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1. Outer Measure

1.1 Borel Sets

Definition 1.1.1 — σ-algebra.
Let X be a set, we call Q ⊆ P(X) a σ-algebra of the subset X if

(1) ∅ ∈ Q
(2) A ∈ Q =⇒ X \A ∈ Q

(3) A1, A2, .... ∈ Q =⇒
∞⋃
i=1

Ai ∈ Q

� Remark 1.1 For Q ∈ P(X) is a σ-algebra:

1. X ∈ Q and X \ ∅ = X ∈ Q
2. A,B ∈ Q =⇒ A ∪B ∈ Q by using A ∪B = A ∪B ∪ ∅ ∪ ∅ . . . ∈ Q

3. A1, A2, .... ∈ Q =⇒
∞⋂
i=1

Ai ∈ Q by using
∞⋂
i=1

Ai = X \

( ∞⋃
i=1

X \Ai

)
4. A,B ∈ Q =⇒ A ∩B ∈ Q

� Example 1.1 {∅, X} is the smallest σ-algebra where given a set X �

� Example 1.2 Q = P (X) is a σ-algebra �

� Example 1.3 Q = {A ⊆ R : A is open} is not a σ-algebra. We take A = (0, 1) ∈ Q but
R \A = (−∞, 0] ∪ [1,∞) /∈ Q �
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� Example 1.4 Q = {A ⊆ R : A is open or closed} is not a σ-algebra. Q =
⋃
q∈Q
{q} /∈ Q

because Q is neither open or closed set. �

Proposition 1.1.1
Let X be a set, C ⊆ P(X), then Q :=

⋂
{B : B is a σ-algebra, C ⊆ B} is a σ-algebra, and

it’s also the smallest σ-algebra containing C

Definition 1.1.2 — Borel Set.
The elements of Q =

⋂
{B : C ⊆ B,B is σ-algebra} (Borel σ-algebra) are called Borel

sets where C = {A ⊆ R : A is open}

� Remark 1.2
1. Open set =⇒ Borel set
2. Closed set =⇒ Borel set

3. Countable set =⇒ Borel set i.e. {X1, ....} =
∞⋃
i=1

Xi =⇒ Borel set

4. [a, b) = [a, b] \ {b} = [a, b]︸︷︷︸
closed

∩ (R \ {b}︸ ︷︷ ︸
open)

=⇒ Borel set

1.2 Outer Measure 1

Definition 1.2.1 — Measure. (on R)
A function m : P(R) −→ [0,∞) ∪ {∞} called a measure if:

(1) m(a, b) = m([a, b]) = m((a, b]) = b− a
(2) m(A ∪B) ≤ m(A) +m(B)
(3) A ∩B = ∅ =⇒ m(A ∪B) = m(A) +m(B)

Definition 1.2.2 — (Lebegue) Outer Measure.
Outer Measure is a function m∗ : P(R) =⇒ [0,∞) ∪ {∞} where

m∗(A) = inf

{ ∞∑
i=1

`(Ii) : A ⊆
∞⋃
i=1

Ii where Ii is bounded, open interval

}

· `(Ii) is the length of the interval Ii

� Example 1.5 For ε > 0, ∅ ⊆ (0, ε) =⇒ m∗(∅) ≤ `(0, ε) = ε and m∗(∅) ≥ 0 =⇒ m∗(∅) = 0 �
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� Example 1.6 m∗(A) = 0 where A = {X1, X2, .....}

Proof: Note that A ⊆
∞⋃
i=1

(
Xi −

ε

2i+1
, Xi +

ε

2i+1

)
for ε > 0, then

m∗(A) ≤
∞∑
i=1

ε

2i
=
ε

2
·
∞∑
i=1

1

2i−1
=
ε

2
·

{
1

1− 1
2

}
= ε

Since ε > 0 is arbitrary, so we have m∗(A) = 0 as desired. �

1.3 Outer Measure 2

Proposition 1.3.1 If A ⊆ B, then m∗(A) ≤ m∗(B)

Lemma 1.3.2 If a, b ∈ R with a ≤ b, then m∗([a, b]) = b− a

Proof. Let ε > 0 be given, since [a, b] ⊆ (a− ε
2 , b+ ε

2), we have m∗([a, b]) ≤ b− a+ ε.
Since ε > 0 is arbitrary, so by definition of outer measure we have m∗([a, b]) ≤ b− a. Let Ii

(i ∈ N) be bounded open interval s.t. [a, b] ⊆
∞⋃
i=1

Ii. Note that [a, b] is compact, so ∃n ∈ N s.t.

[a, b] ⊆
m⋃
i=1

Ii. Then we have

b− a ≤
n∑
i=1

`(Ii) ≤
∞∑
i=1

`(Ii) =⇒ m∗([a, b]) ≥ b− a

so we have b− a ≤ m∗([a, b]) ≤ b− a, this gives us m∗([a, b]) = b− a �

Proposition 1.3.3 If I is an interval, then m∗(I) = `(I)

Proof. When I is bounded with endpoints where a ≤ b, so for ε > 0,I ⊆ [a, b] =⇒ m∗(I) ≤ b−a
and [a+ ε

2 , b−
ε
2 ] ⊆ I =⇒ b−a−ε ≤ m∗(I) By definition of outer measure we have b−a ≤ m∗(I).

Then we have m∗(I) + b− a = `(I) as desired

When I is unbounded, ∀n ∈ N, ∃In ⊆ I such that `(In) = n. This gives us that
m∗(I) ≥ m∗(In) = n, then m∗(I) =∞ = `(I) as desired.

