpha}{a}\right)$ is measurable. If a = 0, af continuous \Longrightarrow measurable. We now show that f + g is measurable. For $\alpha \in \mathbb{R}$

$$(f+g)^{-1}(\alpha,\infty) = \{x \in A : f(x) + g(x) > \alpha\}$$

= $\{x \in A : f(x) > \alpha - g(x)\}$
= $\{x \in A : \exists q \in \mathbb{Q}, f(x) > q > \alpha - g(x)\}$
= $\bigcup_{q \in \mathbb{Q}} (\{x \in A : f(x) > q\} \cap \{x \in A : g(x) > \alpha - q\})$
= $\bigcup_{q \in \mathbb{Q}} \left(\underbrace{f^{-1}(q,\infty)}_{\text{measurable}} \cap \underbrace{g^{-1}(\alpha - q,\infty)}_{\text{measurable}}\right)$

is measurable. Then we have f + g is measurable.

Since af and f + g are measurable, so we have af + bg is measurable.

Proof for 2: By the quiz, |f| is measurable. For $\alpha \in \mathbb{R}$:

$$(f^{2})^{-1}(\alpha, \infty) = \left\{ \begin{aligned} x \in A : f^{2}(x) > \alpha \right\} \\ = \left\{ \begin{aligned} A & \alpha < 0 \\ \left\{ x \in A : |f|(x) > \sqrt{\alpha} \right\} & \alpha \ge 0 \end{aligned} \right. \\ = \left\{ \begin{aligned} A & \alpha < 0 \\ |f|^{-1} \left(\sqrt{a}, \infty\right) & \alpha \ge 0 \end{aligned} \right.$$

is measurable, then f^2 is measurable. Since $(f + g)^2 = f^2 + 2fg + g^2$ is measurable, so we have 2fg is measurable. By **1**, the function fg is measurable.

Example 3.1 $\psi : [0,1] \to \mathbb{R}, \ \psi(x) = x + \underbrace{\varphi(x)}_{\mathbf{C}-\mathbf{L}}$. $\exists A \subseteq [0,1]$ s.t. A is measurable but $\psi(A)$ is not measurable. Extend $\psi : \mathbb{R} \to \mathbb{R}$ continuously to a strictly increasing surjective function s.t. ψ^{-1} is continuous.

Consider $\mathcal{X}_A \circ \psi^{-1}$, then

$$(\mathcal{X}_A \circ \psi^{-1})^{-1} \left(\frac{1}{2}, \frac{3}{2}\right) = \psi^{-1} \left(\mathcal{X}_A^{-1} \left(\frac{1}{2}, \frac{3}{2}\right)\right) = \psi(A)$$

which is not measurable. Then $\mathcal{X}_A \circ \psi^{-1}$ is not measurable.

Proposition 3.1.5

Let $A \subseteq \mathbb{R}$ be measurable set, if $g : A \to \mathbb{R}$ is measurable and $f : \mathbb{R} \to \mathbb{R}$ is continuous, then $f \circ g$ is measurable.

Proof: Let $\mathcal{U} \subseteq \mathbb{R}$ be open, $(f \circ g)^{-1}(\mathcal{U}) = g^{-1}(\underbrace{f^{-1}(\mathcal{U})}_{\text{open}})$ is measurable.

Definition 3.1.2

Let $A \subseteq \mathbb{R}$, we say a property P(x) ($x \in A$) is true **almost everywhere (ae)** if

$$m(\{x \in A : P(x) | \mathbf{false}\}) = 0$$

Proposition 3.1.6 Let $f : A \to \mathbb{R}$ be measurable, if $g : A \to \mathbb{R}$ is a function and f = g as then g is measurable.

Proof: Consider

$$B = \{x \in A : f(x) \neq g(x)\}$$

so we have m(B) = 0. Let $\alpha \in \mathbb{R}$, so

$$\begin{split} g^{-1}(\alpha,\infty) &= \{x \in A : g(x) > \alpha\} \\ &= \{x \in A \setminus B : g(x) > \alpha\} \cup \{x \in B : g(x) > \alpha\} \\ &= \{x \in A \setminus B : f(x) > \alpha\} \cup \{x \in B : g(x) > \alpha\} \\ &= \left(\underbrace{f^{-1}(\alpha,\infty)}_{\text{measurable}} \cap \underbrace{(A \setminus B)}_{\text{measurable}}\right) \cup \underbrace{\{x \in B : g(x) > \alpha\}}_{\text{measure 0}} \end{split}$$

is measurable.

Proposition 3.1.7

Let A be measurable, $B \subseteq A$ measurable and a function $f : A \to \mathbb{R}$ is measurable if and only if $f|_B$ and $f|_{A\setminus B}$ are measurable.

Proof: \implies suppose $f : A \to \mathbb{R}$ is measurable, let $\alpha \in R$, then

$$(f|_B)^{-1}(\alpha, \infty) = \{x \in B : f(x) > \alpha\}$$
$$= f^{-1}(\alpha, \infty) \cap B$$

is measurable, then $f \mid_B$ is measurable. The proof for $f \mid_{A \setminus B}$ is similar. \Leftarrow Suppose $f \mid_B$ and $f \mid_{A \setminus B}$ are measurable. For $\alpha \in \mathbb{R}$,

$$f^{-1}(\alpha, \infty) = \{x \in A : f(x) > \alpha\}$$

= $\{x \in B : f(x) > \alpha\} \cup \{x \in A \setminus B : f(x) > \alpha\}$
= $\underbrace{(f \mid_B)^{-1}(\alpha, \infty)}_{\text{measurable}} \cup \underbrace{(f \mid_{A \setminus B})^{-1}[\alpha, \infty)}_{\text{measurable}}$

is measurable, and so f is measurable.

Proposition 3.1.8

Let f_n be a sequence of measurable functions where $f_n : A \to \mathbb{R}$. If $f_n \to f$ pointwise **ae**, then f is measurable.

Proof: Let $B = \{x \in A : f_n(x) \not\rightarrow f(x)\}$, so that m(B) = 0. Now for $\alpha \in \mathbb{R}$,

$$(f \mid_B)^{-1}(\alpha, \infty) = \underbrace{f^{-1}(\alpha, \infty) \cap B}_{\text{measure 0}}$$

is measurable.

If suffices to show that $f \mid_{A \setminus B}$ is measurable. By replacing f by $f \mid_{A \setminus B}$, we may assume

$$f_n \to f$$
 pointwise. Let $\alpha \in \mathbb{R}$, since $f_n \to f$ pointwise, we see that for $x \in A$

$$f(x) > \alpha \quad \iff \quad \exists n, N \in \mathbb{N}, \ \forall i \ge N, \ f_i(x) > \alpha + \frac{1}{n}$$

Then we see that

$$f^{-1}(\alpha,\infty) = \bigcup_{n \in \mathbb{N}} \bigcup_{N \in \mathbb{N}} \bigcap_{i=N}^{\infty} \underbrace{f_i^{-1}\left(\alpha + \frac{1}{n}, \infty\right)}_{\text{measurable}}$$

is measurable. Therefore, we have f is measurable.

3.2 Simple Approximation

Definition 3.2.1 — Simple.

A function $\varphi : A \to \mathbb{R}$ is called **simple** if φ is measurable and $\varphi(A)$ is finite.

Remark 3.1 — Canonical Representation.

Let $\varphi : A \to \mathbb{R}$ be measurable, $\varphi(A) = \{c_1, c_2, ..., c_k\}$ where c_i s are distinct and $A_i = \varphi^{-1}(\{c_i\})$ is measurable. We can see that A is a disjoint union of A_i i.e. $A = \bigcup_{i=1}^k A_i$ and $\varphi = \sum_{i=1}^k c_i \mathcal{X}_{A_i}$

Goal: Show measurable functions can be approximated by simple functions

Lemma 3.2.1

Let $f: A \to \mathbb{R}$ be measurable and bounded, for all $\varepsilon > 0$ there exists simple $\varphi_{\varepsilon}, \psi_{\varepsilon}: A \to \mathbb{R}$ such that

 $\varphi_{\varepsilon} \leq f \leq \psi_{\varepsilon} \quad \text{ and } \quad 0 \leq \psi_{\varepsilon} - \varphi_{\varepsilon} < \varepsilon$

Proof: Since f(A) is bounded, so $f(A) \subseteq [a, b]$. Now for any $\varepsilon > 0$, we consider $a = y_0 < y_1 < \dots < y_n = b$ where $y_{i+1} - y_i < \varepsilon$. We define $I_k = [y_{k-1}, y_k), A_k = \underbrace{f^{-1}(I_k)}_{\text{measurable}}$. Let

 $\varphi_{\varepsilon}: A \to \mathbb{R} \text{ and } \psi_{\varepsilon}: A \to \mathbb{R} \text{ where}$

$$arphi_arepsilon: \sum_{k=1}^n y_{k-1} \mathcal{X}_{A_k} \quad ext{ and } \quad \psi_arepsilon \sum_{k=1}^n y_k \mathcal{X}_{A_k}$$

so φ_{ε} and ψ_{ε} are simple. Let $x \in A$, since $f(x) \in [a, b]$, so $\exists k \in \{0, 1, .., 0\}$ such that $f(x) \in I_k$. i.e. $y_{k-1} \leq f(x) < y_k$, $x \in A_k$. Moreover, $\varphi_{\varepsilon}(x) = y_{k-1} \leq f(x) < y_k = \psi_{\varepsilon}(x)$ and so

$$\varphi_{\varepsilon} \leq f < \psi_{\varepsilon}$$

Now for the same x, we see that $0 \le \psi_{\varepsilon}(x) - \varphi_{\varepsilon}(x) = y_k - y_{k-1} < \varepsilon$, which completes the proof.

Theorem 3.2.2 — Simple Approximation.

Let $A \subseteq \mathbb{R}$ be measurable. A function $f : A \to \mathbb{R}$ is measurable if and only if there is a sequence (φ_n) of simple functions on A such that $\varphi_n \to f$ pointwise and $\forall n, |\varphi_n| \leq |f|$

Proof: \Leftarrow Done \Rightarrow Suppose $f : A \rightarrow \mathbb{R}$ is measurable. **Case 1:** $f \ge 0$, for each $n \in \mathbb{N}$ we define

$$A_n = \{x \in A : f(x) \le n\}$$

so that A_n is measurable and $f |_{A_n}$ is measurable and bounded. By the **Lemma 3.2.1**, there exists simple function (φ_n) and (ψ_n) such that $\varphi_n \leq f \leq \psi_n$ on A_n and $0 \leq \psi_n - \varphi_n < \frac{1}{n}$. Fix $n \in \mathbb{N}$, extend $\varphi_n : A \to \mathbb{R}$ by setting $\varphi_n(x) = n$ if $x \notin A_n$, so $0 \leq \varphi_n \leq f$. For each $n \in \mathbb{N}, \varphi_n : A \to \mathbb{R}$ is simple.

Claim: $\varphi_n \to f$ pointwise.

Let $x \in A$ and $N \in \mathbb{N}$ such that $f(x) \leq N$ i.e. $x \in A_N$. For $n \geq N$, $x \in A_n$ and so $0 \leq f(x) - \varphi_n \leq \psi_n(x) - \varphi_n(x) < \frac{1}{n}$.

Case 2: $f : A \to \mathbb{R}$ measurable. We define

$$B = \{x \in A : f(x) \ge 0\} \text{ and } C = \{x \in A : f(x) < 0\}$$

are measurable. Now define $g, h : A \to \mathbb{R}$

$$g = \mathcal{X}_B f$$
 and $h = -\mathcal{X}_C f$

so that g, h are measurable and non-negative. By **Case 1**, there exists sequences (φ_n) and (ψ_n) of simple functions such that $\varphi_n \to g$ pointwise and $\psi_n \to h$ pointwise with $0 \le \varphi_n \le g$ and $0 \le \psi_n \le h$. Then we have

$$\underbrace{\varphi_n - \psi_n}_{\text{simple}} \to g - h = f \quad \text{pointwise}$$

and

$$|\varphi_n - \psi_n| \le |\varphi_n| + |\psi_n| = \varphi_n + \psi_n \le g + h = |f|$$

which completes the proof.

4. Littlewood Principles

4.1 Littlewood Principle I

Up to certain finiteness conditions:

- 1. Measurable sets are "almost" finite, disjoint union of bounded open intervals.
- 2. Measurable functions are "almost" continuous.
- 3. Pointwise limits of measurable functions are "almost" uniform limits.

Theorem 4.1.1

Let A be measurable set and $m(A) < \infty$. For all $\varepsilon > 0$ there exists finitely many open bounded, disjoint intervals I_1, I_2, \dots, I_n such that

$$m(A\Delta \mathcal{U}) < \varepsilon$$

where $\mathcal{U} = I_1 \cup I_2 \cup \dots \cup I_n$ Note: $m(A \Delta \mathcal{U}) = m(A \setminus \mathcal{U}) + m(\mathcal{U} \setminus A)$

Proof: Let $\varepsilon > 0$ be given, we may find an open set \mathcal{U} such that

$$m(\mathcal{U} \setminus A) < \frac{\varepsilon}{2}$$

By **PMATH 351**, there exists bounded open, disjoint intervals I_i $(i \in \mathbb{N})$ such that

$$\mathcal{U} = \bigcup_{i=1}^{\infty} I_i$$

Note that $\sum_{i=1}^{\infty} I_i = m(\mathcal{U}) < \infty$. In particular, $\exists N \in \mathbb{N}$ such that

$$\sum_{i=N+1}^{\infty} \ell(I_i) < \frac{\varepsilon}{2}$$

Take $V = I_1 \cup \ldots \cup I_N$ we see that $m(A \setminus V) \leq m(\mathcal{U} \setminus V)$ and $m(V \setminus A) \leq m(\mathcal{U} \setminus V) \leq \frac{\varepsilon}{2}$. Therefore, we have $m(A\Delta \mathcal{U}) < \varepsilon$ as desired.

4.2 Littlewood Principle III

Goal: Prove that pointwise limits of measurable functions are almost uniform limits.

Lemma 4.2.1

Let A be a measurable set with $m(A) < \infty$ and $f_n : A \to \mathbb{R}$ be a sequence of measurable functions. Assume $f : A \to \mathbb{R}$ such that $f_n \to f$ pointwise. For all $\alpha, \beta > 0$, there exists a measurable subset $B \subseteq A$ and $N \in \mathbb{N}$ such that

1. $|f_n(x) - f(x)| < \alpha$ for all $x \in B$, $n \ge N$ 2. $m(A \setminus B) < \beta$

Proof: Let $\alpha, \beta > 0$ be given, for $n \in \mathbb{N}$ define

$$A_n = \{x \in A : |f_k(x) - f(x)| < \alpha, \quad \forall \ k \ge n\} = \bigcap_{k=n}^{\infty} \underbrace{|f_k - f|^{-1}(-\infty, \alpha)}_{\in \mathscr{L}}$$

Then every A_n is measurable.

Since $f_n \to f$ pointwise, $A = \bigcup_{n=1}^{\infty} A_n$ and (A_n) is ascending, by continuity of measure

$$m(A) = \lim_{n \to \infty} m(A_n) < \infty$$

We may find $N \in \mathbb{N}$ such that for all $n \geq N$

$$m(A) - m(A_n) < \beta$$

we can just pick $B = A_N$, then the proof is completed.

Theorem 4.2.2 — Littlewood 3 - Egoroff's Theorem.

Let A be a measurable set with $m(A) < \infty$ and $f_n : A \to \mathbb{R}$ be a sequence of measurable functions. If $f_n \to f$ pointwise, then for all $\varepsilon > 0$ there exists a closed set $C \subseteq A$ such that

1. $f_n \to f$ uniformly on C2. $m(A \setminus C) < \varepsilon$

Proof: Let $\varepsilon > 0$ be given, by the **Lemma 4.2.1** for every $n \in \mathbb{N}$, there exists a measurable set $A_n \subseteq A$ and $N(n) \in \mathbb{N}$ s.t.

1. For all $x \in A_n$ and $k \ge N(n)$, $|f_k(x) - f(x)| < \frac{1}{n}$ 2. $m(A \setminus A_n) < \frac{\varepsilon}{2^{n+1}}$ We take $B = \bigcap_{n=1}^{\infty} A_n$ (measurable). For $n \in \mathbb{N}$ s,t, $\frac{1}{n} < \varepsilon$, $k \ge N(n)$ and $x \in B$

$$|f_k(x) - f(x)| < \frac{1}{n}$$

then $f_n \to f$ uniformly on BMoreover we have

$$m(A \setminus B) = m\left(A \setminus \bigcap_{n=1}^{\infty} A_n\right) = m\left(\bigcup_{n=1}^{\infty} A \setminus A_n\right) \le \sum_{n=1}^{\infty} m(A \setminus A_n) < \sum_{n=1}^{\infty} \frac{\varepsilon}{2^{n+1}} = \frac{\varepsilon}{2}$$

By A1, there exists a closed set C s.t. $C \subseteq B$ and $m(B \setminus C) < \frac{\varepsilon}{2}$ Since $C \subseteq B$, $f_k \to f$ uniformly on C and $m(A \setminus C) = m(A \setminus B) + m(B \setminus C) < \frac{\varepsilon}{2} + \frac{\varepsilon}{2} = \varepsilon$ which completes the proof.

Example 4.1 — Warning.

Let $f_n : \mathbb{R} \to \mathbb{R}$ with $f_n(x) = \frac{x}{n}$, $f_n \to 0$ pointwise but $f_n \not\rightarrow 0$ uniformly on any measurable sets $B \subseteq \mathbb{R}$ such that $m(\mathbb{R} \setminus B) < 1$

Need: $m(A) < \infty$

4.3 Littlewood Principle II

Goal: Prove that measurable functions are "almost" continuous. (i.e. Littlewood's 2^{nd} Principle/Lusin's Theorem)

Lemma 4.3.1 Let $f : A \to \mathbb{R}$ be a simple function. For all $\varepsilon > 0$ there exists a continuous $g : \mathbb{R} \to \mathbb{R}$ and a

closed set $C \subseteq A$ such that f = g on C and $m(A \setminus C) < \varepsilon$

Proof: Let
$$f = \sum_{i=1}^{n} a_i \chi_{A_i}$$
 where $A_i = \{x \in A : f(x) = a_i\}$ is measurable. By A1 we have

there exists $C_i \subseteq A_i$ is closed such that $m(A_i \setminus C_i) <$. Note that $A = \bigcup_{i=1}^{i=1} A_i$ and $C = \bigcup_{i=1}^{i=1} C_i$ are disjoint union. We can see that for all $x \in C_i$, $f(x) = a_i$, by **A1** we have f is continuous on C and we can extend $f \mid_C$ to a continuous function $q : \mathbb{R} \to \mathbb{R}$, also we have

$$\begin{pmatrix} n \\ \end{pmatrix} n$$

$$m(A \setminus C) = m\left(\bigcup_{i=1}^{n} (A_i \setminus C_i)\right) = \sum_{i=1}^{n} m(A_i \setminus C_i) < \varepsilon$$

as desired.

Theorem 4.3.2 — Littlewodd 2 - Lusin's Theorem.

Let $f : A \to \mathbb{R}$ be a measurable function. For all $\varepsilon > 0$, there exists a continuous function $g : \mathbb{R} \to \mathbb{R}$ and a closed set $C \subseteq A$ such that f = g on C and $m(A \setminus C) < \varepsilon$.

Proof: Let $\varepsilon > 0$ be given

Case 1: $m(A) < \infty$

Let $f: A \to \mathbb{R}$ be measurable, by the **SAT** (simple approximation theorem) there exists the simple function f_n such that $f_n \to f$ pointwise. By the lemma, there exists the continuous function $g_n: \mathbb{R} \to \mathbb{R}$ and closed $C_n \subseteq A$ such that $f_n = g_n$ on C_n and $m(A \setminus C_n) < \frac{\varepsilon}{2^{n+1}}$. By **Egorff**, there exists a closed set $C_0 \subseteq A$ such that $f_n \to f$ uniformly on C_0 and $m(A \setminus C_0) < \frac{\varepsilon}{2}$. Let $C = \bigcap_{i=0}^{\infty} C_i$, so $g_n = f_n \to f$ uniformly on $C \subseteq C_0$ so f is continuous on C. By **A1** we may extend $f \mid_C$ to a continuous function $g: \mathbb{R} \to \mathbb{R}$ and

$$m(A \setminus C) = m\left(A \setminus \bigcap_{i=0}^{\infty} C_i\right) = m\left(\bigcup_{i=1}^{\infty}\right)(A \setminus C_i) \le \sum_{i=0}^{\infty} m(A \setminus C_i)$$
$$= m(A \setminus C_0) + \sum_{i=1}^{\infty} m(A \setminus C_i)$$
$$< \frac{\varepsilon}{2} + \frac{\varepsilon}{2}$$
$$= \varepsilon$$

which completes the proof of Case 1

Case 2: $m(A) = \infty$ For $n \in \mathbb{N}$, we define

$$A_n \coloneqq \{a \in A : |a| \in [n-1,n)\}$$

so that $A = \bigcup_{n=1}^{\infty} A_n$, by **case 1** there exists continuous function $g_n : \mathbb{R} \to \mathbb{R}$ and closed set $C_n \subseteq A_n$ such that $f = g_n$ on C_n and $m(A_n \setminus C_n) < \text{Consider } C = \bigcup_{i=1}^{\infty} C_i$ which is a disjoint union, so we have

$$m(A \setminus C) = m\left(\bigcup(A_i \setminus C_i)\right) = \sum_{i=1}^{\infty} m(A_i \setminus C_i) < \varepsilon$$

and let $g: C \to \mathbb{R}$ and $x \in C$ so that $x \in C_n$ for exactly one $n \in \mathbb{N}$. Define $g(x) = \underbrace{g_n(x)}_{c.t.s} = f(x)$. By **A1** we can extend g to a continuous function on \mathbb{R} , which completes the proof.

5.1 Integration I

- 1. Simple functions, $\varphi: A \to \mathbb{R}, m(A) < \infty$
- 2. $f: A \to \mathbb{R}$ is bounded and measurable with $m(A) < \infty, \, \varphi_{\varepsilon} \leq f \leq \psi_{\varepsilon}$
- 3. $f:A\to \mathbb{R}$ measurable, $f\geq 0$

$$\sup\left\{\int_A h: \ h \in \mathbf{2}, \ 0 \le h \le f\right\}$$

4. $f: A \to \mathbb{R}$ be measurable function, $f^+ = \max{\{f, 0\}}$ and $f^- = \max{\{-f, 0\}}$.

Step 1: $\varphi : A \to \mathbb{R}$ be simple function and $m(A) < \infty$.

Definition 5.1.1 — Lebesgue Integral.

Let $m(A) < \infty, \varphi : A \to \mathbb{R}$ be simple function with canonical representation:

$$\varphi = \sum_{i=1}^{n} a_i \mathcal{X}_{A_i}$$

The **Lebesgue Integral** of φ over A is

$$\int_A \varphi = \sum_{i=1}^n a_i m(A_i)$$

Lemma 5.1.1

Let $m(A) < \infty$ where A is measurable, if $B_1, B_2, ..., B_n \subseteq A$ are measurable and disjoint, and $\varphi : A \to \mathbb{R}$ is defined by

$$\varphi = \sum_{i=1}^{n} b_i \mathcal{X}_{B_i}$$

then

$$\int_{A} \varphi = \sum_{i=1}^{n} b_{i} m(B_{i})$$

For n = 2: If $b_1 \neq b_2$, then $\varphi = b_1 \mathcal{X}_{B_1} + b_2 \mathcal{X}_{B_2}$ is the canonical representation, if $b_1 = b_2$ then

$$b_1 \mathcal{X}_{B_1} + b_1 \mathcal{X}_{B_2} = b_1 \{ \mathcal{X}_{B_1} + \mathcal{X}_{B_2} \} = \underbrace{b_1 \cdot \mathcal{X}_{B_1 \cup B_2}}_{\text{con rep}}$$

then we have

$$\int_{A} \varphi = b_1 m(B_1 \cup B_2) = b_1 \cdot (m(B_1) + m(B_2)) = b_1 m(B_1) + b_2 m(B_2)$$

Proposition 5.1.2

Let $\varphi, \psi: A \to \mathbb{R}$ be simple function with $m(A) < \infty$, for all $\alpha, \beta \in \mathbb{R}$ we have

$$\int_{A} \left(\alpha \varphi + \beta \psi \right) = \alpha \int_{A} \varphi + \beta \int_{A} \psi$$

Proof: Let

$$\varphi(A) = \{a_1, ..., a_n\}$$
 and $\psi(A) = \{a_1, ..., a_n\}$ are distinct

Define

$$C_{ij} = \{x \in A : \varphi(x) = a_i, \ \psi(x) = b_j\} = \varphi^{-1}(\{a_i\}) \cap \psi^{-1}(\{b_j\})$$
 measurable

Then we have

$$\alpha \varphi + \beta \psi = \sum_{i,j} (\alpha a_i + \beta b_j) \mathcal{X}_{C_{ij}}$$

where C_{ij} is pairwise disjoint, so by the **Lemma 5.1.1** we have

$$\begin{split} \int_{A} \alpha \varphi + \beta \psi &= \sum_{i,j} (\alpha a_{i} + \beta b_{j}) \cdot m(C_{ij}) \\ &= \sum_{i,j} \alpha a_{i} m(C_{ij}) + \sum_{i,j} \beta b_{i} m(C_{ij}) \\ &= \sum_{i} \alpha a_{i} \left(\sum_{j} m(C_{ij}) \right) + \sum_{j} \beta b_{i} \left(\sum_{i} m(C_{ij}) \right) \\ &= \alpha \sum_{i} \alpha (m(\{x \in A : \varphi(x) = a_{i}\})) + \beta \sum_{j} \alpha (m(\{x \in A : \psi(x) = b_{i}\})) \\ &= \alpha \int_{A} \varphi + \beta \int_{A} \psi \end{split}$$

Proposition 5.1.3 Let $\varepsilon, \psi : A \to \mathbb{R}$ be simple function and $m(A) < \infty$, if $\varphi \leq \psi$, then

$$\int_A \varphi \leq \int_A \psi$$

5.2 Integration II

Step 2: $f: A \to \mathbb{R}$ be bounded and measurable with $m(A) < \infty$

Definition 5.2.1 — Upper/Lower Lebesgue Integral.

$$\underline{\int_{A}} f = \sup\left\{\int_{A} \varphi : \varphi \leq f \text{ is simple}\right\} \text{ and } \overline{\int_{A}} f = \inf\left\{\int_{A} \psi : f \leq \psi \text{ is simple}\right\}$$

Proposition 5.2.1

Let $m(A) < \infty$ and $f: A \to \mathbb{R}$ be bounded and measurable, then

$$\underline{\int_{A}} f = \overline{\int_{A}} f$$

Proof: For all $n \in \mathbb{N}$, \exists simple function $\varphi_n, \psi_n : A \to \mathbb{R}$ such that

$$\varphi_n \le f \le \psi_n \quad \text{and} \quad \psi_n - \varphi_n < \frac{1}{n}$$
We see that

$$0 \le \overline{\int_A} f - \underline{\int_A} f \le \int_A \psi_n - \int_A \varphi_n = \int_A (\psi_n - \varphi_n) \le \int_A \frac{1}{n} = \frac{1}{n} \cdot m(A) \to 0$$

Definition 5.2.2 — Lebesgue Integral.

Let $m(A) < \infty$ and $f : A \to \mathbb{R}$ be bounded measurable functions, we define the **(Lebesgue Integral) of** f over A by

$$\int_{A} f = \underline{\int_{A}} f = \int_{A} f$$

Proposition 5.2.2

Let $f.g: A \to \mathbb{R}$ be bounded measurable and $m(A) < \infty$. For any $\alpha, \beta \in \mathbb{R}$

$$\int_{A} (\alpha f + \beta g) = \alpha \int_{A} f + \beta \int_{A} g$$

Proof: Let $\varphi_1, \varphi_2, \psi_1, \psi_2$ be simple function where $\varphi_1 \leq f \leq \psi_1$ and $\varphi_2 \leq g \leq \psi_2$, so

$$\begin{split} \int_{A} +f + g &= \overline{\int_{A}} f + g \leq \int_{A} (\psi_{1} + \psi_{2}) \\ &= \int_{A} \psi_{1} + \int_{A} \psi_{2} \\ &\leq \inf \left\{ \int_{A} \psi_{1} + \int_{A} \psi_{2} : f \leq \psi_{1}, g \leq \psi_{2} \right\} \\ &= \inf \left\{ \int_{A} \psi_{1} : f \leq \psi_{1} \; \operatorname{simple} \right\} + \inf \left\{ \int_{A} \psi_{2} : g \leq \psi_{2} \; \operatorname{simple} \right\} \\ &= \int_{A} f + \int_{A} g \end{split}$$

$$\int_{A} f + g = \underbrace{\int_{A}} f + g \ge \int_{A} \varphi_{1} + \varphi_{2}$$
$$= \int_{A} \varphi_{1} + \int_{A} \varphi_{2}$$

Similarly, by taking sup we have $\int_A f + g \ge \int_A f + \int_A g$, so we have the addition

$$\int_A f + g = \int_A f + \int_A g$$

Scalar multiple is similar, then the results follows.