Hence, we have m∗(I) = `(I), which completes the proof. �
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1.4 Properties

Proposition 1.4.1 — Outer Measure is Translation Invariant. i.e. m∗(x+A) = m∗(A)

Proof.

m∗(x+A) = inf

{∑
`(Ii) : x+A ⊆

∞⋃
i=1

Ii

}
= inf

{∑
`(Ii) : A ⊆

∞⋃
i=1

(Ii − x)

}

= inf


∑

`(Ii − x)︸ ︷︷ ︸
Ji

: A ⊆
∞⋃
i=1

(Ii − x)


= inf

{∑
`(Ji) : A ⊆

∞⋃
i=1

Ji

}
= m∗(A)

�

Proposition 1.4.2 — Outer Measure has Countably Subadditivity.

That means if Ai ⊆ R, then m∗
( ∞⋃
i=1

Ai

)
≤
∞∑
i=1

m∗(Ai)

Proof. WLOG, we assume m∗(Ai) <∞. Let ε > 0 be given and fix i ∈ N. Then there exists

open bounded intervals Ii,j s.t. A ⊆
∞⋃
j=1

Ii,j and
∞∑
i=1

`(Ii,j) ≤ m∗(Ai) +
ε

2i
. We can see that

∞⋃
i=1

Ai ⊆
∞⋃
i,j

Ii,j and so

m∗

( ∞⋃
i=1

Ai

)
≤
∑
i,j

`(Ii,j) =
∞∑
i=1

∞∑
j=1

`(Ii,j) ≤
∞∑
i=1

(
m∗(Ai) +

ε

2

)
=
∞∑
i=1

m∗(Ai) + ε

Since ε > 0 is arbitrary, so we have m∗
( ∞⋃
i=1

Ai

)
≤
∞∑
i=1

m∗(Ai) as desired. �

Corollary 1.4.3 — Outer Measure has Finitely Subadditivity.
If A1, A2, ....., An ⊆ P(R), then

m∗(A1 ∪ . . . ∪An) ≤ m∗(A1) + . . .+m∗(An)
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Exercise 1.4.1
Prove that if A ⊆ R has positive outer measure, then there exists a bounded subset of A
which also has positive outer measure.

Solution: For sake of contradiction, we suppose every bounded subset of A has 0 outer
measure. Since A ⊆ R has positive outer measure, so we say m∗(A) > 0. Now we construct
a sequence of bounded subset of A. Consider Ai = A ∩ [n, n+ 1] for all n ∈ Z, then we have
A =

⋃
i∈Z

Ai. Then we have

0 < m∗(A) = m∗

(⋃
i∈Z

Ai

)
≤
∑
i∈Z

m∗(Ai) =
∑
i∈Z

0 = 0

That gives 0 < 0, which is a contradiction! Hence, there exists a bounded subset of A has
positive outer measure, which completes the proof. �



2. Lebesgue Measure

2.1 Measurable Sets
Goal: Restrict the domain of m∗ to only include sets s.t. whenever A ∩B = ∅ we have

m∗(A ∪B) = m∗(A) +m∗(B)

Definition 2.1.1 — Measurable Set.
We say a set A ⊆ R is measurable if ∀X ⊆ R, m∗(X) = m∗(X ∩A) +m∗(X \A)

� Remark 2.1 Since X = (X∩A)∪(X \A), so we always have m∗(X) ≤ m∗(X∩A)+m∗(X \A)

� Remark 2.2 If A ⊆ R is measurable and B ⊆ R with A ∩B = ∅, then

m∗(A ∪B︸ ︷︷ ︸
X

) = m∗(X ∩A) +m∗(X \A) = m∗(A) +m∗(B)

Goal: Show a lot of sets are measurable

Proposition 2.1.1
If m∗(A) = 0, then A is measurable

Proof: Let X ⊆ R, since X ∩A ⊆ A, we have 0 ≤ m∗(X ∩A) ≤ m∗(A) = 0. Then we have
that m∗(X ∩A) = 0, so

m∗(X ∩A) +m∗(X \A) = m∗(X \A) ≤ m∗(X)
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Proposition 2.1.2

A1, A2, ...., An are measurable, then
n⋃
i=1

Ai is measurable.

Proof: It suffices to prove the result when n = 2. Let A,B ⊆ R be measurable.
Let X ⊆ R, then

m∗(X) = m∗(X ∩A) +m∗(X \A)

= m∗(X ∩A) +m∗((X \A) ∩B) +m∗((X \A) \B)

= m∗(X \A) +m∗((X \A) ∩B) +m∗(X \ (A ∪B))

≥ m∗((X ∩A) ∪ ((X \A) ∩B)) +m∗(X \ (A ∪B))

= m∗(X ∩ (A ∪B)) +m∗(X \ (A ∪B))

Note that X = (X ∩ (A ∪B)) ∪ (X \ (A ∪B)), then

m∗(X) ≤ m∗(X ∩ (A ∪B)) +m∗(X \ (A ∪B))

Therefore, we have ∀X ⊆ R, m∗(X) = m∗(X ∩ (A ∪B)) +m∗(X \ (A ∪B)) as desired.

Proposition 2.1.3
A1, ....An are measurable and Ai ∩Aj = ∅ for i 6= j. Let A = A1 ∪ . . . ∪An, if X ⊆ R, then

m∗(X ∩A) =

n∑
i=1

m∗(X ∩Ai)

Proof: It suffices to prove the result when n = 2. Let A,B ⊆ R be measurable set with
A ∩B = ∅. Let X ⊆ R, then

m∗(X ∩ (A ∪B)) = m∗((X ∩ (A ∪B)) ∩A) +m∗((X ∩ (A ∪B)) \A)

= m∗(X ∩A) +m∗(X ∩B)

Corollary 2.1.4 — Finite Additivity.
Let A1, ...., An be measurable sets and Ai ∩Aj 6= ∅ for i 6= j, then

m∗(A1 ∪ . . . ∪An) =

n∑
i=1

m∗(Ai)
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2.2 Countable Additivity

Lemma 2.2.1
Let Ai ⊆ R be measurable sets for i ∈ N, if Ai ∩Aj 6= ∅ for i 6= j, then

A :=
∞⋃
i=1

Ai

is measurable.

Proof: Let Bn := A1 ∪ . . . ∪An, so for X ⊆ R we have

m∗(X) = m∗(X ∩Bn) +m∗(X \Bn)

≥ m∗(X ∩Bn) +m∗(X \A)

prop
=

n∑
i=1

m∗(X ∩Ai) +m∗(X \A)

By taking n→∞, we have

m∗(X) ≥
∞∑
i=1

m∗(X ∩Ai) +m∗(X \A)

≥ m∗
( ∞⋃
i=1

(X ∩Ai)

)
+m∗(X \A)

= m∗(X ∩A) +m∗(X \A)

as desired.

Proposition 2.2.2
If A ⊆ R is measurable, then R \A is measurable.

Proof: Let X ⊆ R, so

m∗(X ∩ (R \A)) +m∗(X \ (R \A)) = m∗(X \A) +m∗(X ∩A)

= m∗(X)

Proposition 2.2.3

Let Ai ⊆ R me measurable for i ∈ N, then A =
∞⋃
i=1

Ai is measurable.
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Proof: Let Bn = An \ (A1 ∪ . . . An) for n ≥ 2, so we have

Bn = An︸︷︷︸
measurable

∩

R \ (A1 ∪ . . . An−1)︸ ︷︷ ︸
measurable


Then we have Bn is measurable and for i 6= j, Bi ∩Bj = ∅. This gives us that

∞⋃
i=1

Bi =
∞⋃
i=1

Ai

is measurable as desired.

Corollary 2.2.4
The collection L of (Lebesgue) measurable sets is a σ-algebra of sets in R

Proposition 2.2.5 — Countable Additivity.
Let Ai ⊆ R be measurable for i ∈ N, if Ai ∩Aj 6= ∅ for i 6= j, then

m∗

( ∞⋃
i=1

Ai

)
=
∞∑
i=1

m∗(Ai)

Proof: Obviously we have m∗
( ∞⋃
i=1

Ai

)
≤
∞∑
i=1

m∗(Ai), and note that

m∗

( ∞⋃
i=1

Ai

)
≥ m∗

(
n⋃
i=1

Ai

)
=

n∑
i=1

m∗(Ai)

By taking n→∞ we have m∗
( ∞⋃
i=1

Ai

)
≥
∞∑
i=1

m∗(Ai), which completes the proof.

2.3 Borel Implies Measurable

Goal 1: Show Borel sets are measurable.

Proposition 2.3.1
If a ∈ R, then (a,∞) is measurable.

Proof: Let X ⊆ R, we want to show that m∗(X ∩ (a,∞)) +m∗(X \ (a,∞)) ≤ m∗(X)
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Case 1: a /∈ X, we will show m∗(X ∩ (a,∞)︸ ︷︷ ︸
X1

) +m∗(X ∩ (−∞, a)︸ ︷︷ ︸
X2

) ≤ m∗(X)

Let (Ii) be a sequence of bounded open intervals s.t. X ⊆
∞⋃
i=1

Ii. Define I ′i = Ii ∩ (a,∞) and

I ′′i = Ii ∩ (−∞, a). Note that

X1 ⊆
∞⋃
i=1

I ′i and X2 ⊆
∞⋃
i=1

I ′′i

so we have

m∗(X1) ≤
∞∑
i=1

`(I ′i) and m∗(X2) ≤
∞∑
i=1

`(I ′′i )

Then we see that

m∗(X1) +m∗(X2) ≤
∞∑
i=1

`(I ′i) +

∞∑
i=1

`(I ′′i ) =

∞∑
i=1

[
`(I ′i) + `(I ′′i )

]
=
∞∑
i=1

`(Ii)

By the definition of inf, we have

m∗(X1) +m∗(X2) ≤ m∗(X)

Case 2: a ∈ X, left it as exercise. Hint: X ′ = X \ {a}

Theorem 2.3.2 — Every Borel Set is measurable.

Proof: omitted

Definition 2.3.1 — Lebesgue Measure.
A function m : L → [0,∞) ∪ {∞} defined by m(A) = m∗(A) is called Lebesgue Measure

2.4 Properties

Proposition 2.4.1 — Excision Property.
If A ⊆ B and A is measurable with m(A) <∞. Then

m∗(B \A) = m∗(B)−m(A)
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Proof:

m∗(B) = m∗(B ∩A) +m∗(B \A)

= m(A)︸ ︷︷ ︸
<∞

+m∗(B \A) since m∗(B ∩A) = m∗(A) = m(A)

Theorem 2.4.2 — Continuity of Measure.
1. If A1 ⊆ A2 ⊆ A3 ⊆ . . . are measurable, then

m

( ∞⋃
i=1

Ai

)
= lim

n→∞
m(An)

2. If B1 ⊇ B2 ⊇ B3 ⊇ . . . are measurable and m(B1) <∞, then

m

( ∞⋂
i=1

Bi

)
= lim

n→∞
m(Bn)

Proof for 1: Since m(Ak) ≤ m

( ∞⋃
i=1

Ai

)
for all k ∈ N, we have lim

n→∞
m(An) ≤ m

( ∞⋃
i=1

Ai

)
.

If ∃k ∈ N such that m(Ak) = ∞, then lim
n→∞

m(An) = ∞ and we are done. Then we may
assume each m(Ak) <∞. For each k ∈ N, let Dk = Ak \Ak−1 and A0 = ∅. Note that Dk’s

are measurable and they are pairwise disjoint. We also have
∞⋃
i=0

Di =

∞⋃
i=0

Ai, then

m

( ∞⋃
i=0

Ai

)
= m(

∞⋃
i=0

Di)

=
∞∑
i=0

m(Di) by Prop 2.2.5

=
∞∑
i=1

(m(Ai)−m(Ai−1)) by Prop 2.4.1

= lim
n→∞

n∑
i=1

(m(Ai)−m(Ai−1))

= lim
n→∞

m(An)−m(A0)︸ ︷︷ ︸
=0

since A0 = ∅

= lim
n→∞

m(An)

as desired.