Proposition 5.2.3

Let $f, g: A \to \mathbb{R}$ be bounded and measurable, $m(A) < \infty$. If $f \leq g$ then

$$\int_A f \le \int_A g$$

Proof:

$$\int_{A} (g - f) \ge \int_{A} 0 = 0 \quad \Longrightarrow \quad \int_{A} g - \int_{A} f \ge 0 \quad \Longrightarrow \quad \int_{A} g \ge \int_{A} f$$

5.3 Bounded Convergence Theorem

Proposition 5.3.1 Let $f: A \to \mathbb{R}$ be bounded and measurable, let $B \subseteq A$ be measurable and $m(A) < \infty$, then

$$\int_B f = \int_A (f \cdot \mathcal{X}_B)$$

Proof: If $f = \mathcal{X}_C$ and $C \subseteq A$ be measurable, then

$$\int_{A} \mathcal{X}_{C} \mathcal{X}_{B} = \int_{A} \mathcal{X}_{B \cap C} = m(B \cap C) = \int_{B} \mathcal{X}_{C|B}$$

If f is simple, let $f = \sum_{i=1}^{n} a_i \mathcal{X}_{A_i}$, then

$$\int_{A} f \mathcal{X}_{B} = \sum a_{i} \int_{A} \mathcal{X}_{A_{i}} \mathcal{X}_{B} = \sum a_{i} \int_{B} \mathcal{X}_{A_{i}} = \int_{B} \left(\sum a_{i} \mathcal{X}_{A_{i}} \right) = \int_{B} f$$

Now $f:A\to \mathbb{R}$ bounded and measurable, let $f\leq \psi$ be simple, so

$$\int_{A} f \mathcal{X}_{B} \leq \int_{A} \psi \mathcal{X}_{B} = \int_{B} \psi$$

By taking the inf over all such ψ , we have that

$$\int_{A} f \mathcal{X}_{B} \leq \overline{\int_{B}} f = \int_{B} f$$

Taking $\varphi \leq f, \varphi$ is simple, we obtain

$$\underline{\int_{B}} f = \int_{B} f \le \int_{A} f \mathcal{X}_{b}$$

as desired.

Proposition 5.3.2

Let $f: A \to \mathbb{R}$ be bounded measurable and $m(A) < \infty$. If $B, C \subseteq A$ are measurable and disjoint, then

$$\int_{B\cup C} f = \int_B f + \int_C f$$

Proof:

$$\int_{B\cup C} f = \int_A f \mathcal{X}_{B\cup C} = \int_A f \cdot (\mathcal{X}_B + \mathcal{X}_C) = \int_A f \mathcal{X}_B + \int_A f \mathcal{X}_C = \int_B f + \int_C f \mathcal{X}_C = \int_B f + \int_C f \mathcal{X}_C = \int_B f \mathcal{X}_C = \int_B f \mathcal{X}_C = \int_B f \mathcal{X}_C = \int_B f \mathcal{X}_C = \int_C f \mathcal{X}_C = \int_$$

Proposition 5.3.3

Let $f: A \to \mathbb{R}$ be bounded and measurable with $m(A) < \infty$, then

$$\left|\int_{A} f\right| \leq \int_{A} |f|$$

Proof:

$$-|f| \le f \le |f| \implies -\int_A |f| \le \int_A f \le \int_A |f|$$

we have

Take the absolve value we have

$$\left| \int_{A} f \right| \le \int_{A} |f|$$

as desired.

Proposition 5.3.4

Let (f_n) be bounded measurable sequence and $f_n : A \to \mathbb{R}$ with $m(A) < \infty$. If $f_n \to f$ uniformly then

$$\lim_{n \to \infty} \int_A f_n = \int_A f$$

Proof: Let $\varepsilon > 0$ be given and $N \in \mathbb{N}$ such that

$$|f_n - f| < \frac{\varepsilon}{m(A) + 1}$$

for $n \ge N$, then for $n \ge N$ we have

$$\left|\int_{A} f_n - \int_{A} f\right| = \left|\int_{A} (f_n - f)\right| \le \int_{A} |f_n - f| \le m(A) \cdot \frac{\varepsilon}{m(A) + 1} < \varepsilon$$

Example 5.1

Let $f_n: [0,1] \to \mathbb{R}$,

$$f_n(x) = \begin{cases} 0 & 0 \le n \le \frac{1}{n} \\ n & \frac{1}{n} \le x \le \frac{2}{n} \\ 0 & \frac{2}{n} \le x \end{cases}$$

We can see $f_n \to 0$ and

$$\int_{[0,1]} f_n = 1 \quad ext{and} \quad \int_{[0,1]} 0 = 1$$

Theorem 5.3.5 — Bounded Convergence Theorem.

Let (f_n) be a sequence of measurable functions and $f_n : A \to \mathbb{R}$ with $m(A) < \infty$. If $\exists M > 0$ such that $|f_n| \leq M$ for all n and $f_n \to f$ pointwise, then

$$\lim_{n \to \infty} \int_A f_n = \int_A f$$

Proof: Let $\varepsilon > 0$ be given, by **Egoroff's Theorem**, there exists measurable set $B \subseteq A$ and $N \in \mathbb{N}$ s.t. for $n \ge N$

$$|f_n - f| < \frac{\varepsilon}{2 \cdot (m(B) + 1)}$$
 and $m(A \setminus B) < \frac{\varepsilon}{4M}$

For $n \ge N$ we have

$$\left| \int_{A} f_{n} - \int_{A} f \right| \leq \int_{A} |f_{n} - f| = \int_{B} |f_{n} - f| + \int_{A \setminus B} |f_{n} - f|$$
$$\leq \int_{B} |f_{n} - f| + \int_{A \setminus B} (|f_{n}| + |f|)$$
$$\leq \int_{B} |f_{n} - f| + 2 \cdot M \cdot m(A \setminus B)$$
$$< \frac{\varepsilon}{2} + \frac{\varepsilon}{2}$$
$$= \varepsilon$$

5.4 Integration III

Definition 5.4.1

1. We say f has finite **support** if

$$A_0 \coloneqq \{x \in A : f(x) \neq 0\}$$

has finite measure.

2. We say f is **BF function** if f is bounded and has finite support.

3. If $f: A \to \mathbb{R}$ is **BF** then

$$\int_A f \coloneqq \int_{A_0} f$$

Definition 5.4.2

Let $f : A \to \mathbb{R}$ be measurable and $f \ge 0$, we define

$$\int_{A} f := \sup \left\{ \int_{A} h : 0 \le h \le f \; \; \mathbf{BF} \right\}$$

Proposition 5.4.1

Let $f, g: A \to \mathbb{R}$ be measurable function and $f, g \ge 0$, then

1. $\forall \alpha, \beta \in \mathbb{R}$

$$\int_{A} (\alpha f + \beta g) = \alpha \int_{A} f + \beta \int_{A} g$$

- 2. If $f \leq g$, then $\int_A f \leq \int_A g$ 3. If $B, C \subseteq A$ are measurable and $B \cap C = \emptyset$, then

$$\int_{B\cup C} f = \int_B f + \int_C f$$

Proposition 5.4.2 — Chebychev's Inequality.

 $f:A\to \mathbb{R}$ be non-negative measurable function, then for all $\varepsilon>0$

$$m(\{x \in A : f(x) \ge \varepsilon\}) \le \frac{1}{\varepsilon} \int_A f$$

Proof: Let $\varepsilon > 0$ be given and let

$$A_{\varepsilon} = \{ x \in A : f(x) \ge \varepsilon \}$$

such that $m(A_{\varepsilon}) < \varepsilon$ and $\underbrace{\varphi}_{\mathbf{BF}} = \varepsilon \cdot \mathcal{X}_{A_{\varepsilon}} \leq f$, so $\varepsilon m(A_{\varepsilon}) = \int_{A} \varphi \leq \int_{A} f$ If $m(A_{\varepsilon}) = \infty$, for $n \in \mathbb{N}$ define $A_{\varepsilon,n} \coloneqq A_{\varepsilon} \cap [-n, n]$. By the continuity of measure

$$\infty = m(A_{\varepsilon}) = \lim_{n \to \infty} m(A_{\varepsilon,n})$$

For $n \in \mathbb{N}$, $\varphi_n = \varepsilon \mathcal{X}_{A_{\varepsilon,n}}$ (BF) we see that $\varphi_n \leq f$. Therefore, we have

$$\infty = m(A_{\varepsilon}) = \lim_{n \to \infty} m(A_{\varepsilon,n}) = \lim_{n \to \infty} \frac{1}{\varepsilon} \int_{A} \varphi_n \le \int_{A} f$$

Proposition 5.4.3

Let $f: A \to \mathbb{R}$ with $f \ge 0$, then

$$\int_A f = 0 \iff f = 0 \text{ ac}$$

Proof: $\Longrightarrow \int_A f = 0.$

$$m(\{x \in A : f(x) \neq 0\}) \le \sum m\left(\left\{x \in A : f(x) \ge \frac{1}{n}\right\}\right) \le \sum n \cdot \underbrace{\int_{A} f}_{=0} = 0$$

 \iff Suppose $B = \{x \in A : f(x) \neq 0\}$ has measure 0, so

$$\int_{A} f = \int_{B} f + \underbrace{\int_{A \setminus B} f}_{=0} = \int_{B} f = 0$$

5.5 Fatou's Lemma and MCT

Theorem 5.5.1 — Fatou's Lemma.

Let (f_n) be a measurable, non-negative sequence of functions and $f_n : A \to \mathbb{R}$. If $f_n \to f$ pointwise then

$$\int_A f \le \liminf \int_A f_n$$

Proof: Let $0 \le h \le f$ be a **BF** function, we say $A_0 = \{x \in A : h(x) \ne 0\}$. It's suffices to show

$$\int_A h \le \liminf \int_A f_n$$

Since for each $n \in \mathbb{N}$ we let

 $h_n = \min\{h, f_n\}$ measurable

Note:

1. $0 \le h_n \le h \le M$ for some M > 0 for all $n \in \mathbb{N}$.

2. For $x \in A_0$ and $n \in \mathbb{N}$, (a) $h_n(x) = h(x)$ or (b) $h_n(x) = f_n(x) \leq h(x)$ and

$$0 \le h(x) - h_n(x) = h(x) - f_n(x) \le f(x) - f_n(x) \to 0$$

Then $h_n \to h$ pointwise on A_0 . By **BCT**

$$\lim_{n \to \infty} \int_{A_0} h_n = \int_{A_0} h \implies \lim_{n \to \infty} \int_A h_n = \int_A h_n$$

Since $h_n \leq f_n$ on A, so

$$\int_{A} h = \lim_{n \to \infty} \int_{A} h_n = \lim_{n \to \infty} \inf \int_{A} h_n \le \lim_{n \to \infty} \inf \int_{A} f_n$$

■ Example 5.2

Let A = (0, 1] and $f_n = n \cdot \mathcal{X}_{(0, \frac{1}{n})}$, so $f_n \to 0$ pointwise. We also have

$$\int_{A} 0 = 0 \quad \int_{A} f_n = n \cdot m\left(0, \frac{1}{n}\right) = 1 \quad \lim_{n \to \infty} \inf \int_{A} f_n = 1$$

Theorem 5.5.2 — MCT. Let (f_n) be a non-negative measurable function and $f_n : A \to \mathbb{R}$. If (f_n) is increasing and $f_n \to f$ pointwise then

$$\lim_{n \to \infty} \int_A f_n = \int_A f$$

Proof:

$$\int_{A} f \underbrace{\leq}_{\mathbf{FL}} \lim_{n \to \infty} \inf \int_{A} f_n \leq \lim_{n \to \infty} \sup \int_{A} f_n \leq \int_{A} f_n$$

Remark 5.1

1. If $\varphi: A \to \mathbb{R}$ is simple and $m(A) < \infty$ then

$$\int_A \varphi < \infty$$

2. If $f: A \to \mathbb{R}$ is bounded and measurable, also $m(A) < \infty$, then

$$\int_A f < \infty$$

Definition 5.5.1

If $f: A \to \mathbb{R}$ is measurable and $f \ge 0$, then we say f is **integrable** iff

$$\int_A f < \infty$$

5.6 Integration IV

The general integral

Definition 5.6.1

Let $f: A \to \mathbb{R}$ be measurable function

$$f^+(x) = \max \{f(x), 0\}$$
 positive part
 $f^-(x) = \max \{-f(x), 0\}$ negative part

Note:

$$f^+ + f^- = |f|$$
 $f^+ - f^- = f$ f^+, f^- are measurable

Proposition 5.6.1

Let $f : A \to \mathbb{R}$ be measurable function, then f^+, f^- are **integrable** if and only if |f| is **integrable**

Proof: \Longrightarrow :

$$|f| = f^+ + f^- \implies \int_A |f| = \underbrace{\int_A f^+}_{<\infty} + \underbrace{\int_A f^-}_{<\infty}$$

⇐=:

$$\int_A f^+ \leq \int_A |f| < \infty \qquad \int_A f^- \leq \int_A |f| < \infty \implies f^+, f^- \text{ are integrable}$$

Definition 5.6.2 — Integrable Function.

Let $f : A \to \mathbb{R}$ be measurable, we say f is **integrable** if and only if |f| is **integrable** if and only if f^+, f^- are **integrable**, and we define

$$\int_A f = \int_A f^+ - \int_A f^-$$

Proposition 5.6.2 — Comparison Test.

Let $f:A\to\mathbb{R}$ be measurable, $g:A\to\mathbb{R}$ be non-negative and integrable. If $|f|\leq g$ then f is integrable and

$$\left|\int_{A} f\right| \leq \int_{A} |f|$$

Proof:

$$\begin{split} \int_A |f| &\leq \int_A g < \infty \quad \Longrightarrow \quad f \text{ is integrable} \\ \left| \int_A f \right| &= \left| \int_A f^+ - \int_A f^- \right| \leq \int_A f^+ + \int_A f^- = \int_A (f^+ + f^-) = \int_A |f| \\ \end{split}$$

Proposition 5.6.3

Let $f, g: A \to \mathbb{R}$ be integrable

1.
$$\forall \alpha, \beta \in \mathbb{R}, \, \alpha f + \beta g \text{ is integrable and } \int_a \alpha f + \beta g = \alpha \int_A f + \beta \int_A g$$

2. If $f \leq g$, then $\int_A f \leq \int_A g$
3. If $B, C \subseteq A$ are measurable with $B \cap C = \emptyset$, then $\int_{B \cup C} = \int_B f + \int_C f$

Theorem 5.6.4 — Lebesgue Dominated Convergence Theorem.

Let (f_n) be a sequence of measurable function with $f_n : A \to \mathbb{R}$ and $f_n \to f$ pointwise. If there exists an integrable $g : A \to \mathbb{R}$ such that $|f_n| \leq g$ for all $n \in \mathbb{N}$, then f is integrable and

$$\lim_{n \to \infty} \int_A f_n = \int_A f$$

Proof: Since we can see that $|f_n| \to |f|$ pointwise and $|f_n| \leq g$, and so $|f| \leq g$. By comparison, f is integrable. Next, observe that $g - f \geq 0$, by Fatou's Lemma

$$\int_{A} g - \int_{A} f = \int_{A} (g - f) \le \lim_{n \to \infty} \inf \int_{A} (g - f_n) = \int_{A} g - \lim_{n \to \infty} \sup \int_{A} f_n$$

Then, cancel the g we have

$$\lim_{n \to \infty} \sup \int_A f_n \le \int_A f$$

Also

$$\int_{A} g + \int_{A} f = \int_{A} (g + f) \le \lim_{n \to \infty} \inf \int_{A} (g + f_n) = \int_{A} f + \lim_{n \to \infty} \inf \int_{A} f_n$$

Then, cancel the g again we have

$$\int_{A} f \le \lim_{n \to \infty} \inf \int_{A} f_n$$

so we have

$$\int_{A} f = \lim_{n \to \infty} \inf \int_{A} f_n = \lim_{n \to \infty} \sup \int_{A} f_n = \lim_{n \to \infty} \int_{A} f_n$$

which completes the proof.

5.7 Riemann Integration

Definition 5.7.1 — Riemann Sum.