Proof for 2: For k ∈ N, we define Dk = B1 \ Bk. Note that Dk’s are measurable and
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D1 ⊆ D2 ⊆ D3 ⊆ . . .. Then by 1 we have

m

( ∞⋃
i=1

Di

)
= lim

n→∞
m(Dn)

and we see that
∞⋃
i=1

Di =

∞⋃
i=1

B1 \Bi = B1 \

( ∞⋂
i=1

Bi

)
and so

lim
n→∞

m(Dn) = m

( ∞⋃
i=1

Di

)
= m

(
B1 \

( ∞⋂
i=1

Bi

))

= m(B1)−m

( ∞⋂
i=1

Bi

)

However, we note that

lim
n→∞

m(Dn) = lim
n→∞

m(B1)−m(Bn) = m(B1)− lim
n→∞

m(Bn)

This gives us that

m(B1)−m

( ∞⋂
i=1

Bi

)
= m(B1)− lim

n→∞
m(Bn)

That is

m

( ∞⋂
i=1

Bi

)
= lim

n→∞
m(Bn)

which completes the proof.

� Example 2.1
Let Bi = (i,∞) then we have

m

( ∞⋂
i=1

Bi

)
= m(∅) = 0 and lim

n→∞
m(Bn) =∞

Why this does not fit Theorem 2.4.2? Because m(B1) =∞ �
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Exercise 2.4.1
Let A ⊆ R has finite outer measure, prove that A is measurable if and only if

b− a = m∗((a, b) ∩A) +m∗((a, b) \A)

for any open bounded interval (a, b)

Solution: =⇒ Assume that A is measurable, then for any X ⊆ R we have

m∗(X) = m∗(X ∩A) +m∗(X \A)

Now we can just take X be an arbitrary open bounded interval (a, b), so we have

m∗((a, b)) = m∗((a, b) ∩A) +m∗((a, b) \A)

Note that m∗((a, b)) = `((a, b)) = b− a, then we have

b− a = m∗((a, b) ∩A) +m∗((a, b) \A)

as desired.

⇐= Assume that
b− a = m∗((a, b) ∩A) +m∗((a, b) \A)

for any open bounded interval (a, b).
Since m∗(A) <∞, so for any ε > 0 and by the definition of outer measure we have

∞∑
i=1

`(Ii) < m∗(A) + ε

where A ⊆
∞⋃
i=1

Ii. Since each Ii is open bounded interval so it’s a Borel set. We also note

that m∗(Ii) = `(Ii) for each i, then we have

m∗(Ii) = m∗(Ii ∩A) +m∗(Ii \A)

Consider to sum each i for the equation above, we get

∞∑
i=1

m∗(Ii) =

∞∑
i=1

m∗(Ii ∩A) +

∞∑
i=1

m∗(Ii \A)
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this gives us that

∞∑
i=1

m∗(Ii) ≥ m∗
( ∞⋃
i=1

Ii ∩A

)
+m∗

( ∞⋃
i=1

(Ii \A)

)

Notice that
∞⋃
i=1

Ii ∩A = A and
∞⋃
i=1

(Ii \A) =

( ∞⋃
i=1

Ii

)
\A

Then we have that

m∗(A) +m∗

(( ∞⋃
i=1

Ii

)
\A

)
≤
∞∑
i=1

m∗(Ii) =
∞∑
i=1

`(Ii) < m∗(A) + ε

This gives us that

m∗

(( ∞⋃
i=1

Ii

)
\A

)
< ε

Note that
∞⋃
i=1

Ii is an open set and contains A, then by A1Q5b the set A is measurable,

which completes the proof. �

2.5 Non-Measurable Set

Lemma 2.5.1
Let A ⊆ R be bounded and measurable, Λ ⊆ R be bounded and countably infinite. If λ+A
with λ ∈ Λ are pairwise disjoint, then m(A) = 0

Proof: Note that
⋃
λ

(λ+A) is bounded and measurable. Then we have m

(⋃
λ

(λ+A)

)
<∞,

so that

m

(⋃
λ

(λ+A)

)
=
∑
λ

m(λ+A) =
∑
λ

m(A) <∞

Then m(A) = 0

Construction
We start with ∅ 6= A ⊆ R, consider

a ∼ b ⇐⇒ a− b ∈ Q

Then this ∼ is an equivalence relation.
Let CA denote a single choice of equivalence class representatives for A relative to ∼.
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� Remark 2.3 The sets λ+ CA with λ ∈ Q are pairwise disjoint. Because

x ∈ (λ1 + C +A) ∩ (λ2 + CA)

implies x = λ1 + a = λ2 + b where a, b ∈ CA, then a− b = λ2 − λ1 ∈ Q. This gives us that

a ∼ b =⇒ a = b =⇒ λ1 = λ2

Theorem 2.5.2 — Vitali Theorem.
Every set A ⊆ R with m∗(A) > 0 contains a non-measurable set.

Proof: By Quiz 1, we may assume A is bounded. Say A ⊆ [−N,N ] for some N ∈ N.

Claim: CA is non-measurable.

Assume CA is measurable, let Λ ⊆ Q be bounded and countable. By the Lemma and
Remark we have m(CA) = 0. Let a ∈ A, then a ∼ b for some b ∈ CA. In particular,
a− b = λ ∈ Q. Moreover, λ ∈ [−2N, 2N ]. Taking Λ0 = Q ∩ [−2N, 2N ] we have that

A ⊆
⋃
λ∈Λ0

(λ+ CA)︸ ︷︷ ︸
=0

This leads to a contradiction!

Corollary 2.5.3
There exists A,B ⊆ R s.t.

A ∩B = ∅ and m∗(A ∪B) < m∗(A) +m∗(B)

Proof: Let C be non-measurable set, then there exists X ⊆ R s.t.

m∗(X) < m∗(X ∩ C) +m∗(X \ C)

Take A = X ∩ C and B = X \ C, then we are done.

2.6 Cantor-Lebesgue Function

Proposition 2.6.1 — The Cantor set is Borel and has measure zero.

Proof: C is closed so it’s Borel. Note that C =
∞⋂
i=1

Ci and Ci are measurable with
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C1 ⊇ C2 ⊇ C3 ⊇ ..... and m(C1) <∞. By continuity of measure, we have

m(C) = lim
n→∞

m(Ci) = lim
n→∞

2i

3i
= 0

Construction of Cantor-Lebesgue Function

1. For i ∈ N, let Ui be union of open intervals deleted in the process of constructing C1, C2, ....Ci
i.e. Ui = [0, 1] \ Ci

2. U =

∞⋃
i=1

Ui i.e. U = [0, 1] \ C

3. Say Ui = Ii,1 ∪ Ii,2 ∪ . . . ∪ Ii,2i−1 , we define

ϕ : Ui → [0, 1] by ϕ |Ii,j=
j

2i

e.g) U1 =

(
1

3
,
2

3

)
︸ ︷︷ ︸
7→ 1

2

and U2 =

(
1

9
,
2

9

)
︸ ︷︷ ︸
7→ 1

4

∪
(

1

3
,
2

3

)
︸ ︷︷ ︸
7→ 2

4

∪
(

7

9
,
8

9

)
︸ ︷︷ ︸
7→ 3

4

4. Define ϕ : [0, 1]→ [0, 1] by for 0 6= x ∈ C

ϕ(x) = sup {ϕ(t) : t ∈ U ∩ [0, x)}

and ϕ(0) = 0. This is the Cantor-Lebesgue Function:

� Remark 2.4 Things to know about ϕ:
1. ϕ is increasing
2. ϕ is continuous.
· ϕ is continuous on U
· x ∈ C with x 6= 0, 1. For large i, ∃ai ∈ Ii,j and bi ∈ Ii,j+1 s.t.

ai < x < bi
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but ϕ(bi)− ϕ(ai) = j+1
2i
− j

2i
= 1

2i
→∞. Then there is no jump up! The point for x ∈ {0, 1}’s

proof is similar, so it’s continuous.
· ϕ : U → [0, 1] is differentiable and ϕ′ = 0
· ϕ is onto, ϕ(0) = 0, ϕ(1) = 1, IVT

2.7 Non-Borel Set

A non-Borel Set
Let ϕ be the Cantor-Lebesgue Function, consider ψ : [0, 1]→ [0, 2] defined by

ψ(x) = x+ ϕ(x)

Then ψ is strictly increasing, continuous and onto. This implies ψ is invertible.

Proposition 2.7.1
1. ψ(C) is measurable and has positive measure.
2. ψ maps a particular (measurable) subset of C to a non-measurable set.

Proof (for 1): By A1, ψ−1 is continuous, then ψ(C) = (ψ−1)−1(C) is closed. Then
ψ(C) measurable. Note that [0, 1] = C ∪ U and C ∩ U = ∅, so [0, 2] = ψ(C) ∪ ψ(U) with
ψ(C) ∩ ψ(U) = ∅. Then

2 = m(ψ(C)) +m(ψ(U))

it’s suffices to show that
m(ψ(U)) = 1

We say U =

∞⋃
i=1

Ii a disjoint union of open intervals, then ψ(U) =

∞⋃
i=1

ψ(Ii) so thatm(()ψ(U)) =

∞∑
i=1

m(ψ(Ii)). No that ∀i ∈ N, ∃r ∈ R s.t. ϕ(x) = r for all x ∈ Ii. In particular, ψ(x) = x+r

for all x ∈ Ii and so ψ(Ii) = r + Ii. Then

m(ψ(U)) =

∞∑
i=1

m(Ii) = m

( ∞⋃
i=1

Ii

)
= m(U)

Since [0, 1] = U ∪ C we have that

1 = m(U) +m(C)︸ ︷︷ ︸
=0

= m(U)

Hence, m(ψ(U)) = m(U) = 1 > 0

Proof (for 2): By Vitali, ψ(C) contains a subset A ⊆ ψ(C) which is non-measurable.
Let B = ψ−1(A) ⊆ C, then ψ(B) = A is non-measurable as resquired.
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Theorem 2.7.2
The Cantor set contains an element of L \ B

Proof: Take B ⊆ C, so B is measurable, then ψ(B) is not measurable. By A1, if B
is Borel, then ψ(B) is Borel this leads to a contradiction. Hence B is not Borel.

Exercise 2.7.1 Let A ⊆ R be a non-measurable set with finite outer measure. Prove that
there does not exists a measurable set B ⊆ A such that m(B) = m∗(A)

Solution: Let A ⊆ R is non-measurable and m∗(A) <∞
For sake of contradiction, we suppose there exists a measurable set B ⊆ A such that
m(B) = m∗(A)
Since m∗(A) < ∞ so we have m∗(B) ≤ m∗(A) < ∞, note that B is measurable. Then we
have

m∗(A \B) = m∗(A)−m(B) = 0

This gives us that A \B is measurable, that is A \B ∈ L . Since B ⊆ A and B ∈ L , then

(A \B)︸ ︷︷ ︸
∈L

∪ B︸︷︷︸
∈L

= A ∈ L

That means A is measurable, it’s a contradiction!
Hence, there does not exists B ⊆ A is measurable s.t. m(B) = m∗(A), which completes the
proof. �



3. Measurable Functions

3.1 Measurable Functions

Definition 3.1.1 — Measurable Function.
A ⊆ R is measurable, we say f : A → R is measurable if and only if for all open U ⊆ R,
f−1(U) is measurable

Proposition 3.1.1
If A ⊆ R is measurable and f : A→ R is continuous, then f is measurable.

Proposition 3.1.2
A ⊆ R is measurable, and XA : R→ R where

XA =

{
1 x ∈ A
0 x /∈ A

Then XA is measurable.