Let $f:[a,b] \to \mathbb{R}$ be bounded function

1. A **partition** of [a, b] is a finite set $P = \{x_0, x_1, ..., x_n\} \subseteq \mathbb{R}$ such that

 $a = x_0 < x_1 < x_2 < \dots < x_n = b$

2. Relative to P, we define the **lower Darboux sum:**

$$L(f,P) = \sum_{i=1}^{n} m_i (x_i - x_{i-1}) \quad \text{where} \quad m_i = \inf \{ f(x) : x \in [x_{i-1}, x_i] \}$$

3. Similarly, we define the **upper Darboux sum:**

$$U(f,P) = \sum_{i=1}^{n} M_i(x_i - x_{i-1}) \quad \text{where} \quad M_i = \sup \{f(x) : x \in [x_{i-1}, x_i]\}$$

Definition 5.7.2

Let $f : [a, b] \to \mathbb{R}$ be bounded function

1. Lower Riemann Integral:

$$R \underline{\int_{a}^{b}} f = \sup \left\{ L(f, P) : \mathbf{P} \text{ is a partition} \right\}$$

1. Upper Riemann Integral:

$$R\overline{\int_{a}^{b}}f = \inf \left\{ U(f, P) : \mathbf{P} \text{ is a partition} \right\}$$

3. We say f is Riemann Intetrable if and only if

$$R\overline{\int_{a}^{b}}f = R\underline{\int_{a}^{b}}f$$

Definition 5.7.3 — Step Function.

Let $I_i, ..., I_n$ be pointwise disjoint intervals such that

$$[a,b] = \bigcup_{i=1}^{n} I_i$$

A Step function is a function of the form

$$f = \sum_{i=1}^{n} a_i \mathcal{X}_{I_i}$$

for some $a_i \in \mathbb{R}$

■ Remark 5.2 Let $f : [a, b] \to \mathbb{R}$ be a bounded function and

$$a = x_0 < x_1 < \dots < x_n = b$$

and $I_i = [x_{i-1}, x_i]$ for i = 1, 2, ..., n-1 and $I_n = [x_{n-1}, x_n]$. Then

$$L(f,P) = \sum_{i=1}^{n} m_i \ell(I_i) = R \int_a^b \varphi$$

where $\varphi(x) = m_i$ on $I_i \ (\varphi \leq f)$ and

$$U(f,P) = \sum_{i=1}^{n} M_i \ell(I_i) = R \int_a^b \psi$$

where $\psi(x) = M_i$ on I_i $(f \leq \psi)$ and

Remark 5.3 Let $f : [a, b] \to \mathbb{R}$ be a bounded function, then

$$R \underline{\int_{a}^{b}} f = \sup \left\{ L(f, P) : \mathbf{P} \text{ is a partition} \right\} = \sup \left\{ R \int_{a}^{b} \varphi : \varphi \leq f \text{ is a step function} \right\}$$

and

$$R\overline{\int_{a}^{b}}f = \inf\left\{U(f,P): \mathbf{P} \text{ is a partition}\right\} = \inf\left\{R\int_{a}^{b}\psi: f \leq \psi \text{ is a step function}\right\}$$

5.8 Riemann Integral VS Lebesgue Integral

Definition 5.8.1

Let $f:[a,b] \to \mathbb{R}$ be bounded function and let $x \in [a,b]$ and $\delta > 0$

1.

$$m_{\delta}(x) = \inf \left\{ f(x) : x \in (x - \delta, x + \delta) \cap [a, b] \right\}$$

2.

$$M_{\delta}(x) = \sup \left\{ f(x) : x \in (x - \delta, x + \delta) \cap [a, b] \right\}$$

3. Lower boundary of f:

$$m(x) = \lim_{\delta \to 0} m_{\delta}(x)$$

4. Upper boundary of f:

 $M(x) = \lim_{\delta \to 0} M_{\delta}(x)$ 5. Oscillation of f: $\omega(x) = M(x) - m(x)$

Remark 5.4 Let $f : [a, b] \to \mathbb{R}$ be bounded function, the following are equivalent:

f is continuous at x ∈ [a, b]
 M(x) = m(x)
 ω(x) = 0

Lemma 5.8.1 Let $f : [a, b] \to \mathbb{R}$ be bounded function, then

- 1. m is measurable
- 2. If $\varphi : [a, b] \to \mathbb{R}$ is a step function with $\varphi \leq f$, then

 $\varphi(x) \le m(x)$

at all points of continuity of φ

3.
$$R \underline{\int_{a}^{o}} f = \int_{[a,b]} m$$

Proof 1: Let $\alpha \in \mathbb{R}$ and $c \in [a, b]$ s.t. $m(c) > \alpha$. Choose any $m(c) > \beta > \alpha$, by the definition of m, there exists $\varepsilon > 0$ such that $m_{\varepsilon} > \beta$. However, this means that $f(x) > \beta$ for any $x \in (c - \varepsilon, c + \varepsilon) \cap [a, b]$. Take $x \in (c - \varepsilon, c + \varepsilon) \cap [a, b]$ so that there exists $\delta > 0$ such that $(x - \delta, x + \delta) \cap [a, b] \subseteq (c - \varepsilon, c + \varepsilon) \cap [a, b]$. It follows that $m_{\delta}(x) \ge \beta$ and so $m(x) \ge m_{\delta}(x) \ge \beta > \alpha$ as well. Therefore, $\{c \in [a, b] : m(c) > \alpha\}$ is relatively open in [a, b] (i.e. is the intersection of an open set and [a, b]) and so is measurable.

Proof 2: Suppose $\varphi \leq f$ is a step function and let x be a point of continuity of φ . Since x is not an endpoint of a middle step, we see that there exists $\delta > 0$ and $z \in \mathbb{R}$ such that $\varphi(y) = z$ for all $y \in (x - \delta, x + \delta) \cap [a, b]$. Therefore, for all $y \in (x - \delta, x + \delta) \cap [a, b]$, we have $f(y) \geq \varphi(y) = z$. Hence, $m(x) \geq m_{\delta}(x) \geq z = \varphi(x)$ as required.

Proof 3: We begin by observing that if $\varphi \leq f$ is a step function then, by (2) $\varphi \leq m$ a.e. Therefore

$$R \underline{\int_{a}^{b}} f = \sup \left\{ R \int_{a}^{b} \varphi : \varphi \le f \text{ step} \right\} = \sup \left\{ \int_{[a,b]} \varphi : \varphi \le f \text{ step} \right\} \le \int_{[a,b]} m$$

by monotonicity **a.e.**

Now for each $n \in \mathbb{N}$, let $P_n = \{a = x_0 < x_1 < \dots < x_{2^n} = b\}$, where each $x_i - x_{i-1} = \frac{b-a}{2^n}$.

Then let $I_{n,1} = [a, x_1]$ and $I_{n,k} = (x_{k-1}, x_k]$ for $2 \le k \le n$. Define a step function $\varphi_n \le f$ by setting $\varphi_n(x) = \inf \{f(x) : x \in I_{n,k}\}$ for all $x \in I_{n,k}$. Let $P = \bigcup_{i=1}^{\infty} P_i$ and note that P has measure 0 (countable)

Fix $x \in [a,b] \setminus P$. For all $n \in \mathbb{N}$, let $I_n(x)$ denote the interval $I_{n,k}$ (as above) which contains x. Let $\delta > 0$ be given and let $N \in \mathbb{N}$ be such that $I_n(x) \subseteq (x - \delta, x + \delta)$ for all $n \geq N$. By (2), for $n \geq N$ we have

$$m(x) \ge \varphi_n(x) \ge m_\delta(x)$$

as $\delta \to 0$ (and so $N \to \infty$) we see that

$$\lim_{n \to \infty} \varphi_n(x) = m(x)$$

In particular, we have that $\varphi_n \to m$ pointwise **a.e.** Let $\alpha \in \mathbb{R}$ such that $|f| \leq \alpha$. Then $|\varphi_n| \leq \alpha$ for every *n*, where constant function α is integrable over [a, b] and so we have by **LDCT** that

$$\lim_{n \to \infty} \int_{[a,b]} \varphi_n = \int_{[a,b]} m$$

Since the Riemann and Lebesgue integrals clearly agree for step functions:

$$\lim_{n \to \infty} R \int_{a}^{b} [\varphi_n] = \int_{[a,b]} m$$

Therefore,

$$\int_{[a,b]} m = \lim_{n \to \infty} R \int_a^b \varphi_n \le \sup \left\{ R \int_a^b \varphi : \varphi \le f \text{ step} \right\} = R \underline{\int_a^b} f$$

Lemma 5.8.2

Let $f:[a,b] \to \mathbb{R}$ be bounded function, then

1. M is measurable

2. If $\psi : [a, b] \to \mathbb{R}$ is a step function with $f \leq \psi$, then

$$M(x) \le \psi(x)$$

at all points of continuity of ψ

3.
$$R \int_{a}^{b} f = \int_{[a,b]} M$$

Proof: Similar as the last lemma.

Theorem 5.8.3 — Lebesgue.

Let $f : [a, b] \to \mathbb{R}$ be bounded function, then f is **Riemann Integrable** if and only if f is continuous **a.e.**. In that case:

$$R\int_{a}^{b} f = \int_{[a,b]} f$$

Proof: Note that

$$R \underline{\int_{a}^{b}} f = \int_{[a,b]} m \le \int_{[a,b]} M = R \underline{\int_{a}^{b}} f$$

so f is **Riemann integrable**. Then

$$\begin{split} \int_{[a,b]} m &= \int_{[a,b]} M \iff \int_{[a,b]} (M-m) = 0 & \iff M = m \text{ a.e.} \\ & \iff \omega = 0 \text{ a.e.} \\ & \iff f \text{ is continuous a.e.} \end{split}$$

If f is continuous **a.e.**, then f is measurable and

$$R \underline{\int_{a}^{b}} f \leq \int_{[a,b]} m \leq \int_{[a,b]} f \leq \int_{[a,b]} M = R \underline{\int_{a}^{b}} f$$

Then we have

$$R\int_{a}^{b} f = \int_{[a,b]} f$$

as desired.

Example 5.3 Let $f : [0,1] \to \mathbb{R}$ where

$$f(x) = \begin{cases} 1 & x \in \mathbb{Q} \\ 0 & x \notin \mathbb{Q} \end{cases}$$

so f is discontinuous on [0, 1]. Then f is not Riemann Integrable However, f = 0 a.e. on [0, 1] and so

$$\int_{[0,1]} f = \int_{[0,1]} 0 = 0$$

so f is Lebesgue Integrable

Example 5.4 Let $\mathbb{Q} \cap [0,1] = \{q_1, q_2, \dots\}$ and $f_n = \mathcal{X}_{\{q_1,q_2,\dots,q_n\}}$ and $f_n \to f$ pointwise. Then f_n is increasing but $f_n \leq 1$, so

$$\underbrace{R\int_{[0,1]} f_n}_{=0} \nrightarrow \underbrace{R\int_{[0,1]} f}_{\mathbf{DNE}}$$

6.1 L^p Spaces

Goal: Create Banach Spaces whose norm is given by Lebesgue Integration. Recall

1. For $1 \leq p < \infty$, $(C([a.b]), \|\cdot\|_p)$ is a normed vector space, where

$$\|f\|_p^p = \int_a^b |f|^p$$

2. For $p = \infty$, $(C([a.b]), \|\cdot\|_{\infty})$:

$$||f||_{\infty} = \sup \{|f(x)| : x \in [a, b]\}$$

is a Banach space.

Problem: Let $A \subseteq \mathbb{R}$ be measurable and $1 \leq p < \infty$, then

$$\|f\|_p = \left(\int_A |f|^p\right)^{\frac{1}{p}}$$

is not a norm on the vector space of integrable function $f: A \to \mathbb{R}$. Because $\int_A |f|^p = 0 \iff f = 0$ a.e.

Definition 6.1.1

Let $A \subseteq \mathbb{R}$ be measurable.

1. $M(A) = \{f : A \to \mathbb{R} \text{ measurable}\}$ (vector space). $f \sim g$ if and only if f = g a.e.. The [f] is the equivalence class

2. $M(A)/\sim = \{[f] : f \in M(A)\}$ (vector space) and $\alpha[f] + \beta[g] = [\alpha f + \beta g]$

Remark 6.1 If $f \sim g$ and f is integrable, then g is integrable and $\int_A f = \int_A g$

Definition 6.1.2 — L^p Space.

Let $A \subseteq \mathbb{R}$ be measurable set and $1 \leq p < \infty$, the L^p space is defined by

$$L^{p}(A) = \left\{ [f] \in M(A) / \sim : \int_{A} |f|^{p} < \infty \right\}$$

■ Remark 6.2 Suppose $[f], [g] \in L^p(A)$, then $\int_A |f|^p, \int_A |g|^p < \infty$

1.

$$|f + g|^p \le (|f| + |g|)^p \le (2 \max\{|f|, |g|\})^p \le 2^p (|f|^p + |g|^p)$$

Then $|f + g|^p$ is integrable by comparison.

2. $L^p(A)$ is a subspace of $M(A)/\sim$

Definition 6.1.3 — L^{∞} **Space.** Let $A \subseteq \mathbb{R}$ be measurable set, then $L^{\infty}(A)$ is defined by

$$L^{\infty}(A) = \{[f] \in M(A) / \sim: f \text{ is bounded a.e.} \}$$

■ Remark 6.3 1. $[f], [g] \in L^{\infty}(A)$, we have $|f| \leq M$ and $|g| \leq N$, so we can find $B, C \subseteq A$ s.t. m(B) = m(C) = 0. For $x \notin B \cup C$, we have

$$|f(x) + g(x)| \le |f(x)| + |g(x)| \le M + N$$

2. $L^{\infty}(A)$ is a subspace of $M(A)/\sim$

Remark 6.4 For all $n \in \mathbb{N}$,

$$|f| \le ||[f]||_{\infty} + \frac{1}{n} \text{ off } m(A_n) = 0$$

and

$$B = \bigcup_{i=1}^{\infty} A_n \to$$
 measure 0

so $|f| \leq ||[f]||_{\infty}$ off B.

Proposition 6.1.1 Let $A \subseteq \mathbb{R}$ be measurable set, then

$$\|[f]\|_{\infty} = \inf \{M \ge 0 : |f| \le M \text{ a.e.} \}$$

is a norm on $L^{\infty}(A)$

Proof: 1. $\|[f]\|_{\infty} = 0 \implies |f| \le \|[f]\|_{\infty}$ a.e. so [f] = [0] in $L^{\infty}(A)$

2. $|f| \leq ||[f]||_{\infty}$ off B and $|g| \leq ||[g]||_{\infty}$ off C, off $B \cup C \rightarrow$ measure 0, then

 $|f+g| \le |f| + |g| \le \|[f]\|_{\infty} + \|[g]\|_{\infty}$

By the definition of inf, we have

 $\|[f+g]\|_{\infty} = \|[f]+[g]\|_{\infty} \le \|[f]\|_{\infty} + \|[g]\|_{\infty}$

Abusive Notation

$$f \equiv [f] \in L^p(A)$$

and f = g in $L^{p}(A)$ means f = g a.e.

Definition 6.1.4 — Holder Conjugates.