Proposition 3.1.3
Let A ⊆ R be measurable, f : A→ R, the following are equivalent:
1. f is measurable
2. ∀a ∈ R, f−1(a,∞) is measurable.
3. ∀a < b with a, b ∈ R, f−1(a, b) is measurable.

Proof:
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1 =⇒ 2: Trivial

2 =⇒ 3: Let b ∈ R so that f−1(b,∞) is measurable, then R \ f−1(b,∞) = f−1(R \ (b,∞)) =

f−1((−∞, b]) is measurable as well. We see that (−∞, b) =
∞⋃
i=1

(
−∞, b− 1

i

)
and so

f−1(−∞, b) =

∞⋃
i=1

f−1

(
−∞, b− 1

i

)
is measurable. Finally, for a < b, we can write

(a, b) = (a,∞) ∪ (−∞, b) =⇒ f−1(a, b) = f−1(a,∞) ∩ f−1(−∞, b)

is measurable.

3 =⇒ 1: Trivial

Proposition 3.1.4
Let A ⊆ R be measurable and f, g : A→ R are measurable.
1. For all a, b ∈ R, af + bg is measurable.
2. The function fg is measurable.

Proof for 1: Let a ∈ R, for α ∈ R (af)−1(α,∞) = {x ∈ A : af(x) > α}
If a > 0,

(af)−1(α,∞) =
{
x ∈ A : f(x) >

α

a

}
= f−1

(α
a
,∞
)

is measurable.
If a < 0, (af)−1(α,∞) = f−1

(
−∞, α

a

)
is measurable.

If a = 0, af continuous =⇒ measurable.
We now show that f + g is measurable. For α ∈ R

(f + g)−1(α,∞) = {x ∈ A : f(x) + g(x) > α}
= {x ∈ A : f(x) > α− g(x)}
= {x ∈ A : ∃q ∈ Q, f(x) > q > α− g(x)}

=
⋃
q∈Q

({x ∈ A : f(x) > q} ∩ {x ∈ A : g(x) > α− q})

=
⋃
q∈Q

f−1(q,∞)︸ ︷︷ ︸
measurable

∩ g−1(α− q,∞)︸ ︷︷ ︸
measurable


is measurable. Then we have f + g is measurable.
Since af and f + g are measurable, so we have af + bg is measurable.
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Proof for 2: By the quiz, |f | is measurable. For α ∈ R:

(f2)−1(α,∞) =
{
x ∈ A : f2(x) > α

}
=

{
A α < 0

{x ∈ A : |f |(x) >
√
α} α ≥ 0

=

{
A α < 0

|f |−1 (
√
a,∞) α ≥ 0

is measurable, then f2 is measurable. Since (f + g)2 = f2 + 2fg + g2 is measurable, so we
have 2fg is measurable. By 1, the function fg is measurable.

� Example 3.1 ψ : [0, 1] → R, ψ(x) = x + ϕ(x)︸︷︷︸
C-L

. ∃A ⊆ [0, 1] s.t. A is measurable but ψ(A) is

not measurable. Extend ψ : R→ R continuously to a strictly increasing surjective function s.t.
ψ−1 is continuous.

Consider XA ◦ ψ−1, then

(
XA ◦ ψ−1

)−1
(

1

2
,
3

2

)
= ψ−1

(
X−1
A

(
1

2
,
3

2

))
= ψ(A)

which is not measurable. Then XA ◦ ψ−1 is not measurable. �

Proposition 3.1.5
Let A ⊆ R be measurable set, if g : A→ R is measurable and f : R→ R is continuous, then
f ◦ g is measurable.

Proof: Let U ⊆ R be open, (f ◦ g)−1(U) = g−1(f−1(U)︸ ︷︷ ︸
open

) is measurable.

Definition 3.1.2
Let A ⊆ R, we say a property P (x) (x ∈ A) is true almost everywhere (ae) if

m({x ∈ A : P (x) false}) = 0

Proposition 3.1.6
Let f : A→ R be measurable, if g : A→ R is a function and f = g ae, then g is measurable.

Proof: Consider
B = {x ∈ A : f(x) 6= g(x)}
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so we have m(B) = 0. Let α ∈ R, so

g−1(α,∞) = {x ∈ A : g(x) > α}
= {x ∈ A \B : g(x) > α} ∪ {x ∈ B : g(x) > α}
= {x ∈ A \B : f(x) > α} ∪ {x ∈ B : g(x) > α}

=

f−1(α,∞)︸ ︷︷ ︸
measurable

∩ (A \B)︸ ︷︷ ︸
measurable

 ∪ {x ∈ B : g(x) > α}︸ ︷︷ ︸
measure 0

is measurable.

Proposition 3.1.7
Let A be measurable, B ⊆ A measurable and a function f : A→ R is measurable if and only
if f |B and f |A\B are measurable.

Proof: =⇒ suppose f : A→ R is measurable, let α ∈ R, then

(f |B)−1(α,∞) = {x ∈ B : f(x) > α}
= f−1(α,∞) ∩B

is measurable, then f |B is measurable. The proof for f |A\B is similar.
⇐= Suppose f |B and f |A\B are measurable. For α ∈ R,

f−1(α,∞) = {x ∈ A : f(x) > α}
= {x ∈ B : f(x) > α} ∪ {x ∈ A \B : f(x) > α}
= (f |B)−1(α,∞)︸ ︷︷ ︸

measurable

∪ (f |A\B)−1[α,∞)︸ ︷︷ ︸
measurable

is measurable, and so f is measurable.

Proposition 3.1.8
Let fn be a sequence of measurable functions where fn : A → R. If fn → f pointwise ae,
then f is measurable.

Proof: Let B = {x ∈ A : fn(x) 9 f(x)}, so that m(B) = 0. Now for α ∈ R,

(f |B)−1(α,∞) = f−1(α,∞) ∩B︸ ︷︷ ︸
measure 0

is measurable.
If suffices to show that f |A\B is measurable. By replacing f by f |A\B, we may assume
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fn → f pointwise. Let α ∈ R, since fn → f pointwise, we see that for x ∈ A

f(x) > α ⇐⇒ ∃n,N ∈ N, ∀i ≥ N, fi(x) > α+
1

n

Then we see that

f−1(α,∞) =
⋃
n∈N

⋃
N∈N

∞⋂
i=N

f−1
i

(
α+

1

n
,∞
)

︸ ︷︷ ︸
measurable

is measurable. Therefore, we have f is measurable.

3.2 Simple Approximation

Definition 3.2.1 — Simple.
A function ϕ : A→ R is called simple if ϕ is measurable and ϕ(A) is finite.

� Remark 3.1 — Canonical Representation.
Let ϕ : A→ R be measurable, ϕ(A) = {c1, c2, ...ck} where cis are distinct and Ai = ϕ−1({ci})

is measurable. We can see that A is a disjoint union of Ai i.e. A =

k⋃
i=1

Ai and ϕ =

k∑
i=1

ciXAi

Goal: Show measurable functions can be approximated by simple functions

Lemma 3.2.1
Let f : A→ R be measurable and bounded, for all ε > 0 there exists simple ϕε, ψε : A→ R
such that

ϕε ≤ f ≤ ψε and 0 ≤ ψε − ϕε < ε

Proof: Since f(A) is bounded, so f(A) ⊆ [a, b]. Now for any ε > 0, we consider a = y0 <
y1 < ...... < yn = b where yi+1 − yi < ε. We define Ik = [yk−1, yk), Ak = f−1(Ik)︸ ︷︷ ︸

measurable

. Let

ϕε : A→ R and ψε : A→ R where

ϕε :
n∑
k=1

yk−1XAk
and ψε

n∑
k=1

ykXAk

so ϕε and ψε are simple. Let x ∈ A, since f(x) ∈ [a, b], so ∃k ∈ {0, 1, .., 0} such that f(x) ∈ Ik.
i.e. yk−1 ≤ f(x) < yk, x ∈ Ak. Moreover, ϕε(x) = yk−1 ≤ f(x) < yk = ψε(x) and so

ϕε ≤ f < ψε

Now for the same x, we see that 0 ≤ ψε(x) − ϕε(x) = yk − yk−1 < ε, which completes the
proof.
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Theorem 3.2.2 — Simple Approximation.
Let A ⊆ R be measurable. A function f : A → R is measurable if and only if there is a
sequence (ϕn) of simple functions on A such that ϕn → f pointwise and ∀n, |ϕn| ≤ |f |

Proof: ⇐= Done
=⇒ Suppose f : A→ R is measurable.
Case 1: f ≥ 0, for each n ∈ N we define

An = {x ∈ A : f(x) ≤ n}

so that An is measurable and f |An is measurable and bounded. By the Lemma 3.2.1, there
exists simple function (ϕn) and (ψn) such that ϕn ≤ f ≤ ψn on An and 0 ≤ ψn − ϕn < 1

n .
Fix n ∈ N, extend ϕn : A → R by setting ϕn(x) = n if x /∈ An, so 0 ≤ ϕn ≤ f . For each
n ∈ N, ϕn : A→ R is simple.
Claim: ϕn → f pointwise.
Let x ∈ A and N ∈ N such that f(x) ≤ N i.e. x ∈ AN . For n ≥ N , x ∈ An and so
0 ≤ f(x)− ϕn ≤ ψn(x)− ϕn(x) < 1

n .

Case 2: f : A→ R measurable.
We define

B = {x ∈ A : f(x) ≥ 0} and C = {x ∈ A : f(x) < 0}

are measurable. Now define g, h : A→ R

g = XBf and h = −XCf

so that g, h are measurable and non-negative. By Case 1, there exists sequences (ϕn) and
(ψn) of simple functions such that ϕn → g pointwise and ψn → h pointwise with 0 ≤ ϕn ≤ g
and 0 ≤ ψn ≤ h. Then we have

ϕn − ψn︸ ︷︷ ︸
simple

→ g − h = f pointwise

and
|ϕn − ψn| ≤ |ϕn|+ |ψn| = ϕn + ψn ≤ g + h = |f |

which completes the proof.
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4.1 Littlewood Principle I

Up to certain finiteness conditions:
1. Measurable sets are "almost" finite, disjoint union of bounded open intervals.
2. Measurable functions are "almost" continuous.
3. Pointwise limits of measurable functions are "almost" uniform limits.

Theorem 4.1.1
Let A be measurable set and m(A) < ∞. For all ε > 0 there exists finitely many open
bounded, disjoint intervals I1, I2, ....., In such that

m(A∆U) < ε

where U = I1 ∪ I2 ∪ ...... ∪ In
Note: m(A∆U) = m(A \ U) +m(U \A)

Proof: Let ε > 0 be given, we may find an open set U such that

m(U \A) <
ε

2

By PMATH 351, there exists bounded open, disjoint intervals Ii (i ∈ N) such that

U =
∞⋃
i=1

Ii
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Note that
∞∑
i=1

Ii = m(U) <∞. In particular, ∃N ∈ N such that

∞∑
i=N+1

`(Ii) <
ε

2

Take V = I1 ∪ .... ∪ IN we see that m(A \ V ) ≤ m(U \ V ) and m(V \A) ≤ m(U\) <
ε
2 .Therefore, we have m(A∆U) < ε as desired.

4.2 Littlewood Principle III

Goal: Prove that pointwise limits of measurable functions are almost uniform limits.

Lemma 4.2.1
Let A be a measurable set with m(A) < ∞ and fn : A → R be a sequence of measurable
functions. Assume f : A → R such that fn → f pointwise. For all α, β > 0, there exists a
measurable subset B ⊆ A and N ∈ N such that

1. |fn(x)− f(x)| < α for all x ∈ B, n ≥ N
2. m(A \B) < β

Proof: Let α, β > 0 be given, for n ∈ N define

An = {x ∈ A : |fk(x)− f(x)| < α, ∀ k ≥ n} =
∞⋂
k=n

|fk − f |−1(−∞, α)︸ ︷︷ ︸
∈L

Then every An is measurable.