For $p \in (1, \infty)$ we define $q = \frac{p}{p-1}$ to be the **Holder conjugates** of p

Note:

1. $q = \frac{p}{p-1} \iff p = \frac{q}{q-1}$ 2. $\frac{1}{p} + \frac{1}{q} = 1$ 3. We also define 1 and ∞ to be **Holder conjugates** **Proposition 6.1.2** — Young's Inequality. Let $p, q \in (1, \infty)$ be Holder conjugates, for all a, b > 0

$$ab \le \frac{a^p}{p} + \frac{b^q}{q}$$

Proof:We define $f(x) = \frac{1}{p}x^p + \frac{1}{q} - x$ where $x \in (0, \infty)$. Then we have $f'(x) = x^{p-1} - 1$ and $f''(x) = (p-1)x^{p-2}$. When f'(x) = 0, we can get the critical point of f(x) at x = 1. Since the Holder conjugates $p, q \in (1, \infty)$, then $f''(x) = (p-1)x^{p-2} > 0$ for all $x \in (0, \infty)$. Therefore, we can know f(x) has global minimum at x = 1. Since We have $\frac{1}{p} + \frac{1}{q} = 1$, so $f(1) = \frac{1}{p} + \frac{1}{q} - 1 = 0$, then $f(x) \ge 0$ on $x \in (0, \infty)$. Now we take $x = \frac{a}{b^{\frac{q}{p}}}$, then $f(\frac{a}{b^{\frac{q}{p}}}) = \frac{1}{p} \cdot \left(\frac{a}{b^{\frac{q}{p}}}\right)^p + \frac{1}{q} - \frac{a}{b^{\frac{q}{p}}} \ge 0 \Longrightarrow \frac{1}{p} \cdot \frac{a^p}{b^q} + \frac{1}{q} - \frac{a}{b^{\frac{q}{p}}} \ge 0$ $\Longrightarrow \frac{a^p}{p} + \frac{b^q}{q} \ge ab^{q-\frac{q}{p}}$ Since $\frac{1}{p} + \frac{1}{q} = 1$, then we have $q - \frac{q}{p} = q \cdot \left(1 - \frac{1}{p}\right) = q \cdot \frac{1}{q} = 1$ Therefore, by $\frac{a^p}{p} + \frac{b^q}{q} \ge ab^{q-\frac{q}{p}}$ and $q - \frac{q}{p} = 1$, we have $\frac{a^p}{p} + \frac{b^q}{q} \ge ab$ as desired.

Proposition 6.1.3

Let $A \subseteq \mathbb{R}$ be measurable set and $1 \leq p < \infty$ and q is the **Holder conjugate** of p. If $f \in L^p(A)$ and $g \in L^q(A)$, then $fg \in L^1(A)$ and

$$\int_A |fg| \le \|f\|_p \|g\|_q$$

Proof: If p = 1 and $q = \infty$,

$$\left|fg\right| \leq \left|f\right| \left|g\right| \leq \left|f\right| \left\|g\right\|_{\infty} \ \text{ a.e. }$$

then $fg \in L^1(A)$. If 1 and q is the**Holder conjugate**of p, so

$$|fg| = |f||g| \le rac{|f|^p}{p} + rac{|g|^q}{q}$$
 by Young's Inequality

so fg is integrable by comparison, then $fg \in L^1(A)$. Also we have

$$\int_{A} |fg| \le \frac{1}{p} \int_{A} |f|^{p} + \frac{1}{q} \int_{A} |g|^{q} = \frac{1}{p} ||f||_{p}^{p} + \frac{1}{q} ||g||_{q}^{q}$$

Now we have two cases, Case 1: $\left\|f\right\|_{p}=\left\|g\right\|_{q}=1,$ so

$$\int_{A} |fg| \leq \frac{1}{p} + \frac{1}{q} = 1 = \|f\|_{p} \|g\|_{q}$$

Case 2: $\frac{f}{\|f\|_p},\,\frac{g}{\|g\|_q}$ by case 1 we have

$$\frac{1}{\|f\|_p \|g\|_q} \int_A |fg| \le 1$$

Lemma 6.1.4 Let p, q be Holder conjugate and $f \in L^p(A)$, if $f \neq 0$

$$f^* = ||f||_p^{1-p} \operatorname{sign}(f)|f|^{p-1}$$

is in $L^q(A)$ and

$$\int_{A} ff^{*} = \|f\|_{p}, \ \|f^{*}\|_{q} = 1$$

Proof: If p = 1 and $q = \infty$, we have

$$f^* = \operatorname{sign}(f) \in L^{\infty}(A)$$

and

$$\int_{A} ff^{*} = \int_{A} |f| = \|f\|_{1}$$

2. If 1 and q is the**Holder conjugate**of p,

$$\int_{A} ff^{*} = \|f\|_{p}^{1-p} \int_{A} |f|^{p} = \|f\|_{p}^{1-p} \|f\|_{p}^{p} = \|f\|_{p}$$

and

$$\|f^*\|_q^q = \|f\|_p^{(1-p)q} \int_A |f|^{(p-1)q} = \|f\|_p^{-p} \int_A |f|^p = \|f\|_p^{-p} \|f\|_p^p = 1$$

Theorem 6.1.5 — Minkowski's Inequality. Let $A \subseteq \mathbb{R}$ be measurable and $1 \leq p < \infty$. If $f, g \in L^p(A)$, then

$$\|f+g\|_p \le \|f\|_p + \|g\|_p$$

Proof: If p = 1, the result is trivial. Now we look at 1 , we can see that

$$\begin{split} \|f+g\|_p &= \int_A (f+g)(f+g)^* = \int_A f(f+g)^* + \int_A g(f+g)^* \\ &\leq \|f\|_p \|(f+g)^*\|_q + \|g\|_p \|(f+g)^*\|_q \\ &= \|f\|_p + \|g\|_p \end{split}$$

6.2 Completeness

Theorem 6.2.1 — Riesz-Fisher.

For every measurable set $A \subseteq \mathbb{R}$ and $1 \leq p \leq \infty$, $L^p(A)$ is a **Banach Space**

Proof: If $p = \infty$, it's trivial. Now we look at $1 \le p < \infty$. Let $(f_n) \subseteq L^p(A)$ be strongly Cauchy. Then there exists $(\varepsilon_n) \subseteq \mathbb{R}$ such that

$$\|f_{n+1} - f_n\|_p \le \varepsilon_n^2$$
 and $\sum \varepsilon_n < \infty$

Since \mathbb{R} is complete, if $(f_n(x))$ is strongly Cauchy, then it converges. Now for each $n \in \mathbb{N}$, we define

$$A_n := \{x \in A : |f_{n+1}(x) - f_n(x)| \ge \varepsilon\} = \{x \in A : |f_{n+1}(x) - f_n(x)|^p \ge \varepsilon^p\}$$

By Chebychev's Inequality

$$m(A_n) \le \frac{1}{\varepsilon_n^p} \int_A |f_{n+1} - f_n|^p \le \frac{1}{\varepsilon_n^p} \cdot \varepsilon_n^{2p} = \varepsilon_n^p$$

Then we have

$$\sum m(A_n) \le \sum \varepsilon_n^p \le \left(\sum \varepsilon_n^p\right) < \infty$$

so $m\left(\lim_{n\to\infty}\sup A_n\right) = 0$. Now we fix $x \notin \lim_{n\to\infty}\sup A_n$, let

$$N = \max\left\{n : x \in A_n\right\}$$

and for n > N,

$$|f_{n+1}(x) - f_n(x)| < \varepsilon_n^2$$
 and $\sum \varepsilon_i < \infty$

so $(f_n(x))$ is Cauchy. Then $f_n \to f$ pointwise **a.e.**. For $k \in \mathbb{N}$, we have

$$\|f_{n+k} - f_n\|_p \le \sum_{i=n}^{\infty} \varepsilon_i^2$$

so $|f_{n+k} - f_n|^p \to |f_n - f|^p$ pointwise **a.e.** as $k \to \infty$. By **Fatou's Lemma** we have

$$\int_{A} |f_n - f|^p \le \lim_{k \to \infty} \inf \int_{A} |f_{n+k} - f_n|^p = \lim_{k \to \infty} \inf \|f_{n+k} - f_n\|_p^p \le \left[\sum_{i=n}^{\infty} \varepsilon_i^2\right]^p \to 0$$

6.3 Separability

Example 6.1 Let $p = \infty$, suppose $\{f_n : n \in \mathbb{N}\}$ is dense in $L^{\infty}[0, 1]$. For every $x \in [0, 1]$ we may find

$$\left\|\mathcal{X}_{0,x} - f_{\theta(x)}\right\|_{\infty} < \frac{1}{2}$$

For $x \neq y$ in [0, 1],

$$\left\|\mathcal{X}_{[0,x]-\mathcal{X}_{0,y}}\right\|_{\infty} = 1$$

so $\theta: [0,1] \to \mathbb{N}$ is injective, which is a contradiction

Notation:

- 1. $\operatorname{Simp}(A) = \operatorname{simple} \operatorname{functions} \operatorname{on} \operatorname{measurable} \operatorname{set} A$
- 2. Step[a, b] = Step functions on [a, b]
- 3. $\operatorname{Step}_{\mathbb{Q}}[a, b] = \operatorname{step}$ functions on [a,b], with rational partition function values.

Proposition 6.3.1

Let $A \subseteq \mathbb{R}$ be measurable and $1 \leq p < \infty$, then $\operatorname{Simp}(A)$ is dense in $L^p(A)$

Proof: Let $f \in L^p(A)$ so f is measurable. Then $\exists (\varphi_n)$ simple function so that $\varphi_n \to f$ pointwise and $|\varphi_n| \leq |f|$, then $|\varphi_n|^p \leq |f|^p$. By comparison we have $(\varphi_n) \subseteq L^p(A)$. Note that

$$\|\varphi_n - f\|_p^p = \int_A |\varphi_n - f|^p$$
 and $|\varphi_n - f|^p \le 2^p (|\varphi_n|^p + |f|^p) \le 2^{p+1} |f|^p$

which is integrable. By **LDCT** we have

$$\lim_{n \to \infty} \int_{A} |\varphi_n - f|^p \int_{A} 0 = 0$$

as desired. (This is also true for $p = \infty$)

Proposition 6.3.2 Step[a, b] is dense in $L^p[a, b]$

Proof: Let $A \subseteq [a, b]$ be measurable, so $\mathcal{X}_A : [a, b] \to \mathbb{R}$. By Littlewood I, so for any $\varepsilon > 0$, there exists a collection of bounded open interval such that the disjoint union $\bigcup_{i=1}^{n} I_i = U$ and $m(U\Delta A) < \varepsilon^p$. Since \mathcal{X}_U is a step function so

$$\|\mathcal{X}_U - \mathcal{X}_A\|_p^p = \int_A |\mathcal{X}_U - \mathcal{X}_A| = m(A\Delta U)$$

so we have $\|\mathcal{X}_U - \mathcal{X}_A\| < \varepsilon$ as desired.

Corollary 6.3.3

Let $1 \leq p < \infty$, Step_{\mathbb{O}}[a, b] is dense in $L^p[a, b]$, then $L^p[a, b]$ is separable.

Proposition 6.3.4

Let $1 \leq p < \infty$, $L^p(\mathbb{R})$ is separable

Proof: Consider to define $F_n = f \in L^p(\mathbb{R})$ where

$$F_n = \begin{cases} \operatorname{Step}_{\mathbb{Q}}[-n,n] & \text{if } x \in [-n,n] \\ 0 & \text{if } x \notin [-n,n] \end{cases}$$

So we have $F = \bigcup_{i=1}^{\infty} F_i$ is countable. Take $f \in L^p(\mathbb{R})$, fix $n \in \mathbb{N}$ so $f \mid_{[-n,n]} \in L^p[-n,n]$, we show

$$f\mathcal{X}_{[-n,n]} \to f \text{ in } L^p(\mathbb{R})$$

Note that

$$\left\| f\mathcal{X}_{[-n,n]} - f \right\|_{p}^{p} = \int_{\mathbb{R}} \left| f\mathcal{X}_{[-n,n]} - f \right|^{p} = \int_{\mathbb{R} \setminus [-n,n]} \left| f \right|^{p} = \int_{\mathbb{R}} \left| f \right|^{p} \mathcal{X}_{\mathbb{R} \setminus [-n,n]}$$

and

$$\left|\left|f\right|^p\mathcal{X}_{\mathbb{R}\setminus[-n,n]}
ight|\leq\left|f
ight|^p\quad ext{integrable}$$

By \mathbf{LDCT} we have

$$\lim_{n \to \infty} \left\| f \mathcal{X}_{[-n,n]} - f \right\|_p^p = \lim_{n \to \infty} \int_{\mathbb{R}} \left| f \mathcal{X}_{[-n,n]} - f \right|^p = \int_{\mathbb{R}} 0 = 0$$

so $\|f\mathcal{X}_{[-n,n]} - f\|_p \to 0$. Then for each $n \in \mathbb{N}$, $\exists \varphi_n \in F$ such that $\|f\mathcal{X}_{[-n,n]} - f\|_p < \frac{1}{n}$ so $\|\varphi_n - f\|_p \to 0$ as desired.

Theorem 6.3.5

Let $A \subseteq \mathbb{R}$ be measurable set and $1 \leq p < \infty$, then $L^p(A)$ is separable.

Proof: Similar as above.

7.1 Hilbert Spaces

We let $\mathbb{F} = \mathbb{R}$ or \mathbb{C}

Definition 7.1.1

Let V be a vector space over \mathbb{F} . An inner product on V is a map $\langle \cdot, \cdot \rangle : V \times V \to \mathbb{F}$ such that

1. $\forall v \in V, \langle v, v \rangle \in \mathbb{R}$ and $\langle v, v \rangle \ge 0$ with $\langle v, v \rangle = 0$ if and only if v = 0

- 2. For all $v, w \in V$, $\langle v, w \rangle = \overline{\langle w, v \rangle}$ (complex conjugate)
- 3. For all $\alpha \in F$, $u, v, w \in V$, $\langle \alpha u + v, w \rangle = \alpha \langle u, w \rangle + \langle v, w \rangle$

We call $(V, \langle \cdot, \cdot \rangle)$ an inner product space.

Proposition 7.1.1

Let V be a inner product space, then $||v|| = \sqrt{\langle v, v \rangle}$ is a norm on V. We call $||\cdot||$ the norm induced by $\langle v, v \rangle$.

Example 7.1 Let $A \subseteq \mathbb{R}$ be measurable, $V = L^2(A)$ with

$$\langle f,g\rangle = \int_A fg$$

is an inner product space. Note that

$$\sqrt{\langle f, f \rangle} = \left(\int_A |f|^2 \right)^{\frac{1}{2}} = \|f\|_2$$

Example 7.2 Let $A \subseteq \mathbb{R}$ be measurable, $V = L^2 3(A, \mathbb{C})$ (see A3) with

$$\langle f,g\rangle = \int_A f\overline{g}$$

so we can see $\sqrt{\langle f,f\rangle} = \|f\|_2$

Proposition 7.1.2 — Porollelogrom Law. Let V be a inner product space, for all $u, v \in V$

$$|u+v||^{2} + ||u-v||^{2} = 2(||u||^{2} + ||v||^{2})$$

Proof:

$$\begin{aligned} \|u+v\|^2 + \|u-v\|^2 &= \langle u+v, u+v \rangle + \langle u-v, u-v \rangle \\ &= \langle u, u \rangle + \langle u, v \rangle + \langle v, u \rangle + \langle v, v \rangle + \langle u, u \rangle - \langle u, v \rangle - \langle v, u \rangle + \langle v, v \rangle \\ &= 2(\langle u, u \rangle + \langle v, v \rangle) \\ &= 2(\|u\|^2 + \|v\|^2) \end{aligned}$$

Example 7.3 Let $1 \le p < \infty$ and $V = L^p[0, 2]$, define

$$f = \mathcal{X}_{[0,1]} \qquad \qquad g = \mathcal{X}_{[1,2]}$$

then

$$\|f\|_{p}^{2} = \left(\int_{[0,2]} |f|^{p}\right)^{\frac{2}{p}} = 1^{\frac{2}{p}} = 1 \qquad \|g\|_{p}^{2} = 1^{\frac{2}{p}} = 1 \qquad \|f + g\|_{p}^{2} = 2^{\frac{2}{p}} \qquad \|f - g\|_{p}^{2} = 2^{\frac{2}{p}}$$

By Porollelogrom Law

$$2^{\frac{2}{p}} + 2^{\frac{2}{p}} = 2 \cdot (1+1) = 2$$

so $\|\|_p$ is induced by an inner product space if and only if p = 2.

Remark 7.1 $\|\|_{\infty}$ is not induced by an inner product space.

Definition 7.1.2 — Hilbert Space.

A Hilbert Space is a complete inner product space. (i.e. A Banach space whose norm is induced by an inner product space)

Example 7.4 $L^2(A)$, $L^2(A, \mathbb{C})$ are Hilbert Spaces

Definition 7.2.1

Orthogonality

7.2

Let V be an inner product space, we say $v, w \in V$ are **orthogonal** if $\langle v, w \rangle = 0$

Example 7.5 Let $f, g \in L^2(A, \mathbb{C})$ where $A = [-\pi, \pi]$, define $f(x) = e^{inx}$ and $g(x) = e^{imx}$ with $n \neq m$, then

$$\begin{split} \langle f,g \rangle &= \int_{A} f \overline{g} = \int_{A} e^{inx} e^{-imx} dx = \int_{A} e^{i(n-m)x} dx \\ &= \int_{A} \cos((n-m)x) + i \int_{A} \sin((n-m)x) \\ &= R \int_{-\pi}^{\pi} \cos((n-m)x) dx + R \int_{-\pi}^{\pi} \cos((n-m)x) \\ &= \left[\frac{1}{n-m} \sin((n-m)x) \right]_{-\pi}^{\pi} + \left[-\frac{1}{n-m} \cos((n-m)x) \right]_{-\pi}^{\pi} \\ &= 0 \end{split}$$

Definition 7.2.2 $A \subseteq V$ is orthogonal if the elements of A are pair-wise orthogonal and ||v|| = 1 for all $v \in A$

Corollary 7.2.1

Let V be a inner product space and $\{v_1, ..., v_n\}$ is orthogonal, then

$$\left\|\sum_{i=1}^{n} \alpha_i v_i\right\|^2 = \sum_{i=1}^{n} |\alpha_i|^2$$

Theorem 7.2.2 — Pythagorean Theorem.

Let V be an inner product space, if $v_1, \ldots, v_n \in V$ are pairwise orthogonal, then

$$\left\|\sum_{i=1}^{n} v_{i}\right\|^{2} = \sum_{i=1}^{n} \|v_{i}\|^{2}$$

Example 7.6 Let $L = L^2(S, \mathbb{C})$ where $S = [-\pi, \pi]$, so

$$A = \left\{ \frac{1}{\sqrt{2\pi}} e^{inx} : \quad n \in \mathbb{Z} \right\}$$

is pairwise orthogonal. Now we can see

$$\frac{1}{2\pi} \left\| e^{inx} \right\|_2^2 = \frac{1}{2\pi} \int_{[-\pi,\pi]} e^{inx} e^{-inx} dx = \frac{1}{2\pi} \int_{[-\pi,\pi]} 1 = 1$$

Then we have A is orthogonal.

Definition 7.2.3 — Orthogonal Basis.

An **Orthogonal Basis** is a maximal orthogonal subset of V

Fact: An inner product space always has an orthogonal basis.

Fact: Let *H* be **Hilbert Space**. if $W \subseteq H$ is **closed subspace**, then there exists a subspace $W^{\perp} \subseteq H$ s.t.

$$H = W \bigoplus W^{\perp}$$

and $\langle w, z \rangle = 0$ for all $w \in W$ and $z \in W^{\perp}$

Theorem 7.2.3

Let H be a Hilbert Space, then H has a **countable** orthogonal basis if and only if H is separable.

Proof: \implies Let *B* be a countable orthogonal basis for *H* Claim: $W = Span(B), \overline{W} = H$

Suppose $\overline{W} \neq H$, since $H = \overline{W} \bigoplus \overline{W}^{\perp}$. We may find $0 \neq x \in \overline{W}^{\perp}$. We may assume ||x|| = 1. Then $B \cup \{x\}$ is orthogonal, which is a **contradiction**, so we have $\overline{W} = H$. This gives us that $Span_{\mathbb{Q}}(B) = H$, so H is separable.

 \Leftarrow Suppose *H* does not have a countable orthogonal basis. Let *B* be orthogonal basis of *H*, so *B* is uncountable. For $u \neq v$ in *B* we have

$$||u - v||^2 = ||u||^2 + ||v||^2 = 2 \implies ||u - v|| = \sqrt{2}$$

Suppose $X \subseteq H$ s.t. $\overline{X} = H$. For any $u \in B$, there exists $x_u \in X$ s.t. $||u - x_u|| < \frac{\sqrt{2}}{2}$. For $u \neq v$ in B we have $x_u \neq x_v$. Then $\varphi : B \to X$ with $\varphi(u) = x_u$ is an injection, which completes the proof.

Example 7.7

$$\left\{\frac{1}{\sqrt{2\pi}}e^{inx}:\ n\in\mathbb{Z}\right\}$$

is a countable orthogonal set in $L^2([-\pi,\pi],\mathbb{C})$. It's countable and orthogonal. **Question:** Is it maximal? -

7.3 Big Theorems

Definition 7.3.1

Let *H* be inner product space with $\{v_1, v_2, ..., v_n\}$ orthogonal. If $v = \sum \lambda_i v_i$, then $\lambda_i = \langle v, v_i \rangle$. We call $\langle v, v_i \rangle$ the **Fourier coefficient** of *v* with respect to $\{v_1, v_2, ..., v_n\}$.

Definition 7.3.2

Let H be Hilbert Space and $\{v_1, v_2, \dots\}$ be orthogonal. For $v \in H$, we call

$$\sum_{i=1}^{\infty} \langle v, v_i \rangle v_i$$

the Fourier Series of v relative to $\{v_1, v_2, \dots\}$ and write

$$v \sim \sum_{i=1}^{\infty} \langle v, v_i \rangle v_i$$

Theorem 7.3.1 — Best Approximation.

Let H be Hilbert Space and $\{v_1, v_2, ..., v_n\}$ be orthogonal. For $v \in H$, $||v - \sum \lambda_i||$ is minimized when

$$\lambda_i = \langle v, v_i \rangle$$

Moreover,

$$\left|v-\sum \langle v, v_i \rangle v_i\right|^2 = \|v\|^2 - \sum |\langle v, v_i \rangle|^2$$

Proof: Let $W = Span\{v_1, ..., v_n\}$ is closed, we can see $V = W \bigoplus W^{\perp}$. Also, for $x \in W$ and we let v = w + z where $w \in W$ and $z \in W^{\perp}$. Then

$$\|v - x\|^{2} = \|w + z - x\|^{2} = \|w + x + z\|^{2} = \|w - x\|^{2} + \|z\|^{2} \ge \|z\|^{2} = \|v - w\|^{2}$$

which gives us that

$$|v - x\| \ge \|v - w\|$$

Now we see that $v = \sum \lambda_i v_i + z$ for $z \in W^{\perp}$, then

$$\langle v, v_i \rangle = \lambda_i + 0 = \lambda_i$$

Note that we can also write $v = \sum \langle v, v_i \rangle v_i + z$ for $z \in W^{\perp}$, then

$$||v||^{2} = \left\|\sum \langle v, v_{i} \rangle v_{i}\right\|^{2} + ||z||^{2} = \sum |\langle v, v_{i} \rangle|^{2} + ||z||^{2}$$

Therefore, we have

$$\left\| v - \sum |\langle v, v_i \rangle v_i| \right\|^2 = \|z\|^2 = \|v\|^2 - \sum |\langle v, v_i \rangle|^2$$

which completes the proof.

Theorem 7.3.2 — Bessel's Inequality.

Let H be Hilbert Space and $\{v_1, v_2, ..., v_n\}$ be orthogonal, if $v \in H$,

$$\sum_{i=1}^{n} \left| \langle v, v_i \rangle \right|^2 \le \|v\|^2$$

Theorem 7.3.3 — Parseval's Identity.

Let H be Hilbert Space and $\{v_1, v_2, \dots\}$ be orthogonal. For $v \in H$,

$$\sum_{i=1}^{n} |\langle v, v_i \rangle|^2 = ||v||^2 \qquad \Longleftrightarrow \qquad \lim_{n \to \infty} \left\| v - \sum_{i=1}^{n} \langle v, v_i \rangle v_i \right\| = 0$$

Theorem 7.3.4 — Orthogonal Basis Test.

Let H be separable Hilbert space and $\{v_1, v_2, \dots\}$ be orthogonal. The followings are equivalent

1. $\{v_1, v_2,\}$ is a basis

2.
$$\overline{Span\{v_1, v_2, \dots\}} = H$$

3. $\lim_{n \to \infty} \left\| v - \sum_{i=1}^n \langle v, v_i \rangle v_i \right\| = 0$ for every $v \in H$

Proof:

 $\mathbf{1} \Longrightarrow \mathbf{2}:$ Done.

2 \implies **1:** If $\{v_1, v_2, ...\}$ is **not** maximal, then we may find $u \in H$ with ||u|| = 1 such that $\langle u, v_i \rangle = 0$ for all $i \in \mathbb{N}$. Since $C = \{x \in H : \langle x, u \rangle = 0\}$ is closed, so $u \notin Span\{v_1, v_2,\}$ **2** \implies **3:** Let $v \in H$ and $\varepsilon > 0$ be given, also let

$$\sum_{i=1}^{N} \alpha_i v_i \in Span\{v_1, v_2, \dots\}$$

such that

$$\left\| v - \sum_{i=1}^{n} \alpha_i v_i \right\| < \varepsilon$$

This gives us that

$$\left\| v - \sum_{i=1}^{n} \langle v, v_i \rangle v_i \right\| < \varepsilon$$

Now for $n \geq N$, we have

$$\left\| v - \sum_{i=1}^{n} \langle v, v_i \rangle v_i \right\| \le \left\| v - \sum_{i=1}^{N} \langle v, v_i \rangle v_i \right\| + \left\| \sum_{i=N+1}^{n} \langle v, v_i \rangle v_i \right\| < \varepsilon + \sqrt{\sum_{i=N+1}^{\infty} |\langle v, v_i \rangle|^2} \to 0$$

as $N \to \infty$.
 $\mathbf{3} \Longrightarrow \mathbf{2}$: Similar.

7.4 Appendix

Definition 7.4.1 — Direct Sum.

Let V be a vector space and let U and W be the subspaces of V. We say V is the direct sum of U and W, written $V = U \bigoplus W$, if every element of V can be **uniquely** written in the form of u + w where $u \in U$ and $w \in W$.

If may be easily verified that $V = U \bigoplus W$ if and only if $V = U + W = \{u + v : u \in U, w \in W\}$ and $U \cap W = \{0\}$. Our goal is the show if H is a Hilbert space and W is a closed subspace of H, then $H = W + \bigoplus W^{\perp}$, where

$$W^{\perp} = \{ x \in H : \langle x, w \rangle = 0 \text{ for all } w \in W \}$$

It's straightforward to verify that W^{\perp} is a subspace of H.

Proposition 7.4.1

Let H be a Hilbert space and let W be a closed subspace of H. For every $v \in H$, there exists a unique $w \in W$ such that

$$\inf \{ \|x - v\| : x \in W \} = \|w - v\|$$

Proof: Let $\delta = \inf \{ \|x - v\| : x \in W \}$, for $a, b \in W$ we see that

$$||a - b - (b - v)||^{2} + ||a - v + b - v||^{2} = 2||a - v||^{2} + 2||b - v||^{2}$$

by the Parallelogram Law. Notice that

$$||a+b-2v||^2 = 4 \left| \left| \frac{1}{2}(a+b) - v \right| \right|^2 \ge 4\delta^2$$

Therefore,

$$||a - b||^2 \le 2||a - v||^2 + 2||b - v||^2 - 4\delta^2 \quad (*)$$

By the definition of inf, there exists a sequence $(w_n) \subseteq W$ such that $||w_n - v|| \to \delta$, but then

 $||w_n - w_m|| \le 2||w_n - v||^2 + 2||w_m - v||^2 - 4\delta^2 \to 0$

so that (w_n) is Cauchy. Since H is a Hilbert space and W is closed, $w_n \to w$ for some $w \in W$. Finally, we see that $||w_n - v|| \to ||w - v||$ and $||w_n - v|| \to \delta$. From which we have that $||w - v|| = \delta$. Uniqueness follows immediately from (*).

8.1 Fourier Series

Motivating Questions:

1. Is $\left\{\frac{1}{\sqrt{2\pi}}e^{inx}: n \in \mathbb{Z}\right\}$ an orthogonal basis for $L^2([-\pi,\pi],\mathbb{C})$? 2. Is $Span\left\{e^{inx}: n \in \mathbb{Z}\right\}$ dense in $L^2([-\pi,\pi],\mathbb{C})$? 3. Is $Span\left\{e^{inx}: n \in \mathbb{Z}\right\}$ dense in $L^1([-\pi,\pi],\mathbb{C})$?

Given $f \in L^1([-\pi,\pi])$ with

Can we approximate f using sinusoidal functions:

Definition 8.1.1

Let $T = [-\pi, \pi)$, we call T the **Torus** or the **Circle**. We define $L^p(T) \coloneqq L^p([-\pi, \pi], \mathbb{C})$ for $1 \le p < \infty$ using the norm

$$\|f\|_p = \left(\frac{1}{2n}\int_T |f|^p\right)^{\frac{1}{p}}$$

and $L^p(T)$ is a separable Banach Space.

Remark 8.1

1. As a **group** under addition modulo 2π :

$$T \cong \mathbb{R}/\mathbb{Z} \cong \{z \in C : |z| = 1\}$$

- 2. In this way, T is locally compact abelian group.
- 3. There is a one-to-one correspondence between $f: T \to \mathbb{C}$ and 2π -periodic functions $f: \mathbb{R} \to \mathbb{C}$

Definition 8.1.2 Let $f \in L^1(T)$.

1. We define the n^{th} $(n \in \mathbb{Z})$ Fourier coefficient of f by

$$\langle f, e^{inx} \rangle \coloneqq \frac{1}{2\pi} \int_T f(x) e^{-inx} dx$$

2. We define the **Fourier Series** of f by

$$f \sim \sum_{n \in \mathbb{Z}} a_n e^{inx}$$

where $a_n = \langle f, e^{inx} \rangle$. 3. We let

$$S_N(f,x) = \sum_{-N}^N a_n e^{inx}$$

denote the n^{th} partial sum of the above Fourier Series.

Proposition 8.1.1

Consider the **trigonometric polynomial** $f \in L^1(T)$ given by

$$f(x) = \sum_{n=-N}^{N} a_n e^{-inx}$$

for some $a_i \in \mathbb{C}$.

For each $-N, n \leq N$,

Why?

$$\frac{1}{2\pi} \int_T e^{imx} e^{-inx} dx = \delta_{m,n}$$

Remark 8.2 Suppose $f \in L^1(T)$ is real-valued

$$f \sim \sum_{n \in \mathbb{Z}} a_n e^{inx}$$

 $\langle f, e^{inx} \rangle = a_n$

For $N \in \mathbb{N}$

$$S_N(f,x) = \sum_{n=-N}^N a_n e^{inx} = a_0 + \sum_{n=1}^N \left(a_n e^{inx} + a_{-n} e^{-inx} \right)$$
$$= a_0 + \sum_{n=1}^N \left(\underbrace{(a_n + a_{-n})}_{b_n} \cos(nx) + \underbrace{i(a_n - a_{-n})}_{c_n} \sin(nx) \right)$$
$$= a_0 + \sum_{n=1}^N b_n \cos(nx) + c_n \sin(nx)$$

Now

$$a_{0} = \frac{1}{2\pi} \int_{T} f(x)e^{-i0x} dx = \frac{1}{2\pi} \int_{T} f(x)dx$$
$$b_{n} = a_{n} + a_{-n} = \frac{1}{2\pi} \int_{T} f(x) \left(e^{-inx} + e^{inx}\right) dx = \frac{1}{\pi} \int_{T} f(x) \cos(nx) dx$$
$$c_{n} = i(a_{n} - a_{-n}) = \frac{i}{2\pi} \int_{T} f(x) \left(e^{-inx} - e^{inx}\right) dx = \frac{1}{\pi} \int_{T} f(x) \sin(nx) dx$$

are all real-valued.

8.2 Fourier Coefficients

Proposition 8.2.1 Let $f, g \in L^1(T)$

1.

$$\langle f + g, e^{inx} \rangle = \langle f, e^{inx} \rangle + \langle g, e^{inx} \rangle$$

2. For $\alpha \in \mathbb{C}$,

$$\langle \alpha f, e^{inx} \rangle = \alpha \langle f, e^{inx} \rangle$$

3. If $\overline{f}: T \to \mathbb{C}$ is defined by $\overline{f}(x) = \overline{f(x)}$, then $\overline{f} \in L^1(T)$ and

$$\langle \overline{f}, e^{inx} \rangle = \overline{\langle f, e^{inx} \rangle}$$

Proof (3): Since $|f| = |\overline{f}|$ implies $\overline{f} \in L^1(T)$, then

$$\begin{split} \langle \overline{f}, e^{inx} \rangle &= \frac{1}{2\pi} \int_T \overline{f}(x) e^{-inx} dx = \frac{1}{2\pi} \int_T \overline{f(x)} e^{inx} dx \\ &= \frac{1}{2\pi} \int_T \operatorname{Re} \left(\overline{f(x)} e^{inx} \right) + \frac{i}{2\pi} \int_T \operatorname{Im} \left(\overline{f(x)} e^{inx} \right) dx \\ &= \frac{1}{2\pi} \int_T \operatorname{Re} \left(f(x) e^{inx} \right) - \frac{i}{2\pi} \int_T \operatorname{Im} \left(f(x) e^{inx} \right) dx \\ &= \frac{1}{2\pi} \int_T f(x) e^{inx} dx \\ &= \overline{\langle f, e^{-inx} \rangle} \end{split}$$

Proposition 8.2.2

Let $f \in L^1(T)$ and $\alpha \in \mathbb{R}$. (By a previous remark, we may view $f : \mathbb{R} \to \mathbb{C}$ as a 2π -periodic function which is integrable over T.) For $\alpha \in \mathbb{R}$, define $f_\alpha : \mathbb{R} \to \mathbb{C}$ by $f_\alpha(x) = f(x - \alpha)$ is integrable over T and

$$\langle f_{\alpha}, e^{inx} \rangle = \langle f, e^{inx} \rangle e^{-inx}$$

Proposition 8.2.3 Let $f \in L^1(T)$, for all $n \in \mathbb{Z}$ $|\langle f, e^{inx} \rangle| \le ||f||_1$ Proof: $|\langle f, e^{inx} \rangle| = \left| \frac{1}{2\pi} \int_T f(x) e^{inx} dx \right| \le \frac{1}{2\pi} \int_t |f(x)e^{-inx}| dx = \frac{1}{2\pi} \int_T |f(x)| dx = ||f||_1$

Corollary 8.2.4

Let a sequence $f_k \to f$ in $L^1(T)$, so for all $n \in \mathbb{Z}$,

$$\langle f_k, e^{inx} \rangle \to \langle f, e^{inx} \rangle$$

Proof:

$$\left|\langle f_k, e^{inx} \rangle - \langle f, e^{inx} \rangle\right| = \left|\langle f_k - f, e^{inx} \rangle\right| \le \left\|f_k - f\right\|_1 \to 0$$

Remark 8.3 Let Trig(T) denote the set of Trigonometric polynomials on T, by A3 we have $\overline{Trig(T)} = L^1(T)$

Theorem 8.2.5 — Riemann-Lebesgue Lemma. If $f \in L^1(T)$, then

$$\lim_{|n| \to \infty} \langle f, e^{inx} \rangle = 0$$

Proof: Let $\varepsilon > 0$ be given and let $P \in Trig(T)$ such that $||f - P||_1 < \varepsilon$. We say

$$P(x) = \sum_{k=-N}^{N} a_k e^{ikx}$$

for n > N or n < -N (|n| > N). We have that $\langle P, e^{inx} \rangle = 0$. For |n| > N,

$$\left|\langle f, e^{inx} \rangle\right| = \left|\langle f - P, e^{inx} \rangle\right| \le \left\|f - P\right\|_1 < \varepsilon$$

8.3 Vector-Valued Integration

Definition 8.3.1

Let B be a Banach space and let $f : [a,b] \to B$ be a function. Consider a partition $P = a = t_0 < t_1 < \dots < t_n = b$ of [a,b]. We define a Riemann sum of f over P by

$$S(f, P) = \sum_{i=1}^{n} f(t_i^*)(t_i - t_{i-1}) \in B$$

where each $t^* \in [t_{i-1}, t_i]$

Definition 8.3.2

Let B and f be as above. We say f is **Riemann integrable** if there exists $z \in B$ such that for all $\varepsilon > 0$ there exists a partition P_{ε} of [a, b] such that whenever P is a refinement partition of P_{ε} and S(f, P) is a Riemann sum then

$$|S(f,P) - z\| < \varepsilon$$

We call z the integral of f over [a, b] and write $z = R \int_a^b f(x) dx$

Theorem 8.3.1 — Cauchy Criterion.

Let B be a Banach space and let $f : [a, b] \to B$ be a function. Then f is Riemann integrable if and only if for all $\varepsilon > 0$ there exists a partition P_{ε} of [a, b] so that whenever P and Q are refinements of P_{ε} we have

$$\|S(f,P) - S(f,Q)\| < \varepsilon$$

for any Riemann sums S(f, P) and S(f, Q)

Proof: \implies Suppose f is Riemann integrable with $z = R \int_a^b f(x) dx$. Let $\varepsilon > 0$ be given, we may find a partition $P_{\varepsilon/2}$ such that whenever P is a refinement partition of $P_{\varepsilon/2}$, then $||S(f, P) - z|| < \frac{\varepsilon}{2}$. In particular, if P and Q are refinement of $P_{\varepsilon/2}$, then

$$\|S(f,P)-S(f,Q)\|\leq \|S(f,P)-z\|+\|z-S(f,Q)\|<\varepsilon$$

 \Leftarrow Assume the Cauchy criterion. In particular, for each $n \in \mathbb{N}$ we may find a partition P_n of [a, b] which corresponds to $\varepsilon = \frac{1}{n}$, as per the Cauchy criterion. WLOG we may assume each P_{n+1} is a refinement of P_n . For each $n \in \mathbb{N}$, elt $S(f, P_n)$ be a Riemann sum. Let $\varepsilon > 0$ be given, choose $N \in \mathbb{N}$ such that $\frac{1}{N} < \frac{\varepsilon}{2}$, we see that for $m, n \geq N$

$$\|S(f, P_m) - S(f, P_n)\| < \frac{1}{N} < \varepsilon$$

Since B is a Banach space, so $S(f, P_n) \to z \in B$.

We claim that f is Riemann integrable with $R \int_{a}^{b} f(x)dx = z$. Let N and P_{N} be as above. Moreover, there exists M > N such that $||S(f, P_{M}) - z|| < \frac{\varepsilon}{2}$. Now, if P is any refinement partition of P_{N} , then

$$||S(f,P) - z|| \le ||S(f,P) - S(f,P_M)|| + ||S(f,P_M) - z|| < \varepsilon$$

This result can then be used to show the following, which we shall state and use as a fact. The proof is quite similar to the proof for $B = \mathbb{R}$

Theorem 8.3.2 If B is a Banach space and $f : [a, b] \to B$ is continuous, then f is Riemann integrable.

8.4 Summability Kernels

Goal: Given $f \in L^1(T)$, determine when $S_n(f, x) \to f(x)$ pointwise in L^1 ?

Main tool: Summability Kernels and convolution.

Definition 8.4.1 — Convolution.

Let $f, g \in L^1(T)$, the **convolution** of f and g is the function $f * g : T \to \mathbb{C}$ given by

$$(f * g)(x) = \frac{1}{2\pi} \int_T f(t)g(x - t)dt = \frac{1}{2\pi} \int_T f(t)g_t(x)dt$$

Facts:

- 1. Given $f, g \in L^1(T), f * g \in L^1(T)$ as well
- 2. $||f + g||_1 \le ||f||_1 \cdot ||g||_1$ 3. This makes $L^1(T)$ a Banach Algebra

Let C(T) denote the set of continuous function $T \to \mathbb{C}$

Definition 8.4.2 — Summability Kernel. A Summability Kernel is a sequence $(K_n) \subseteq C(T)$ s.t.

1. $\frac{1}{2\pi} \int_T K_n = 1$ 2. $\exists M > 0, \forall n \in \mathbb{N}, \|K_n\|_1 \le M$ 3. For all $0 < \delta < \pi$, $\lim_{n \to \infty} \left(\int_{-\pi}^{-\delta} |K_n| + \int_{\delta}^{\pi} |K_n| \right) = 0$

Proposition 8.4.1

Let $(B, \|\cdot\|_B)$ be a Banach Space, let $\varphi: T \to B$ be continuous function. Let $(K_n) \subseteq C(T)$ be a summability kernel, then

$$\lim_{n \to \infty} \frac{1}{2\pi} \int_T K_n(t)\varphi(t)dt = \varphi(0)$$

in the *B*-norm

Proof: Let $0 < \delta < \pi$, notice that

$$\frac{1}{2\pi} \int_T k_n(t)\varphi(t) - \varphi(0) = \frac{1}{2\pi} \int_T k_n(t)(\varphi(t) - \varphi(0))dt$$
$$= \frac{1}{2\pi} \int_{-\delta}^{\delta} k_n(t)(\varphi(t) - \varphi(0))dt + \frac{1}{2\pi} \int_{-\pi}^{-\delta} k_n(t)(\varphi(t) - \varphi(0))dt$$
$$+ \frac{1}{2\pi} \int_{\delta}^{\pi} k_n(t)(\varphi(t) - \varphi(0))dt$$

Let the sum of the last two integrals in the above equation be labelled by (*), but then

$$\left\|\frac{1}{2\pi}\int_{-\delta}^{\delta}k_n(t)(\varphi(t)-\varphi(0))dt\right\|_B \le \max_{|t|\le\delta}\|\varphi(t)-\varphi(0)\|_B\|k_n\|_T \quad (1)$$

and

$$\|*\|_{B} \le \max_{t \in [-\pi,\pi]} \|\varphi(t) - \varphi(0)\|_{B} \frac{1}{2\pi} \left(\int_{-\pi}^{-\delta} |k_{n}(t)| dt + \int_{\delta}^{\pi} |k_{n}(t)| dt \right)$$
(2)

By continuity, (1) can be made as small as we like by letting $\delta \to 0$. Let $n \to \infty$ to make (2) as small as we like, so the result follows.

Remark 8.4 By A3, $\varphi: T \to L^1(T)$ given by $\varphi(t) = f_t = f(x-t)$ is continuous.

Theorem 8.4.2 Let $f \in L^1(T)$ and (K_n) be summability kernel in $L^1(T)$, then

$$\lim_{n \to \infty} K_n * f = f$$

Proof: Since

$$\lim_{n \to \infty} \frac{1}{2\pi} \int_T K_n(t)\varphi(t)dt = \varphi(0)$$

where $\varphi: T \to L^1, t \mapsto f_t$. That is

$$\lim_{n \to \infty} \frac{1}{2\pi} \int_T K_n(t) f(x-t) dt = f(x)$$

implies

$$\lim_{n \to \infty} (K_n * f)(x) = f(x)$$

as desired.

8.5 Dirichlet Kernel

Recall: If (K_n) is a Summability Kernel and $f \in L^1(T)$, then $\lim_{n \to \infty} K_n * f = f$ in $L^1(T)$ Want: Find (K_n) s.t. $K_n * f = S_n(f)$

■ Remark 8.5 Let $f \in L^1(T)$, for $n \in \mathbb{Z}$ consider $\varphi_n(x) = e^{inx} \in L^1(T)$, then

$$\begin{aligned} (\varphi_n * f)(x) &= \frac{1}{2\pi} \int_T \varphi_n(t) f_t(x) dt = \frac{1}{2\pi} \int_T e^{int} f(x-t) dt \\ &= \frac{1}{2\pi} e^{inx} \int_T e^{-in(x-t)} f(x-t) dt \\ &= \frac{1}{2\pi} e^{inx} \int_T e^{int} f(-t) dt \quad \text{by A3} \\ &= \frac{1}{2\pi} e^{inx} \int_T e^{-int} f(t) dt \quad \text{exercise} \\ &= e^{inx} \langle f, e^{inx} \rangle \end{aligned}$$

■ Remark 8.6 Let $f \in L^1(T)$, if $P(x) = \sum_{k=-n}^n a_k e^{ikx}$, then

$$(P * f)(x) = \frac{1}{2\pi} \int_T P(t)f(x-t)dt = \sum_{k=-n}^n \frac{a_n}{2\pi} \int_T e^{ikt}f(x-t)dt$$
$$= \sum_{k=-n}^n a_n(\varphi_k * f)(x)$$
$$= \sum_{k=-n}^n a_n e^{ikx} \langle f, e^{ikx} \rangle$$

Definition 8.5.1 — Dirichlet Kernel. Let $D_n(x) = \sum_{k=-n}^{n} e^{ikx}$, this is called **Dirichlet Kernel** of order *n*, so we have

$$(D_n * f)(x) = \sum_{k=-n}^{n} e^{ikx} \langle f, e^{ikx} \rangle = S_n(f, x)$$

where S_n is the n-th particle sum.

Remark 8.7 The (D_n) is not a summability kernel

Proof: It's easy to show that

$$D_n(t) = \frac{\sin\left(n + \frac{1}{2}\right)t}{\sin\left(\frac{1}{2}t\right)}$$

for all $t \neq 0$. Therefore

$$\|D_n\|_1 = \frac{1}{2\pi} \int_T \left| \frac{\sin(n + \frac{1}{2})t}{\sin(\frac{1}{2}t)} \right| dt \ge \frac{1}{\pi} \int_T \left| \frac{\sin(\frac{1}{2}t)}{t} \right| dt$$

Since $\left|\sin\left(\frac{t}{2}\right)\right| \le \left|\frac{t}{2}\right|$ for all t, so

$$\|D_n\|_1 \ge \frac{1}{\pi} \int_{-\pi(n+\frac{1}{2})}^{\pi(n+\frac{1}{2})} \frac{|\sin t|}{|t|} dt = \frac{2}{\pi} \int_0^{\pi(n+\frac{1}{2})} \frac{|\sin(t)|}{t} dt > \frac{2}{\pi} \sum_{k=1}^n \frac{1}{k\pi} \int_{(k-1)\pi}^{k\pi} |\sin(t)| dt = \frac{4}{\pi^2} \sum_{k=1}^n \frac{1}{k\pi} \int_{-\pi(n+\frac{1}{2})}^{\pi(n+\frac{1}{2})} \frac{|\sin(t)|}{|t|} dt > \frac{2}{\pi} \sum_{k=1}^n \frac{1}{k\pi} \int_{-\pi(n+\frac{1}{2})}^{k\pi} |\sin(t)| dt = \frac{4}{\pi^2} \sum_{k=1}^n \frac{1}{k\pi} \int_{-\pi(n+\frac{1}{2})}^{\pi} \frac{|\sin(t)|}{|t|} dt = \frac{4}{\pi} \sum_{k=1}^n \frac{1}{k\pi} \int_{-\pi(n+\frac{1}{2})}^{\pi} \frac{1}{k\pi} \int_{-\pi(n+\frac{1}{2})}^{\pi} \frac{1}{k\pi} \int_{-\pi(n+\frac{1}{2})}^{\pi} \frac{1}{k\pi} \int_{-\pi(n+\frac{1}{2})}^{\pi} \frac{1}{k\pi} \int_{-\pi(n+\frac{1}{2})}^{\pi} \frac{1}{k\pi$$

Therefore, $\lim_{n\to\infty} \|D_n\|_1 = \infty$, which is not bounded so D_n is not summability kernel

8.6 Fejer Kernel

Idea: Consider

$$y_n = \frac{x_1 + x_2 + \dots + x_n}{n}$$

exercise: If $x_n \to x$, then $y_n \to x$

Definition 8.6.1 — Fejer Kernel.

We say the

$$F_n(x) = \frac{D_0(x) + D_1(x) + \dots + D_n(x)}{n+1}$$

be the **Fejer Kernel** of order n

■ Remark 8.8 $F_0(x) = D_0(x) = 1$ $F_1(x) = \frac{e^{-i2x} + 2e^{-ix} + 3e^{i0x} + 2e^{ix} + e^{i2x}}{3}$

$$F_n = \sum_{k=-n}^n \left(1 - \frac{|k|}{n+1}\right) e^{ikx}$$

Lemma 8.6.1

$$F_n(t) = \begin{cases} \frac{1}{n+1} \left(\frac{\sin\left(\frac{(n+1)t}{2}\right)}{\sin\left(\frac{1}{2}t\right)} \right)^2 & \forall t \neq 0\\ n+1 & t = 0 \end{cases}$$

Proof: Notice that

$$\sin^2 \frac{t}{2} = \frac{1}{2}(1 - \cos(t)) = \frac{1}{4}e^{-it} + \frac{1}{2} - \frac{1}{4}i^{it}$$

and

$$\left(\frac{1}{4}e^{-it} + \frac{1}{2} - \frac{1}{4}^{it}\right)\sum_{j=-n}^{n} \left(1 - \frac{|j|}{n+1}\right)e^{ijt} = \frac{1}{n+1}\left(-\frac{1}{4}e^{-i(n+1)t} + \frac{1}{2} - \frac{1}{4}e^{i(n+1)t}\right)e^{ijt}$$

then take the values of t, the results follows.

Remark 8.9 (F_n) is a summability kernel

Proof: First, we will show $\frac{1}{2\pi} \int_T F_n(t) dt = 1$. Since $\frac{1}{2\pi} \int_T c e^{ijt} dt \neq 0$ if $j \neq 0$, then

$$\frac{1}{2\pi} \int_T F_n(t)dt = \frac{1}{2\pi} \int_T 1dt = 1$$

It's obviously from **Lemma 8.6.1** that $F_n(t) \ge 0$, so $\frac{1}{2\pi} \int_T |F_n(t)| dt < M$ for some M. If

 $t \notin (-\delta, \delta)$, then $|F_n(t)| \leq \frac{M}{n+1}$ where

$$M = \sup\left\{ \left| \frac{1}{\sin \frac{t}{2}} \right|^2 : t \in [-\pi, -\delta] \cup [\delta, \pi] \right\}$$

Hence, the third condition holds, so F_n is a summability kernel.

Definition 8.6.2 — Cesaro Mean.

$$F_n * f = \frac{1}{n+1} \sum_{k=0}^n D_k * f = \frac{1}{n+1} \sum_{k=0}^n S_k(f) = \frac{S_0(f) + S_1(f) + \dots + S_n(f)}{n+1} \coloneqq \underbrace{\sigma_n(f)}_{\text{n-th Cesaro Mean}} = \underbrace{\sigma_n(f)}_{\text{n-th Cesaro Mean}}$$

Theorem 8.6.2 Let $f \in L^1(T)$ and (F_n) be the Fejer Kernel, then

$$\lim_{n \to \infty} F_n * f = \lim_{n \to \infty} \sigma_n(f) = f$$

in $L^1(T)$

■ Remark 8.10 If $(S_n(f))$ converges in $L^1(T)$, then $S_n(f) \to f$ in $L^1(T)$.

8.7 Fejer's Theorem

Idea: L^1 convergence is great theoretically, but pointwise convergence is practical.

Theorem 8.7.1 — Fejer's Theorem. For $f \in L^1(T)$ and $t \in T$, consider

$$\omega_f(t) = \frac{1}{2} \lim_{x \to 0^+} \left(f(t+x) + f(t-x) \right)$$

provided the limit exists, then

$$\sigma_n(f,t) \to \omega_f(t)$$

In particular, if f is continuous at t, then

 $\sigma_n(f,t) \to f(t)$

Proof: Assume that $\omega_f(t_0)$ exists and let $\varepsilon > 0$ be given. Since $\sigma_n(f) = F_n * f$, then

$$\begin{aligned} \sigma_n(f,t_0) - \omega_f(t_0) &= \frac{1}{2\pi} \int_T F_n(t) (f(t_0 - t) - \omega_f(t_0)) dt \\ &= \frac{1}{2\pi} \int_{-\pi}^{-\delta} F_n(t) (f(t_0 - t) - \omega_f(t_0)) dt + \frac{1}{2\pi} \int_{\delta}^{\pi} F_n(t) (f(t_0 - t) - \omega_f(t_0)) dt \\ &+ \frac{1}{2\pi} \int_{-\delta}^{\delta} F_n(t) (f(t_0 - t) - \omega_f(t_0)) dt \\ &\coloneqq (1) + (2) + (3) \end{aligned}$$

Since $F_n(t) = F_n(-t)$, so

$$(3) = \frac{1}{\pi} \int_0^\delta F_n(t) \left(\frac{f(t_0 - t) + f(t_0 + t)}{2} - \omega_f(t_0) \right) dt$$

By hypothesis, we may choose δ such that if $0 < t < \delta$, then

$$\left|\frac{f(t_0-t)+f(t_0+t)}{2}-\omega_f(t_0)\right|<\frac{\varepsilon}{2}$$

so that

$$|(3)| \le \frac{\varepsilon}{2\pi} \int_{-\pi}^{\pi} F_n(t) dt = \varepsilon$$

WE can also choose N s.t. if $n \ge N$, then

$$\sup \left\{ F_n(t) \mid t \in (-\pi, \delta) \cup (\delta, \pi) \right\} < \frac{\varepsilon}{\|f_{t_0} - \omega_f(t_0)\| + 1}$$

Hence, we have

$$|(1) + (2)| \le \frac{\varepsilon}{\|f_{t_0} - \omega_f(t_0)\| + 1} \cdot \frac{1}{2\pi} \int_T |f(t_0 - t) - \omega_f(t_0)| dt < \varepsilon$$

so the result follows.

In partice:

- 1. Fix $x \in T$
- 2. Prove $(S_n(f, x))$ converges
- 3. Then $S_n(f, x) \to \omega_f(x)$
- 4. If f is continuous at x, then $S_n(f,x) \to f(x)$ i.e. S(f,x) = f(x)

Example 8.1 Let $f \in L^1(T)$ and f(x) = |x|, then

$$S_n(f, x) = a_0 + \sum_{k=1}^n (b_k \cos(kx) + c_k \sin(kx))$$

where

$$a_0 = \frac{1}{2\pi} \int_{-\pi}^{\pi} |x| dx = \frac{\pi}{2} \qquad b_k = \frac{1}{\pi} \int_{-\pi}^{\pi} |x| \cos(kx) dx = \frac{2(-1)^k - 2}{k^2 \pi} \qquad c_k = \frac{1}{\pi} \int_{-\pi}^{\pi} |x| \sin(kx) dx = 0$$

Then we have

$$S_n(f,x) = \frac{\pi}{2} + \frac{2}{\pi} \sum_{k=1}^n \left(\frac{(-1)^k - 1}{k^2} \cos(kx) \right) = \frac{\pi}{2} + \frac{2}{\pi} \sum_{k=1}^{\frac{n+1}{2}} \frac{-2}{(2k-1)^2} \cos((2k-1)x)$$

Note that $(S_n(f, x))$ converges by comparison test with $\sum \frac{1}{(2k-1)^2}$. Since f is continuous, so

$$f(x) = \frac{\pi}{2} - \frac{4}{\pi} \sum_{k=1}^{\infty} \frac{\cos((2k-1)x)}{(2k-1)^2}$$

1. Taking x = 0:

$$0 = \frac{\pi}{2} - \frac{4}{\pi} \sum_{k=1}^{\infty} \frac{1}{(2k-1)^2} \qquad \Longrightarrow \qquad \sum_{k=1}^{\infty} \frac{1}{(2k-1)^2} = \frac{\pi^2}{8}$$

2.

$$\sum_{k=1}^{\infty} \frac{1}{k^2} = \sum_{k=1}^{\infty} \frac{1}{(2k)^2} + \sum_{k=1}^{\infty} \frac{1}{(2k-1)^2} = \frac{1}{4} \sum_{k=1}^{\infty} \frac{1}{k^2} + \frac{\pi^2}{8} \implies \sum_{k=1}^{\infty} \frac{1}{k^2} = \frac{\pi^2}{6}$$

9.1 Homogeneous Banach Spaces

Goal: Generalize what we have done for $L^1(T)$ to $L^p(T)$ with $p < \infty$. In particular, we look at $L^2(T)$.

Definition 9.1.1 — Homogeneous Banach Space. A **homogeneous Banach space** is a Banach space $(B, |||_B)$ such that

1. *B* is a subspace of $L^1(T)$ 2. $\|\cdot\|_1 \leq \|\cdot\|_B$ 3. $\forall f \in B, \forall \alpha \in T, \|f_\alpha\|_B = \|f\|_B$ translation invariant 4. $\forall f \in B, \forall t_0 \in T, \lim_{t \to t_0} \|f_t - f_{t_0}\|_B = 0$

Example 9.1 $(L^p(T), \|\cdot\|_p)$ for $p < \infty$ is a homogeneous Banach space.

Theorem 9.1.1 Let *B* be a homogeneous Banach space and (k_n) be summability kernel, then for all $f \in B$

$$\lim_{n \to \infty} \|k_n * f - f\|_B = 0$$

Proof: First we have

$$\frac{1}{2\pi} \int_T k_n(t) f_t dt = k_n * j$$

We note that

$$\lim_{n \to \infty} \frac{1}{2\pi} \int_T k_n(t)\varphi(t)dt = \varphi(0)$$

for all continuous function $\varphi: T \to B$. By previous result we have for $\varphi: T \to B$, $\varphi(t) = f_t$ is continuous (for all $f \in B$), then we have

$$||k_n * f - f||_B \to 0$$

as desired.

Remark 9.1

1. In the homogeneous Banach space B, taking $k_n = F_n$, then we have $\|\sigma_n(f) - f\|_B \to 0$ for all $f \in B$

2. Taking $B = L^p(T)$:

(a)
$$\|\sigma_n(f) - f\|_p \to 0$$

(b) $\overline{Trig(T)} = L^p(T)$

Remark 9.2 In $L^2(T)$:

- 1. $\overline{Trig(T)} = L^2(T)$ 2. $\overline{span\{e^{inx} : n \in \mathbb{Z}\}} = L^2(T)$
- 3. $\{e^{inx}: n \in \mathbb{Z}\}$ is **ONB**

4. Let the above **ONB** be written as $\{v_1, v_2,\}$, then for all $f \in L^2(T)$

$$\lim_{n \to \infty} \sum_{i=1}^{n} \langle f, v_i \rangle v_i = f$$

5. If $v = e^{ikx}$,

$$\langle f, v \rangle v = \left(\frac{1}{2\pi} \int_T f(x) e^{-ikx} dx\right) e^{ikx} = \langle f, e^{ikx} \rangle e^{ikx}$$

6. For all $f \in L^2(T)$, $||S_n(f) - f||_2 \to 0$

9.2 Additional Materials

Definition 9.2.1 — Lebesgue Point.

We say $x_0 \in \mathbb{R}$ is a **Lebesgue Point** of f is

$$\lim_{h \to 0^+} \frac{1}{h} \int_{[0,h]} \left| \frac{f(x_0 - x) + f(x_0 + x)}{2} - f(x_0) \right| dx = 0$$

Fact: For f as above, almost every $x_0 \in \mathbb{R}$ is a Lebesgue Point of f.

Theorem 9.2.1

Let f the same as before, if x_0 is a Lebesgue Point of f, then

 $\sigma_n(f, x_0) \to f(x_0)$

Corollary 9.2.2

 $\sigma_n(f) \to f$ a.e.

Theorem 9.2.3 — Dini's Test. Let $f : \mathbb{R} \to \mathbb{C}$ with period 2π , $\int_T |f| < \infty$. If $\int_0^{\pi} \left| \frac{f(x_0 + x) + f(x_0 - x)}{2} - L \right| \frac{dx}{x} < \infty$

then $S_n(f, x_0) \to L$

Proof: BBT, pg 681