Since fn → f pointwise, A =

∞⋃
n=1

An and (An) is ascending, by continuity of measure

m(A) = lim
n→∞

m(An) <∞

We may find N ∈ N such that for all n ≥ N

m(A)−m(An) < β

we can just pick B = AN , then the proof is completed.
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Theorem 4.2.2 — Littlewood 3 - Egoroff’s Theorem.
Let A be a measurable set with m(A) < ∞ and fn : A → R be a sequence of measurable
functions. If fn → f pointwise, then for all ε > 0 there exists a closed set C ⊆ A such that

1. fn → f uniformly on C
2. m(A \ C) < ε

Proof: Let ε > 0 be given, by the Lemma 4.2.1 for every n ∈ N, there exists a mea-
surable set An ⊆ A and N(n) ∈ N s.t.

1. For all x ∈ An and k ≥ N(n), |fk(x)− f(x)| < 1
n

2. m(A \An) <
ε

2n+1

We take B =

∞⋂
n=1

An (measurable). For n ∈ N s,t, 1
n < ε, k ≥ N(n) and x ∈ B

|fk(x)− f(x)| < 1

n

then fn → f uniformly on B
Moreover we have

m(A \B) = m

(
A \

∞⋂
n=1

An

)
= m

( ∞⋃
n=1

A \An

)
≤
∞∑
n=1

m(A \An) <
∞∑
n=1

ε

2n+1
=
ε

2

By A1, there exists a closed set C s.t. C ⊆ B and m(B \ C) < ε
2

Since C ⊆ B, fk → f uniformly on C and m(A \ C) = m(A \B) +m(B \ C) < ε
2 + ε

2 = ε
which completes the proof.

� Example 4.1 — Warning.
Let fn : R → R with fn(x) = x

n , fn → 0 pointwise but fn 9 0 uniformly on any measurable
sets B ⊆ R such that m(R \B) < 1

Need: m(A) <∞ �

4.3 Littlewood Principle II

Goal: Prove that measurable functions are "almost" continuous. (i.e. Littlewood’s 2nd Principle/
Lusin’s Theorem)

Lemma 4.3.1
Let f : A→ R be a simple function. For all ε > 0 there exists a continuous g : R→ R and a
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closed set C ⊆ A such that f = g on C and m(A \ C) < ε

Proof: Let f =

n∑
i=1

aiχAi where Ai = {x ∈ A : f(x) = ai} is measurable. By A1 we have

there exists Ci ⊆ Ai is closed such that m(Ai \ Ci) <. Note that A =

n⋃
i=1

Ai and C =

n⋃
i=1

Ci

are disjoint union. We can see that for all x ∈ Ci, f(x) = ai, by A1 we have f is continuous
on C and we can extend f |C to a continuous function g : R→ R, also we have

m(A \ C) = m

(
n⋃
i=1

(Ai \ Ci)

)
=

n∑
i=1

m(Ai \ Ci) < ε

as desired.

Theorem 4.3.2 — Littlewodd 2 - Lusin’s Theorem.
Let f : A → R be a measurable function. For all ε > 0, there exists a continuous function
g : R→ R and a closed set C ⊆ A such that f = g on C and m(A \ C) < ε.

Proof: Let ε > 0 be given

Case 1: m(A) <∞
Let f : A→ R be measurable, by the SAT (simple approximation theorem) there exists
the simple function fn such that fn → f pointwise. By the lemma, there exists the continuous
function gn : R→ R and closed Cn ⊆ A such that fn = gn on Cn and m(A \ Cn) < ε

2n+1 . By
Egorff, there exists a closed set C0 ⊆ A such that fn → f uniformly on C0 andm(A \ C0) < ε

2 .

Let C =

∞⋂
i=0

Ci, so gn = fn → f uniformly on C ⊆ C0 so f is continuous on C. By A1 we

may extend f |C to a continuous function g : R→ R and

m(A \ C) = m

(
A \

∞⋂
i=0

Ci

)
= m

( ∞⋃
i=1

)
(A \ Ci) ≤

∞∑
i=0

m(A \ Ci)

= m(A \ C0) +
∞∑
i=1

m(A \ Ci)

<
ε

2
+
ε

2
= ε

which completes the proof of Case 1

Case 2: m(A) =∞
For n ∈ N, we define

An := {a ∈ A : |a| ∈ [n− 1, n)}
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so that A =

∞⋃
n=1

An, by case 1 there exists continuous function gn : R → R and closed set

Cn ⊆ An such that f = gn on Cn and m(An \ Cn) < Consider C =

∞⋃
i=1

Ci which is a disjoint

union, so we have

m(A \ C) = m
(⋃

(Ai \ Ci)
)

=
∞∑
i=1

m(Ai \ Ci) < ε

and let g : C → R and x ∈ C so that x ∈ Cn for exactly one n ∈ N. Define g(x) = gn(x)︸ ︷︷ ︸
c.t.s

= f(x).

By A1 we can extend g to a continuous function on R, which completes the proof.



5. Integration

5.1 Integration I

1. Simple functions, ϕ : A→ R, m(A) <∞
2. f : A→ R is bounded and measurable with m(A) <∞, ϕε ≤ f ≤ ψε
3. f : A→ R measurable, f ≥ 0

sup

{∫
A
h : h ∈ 2, 0 ≤ h ≤ f

}

4. f : A→ R be measurable function, f+ = max {f, 0} and f− = max {−f, 0}.

Step 1: ϕ : A→ R be simple function and m(A) <∞.

Definition 5.1.1 — Lebesgue Integral.
Let m(A) <∞, ϕ : A→ R be simple function with canonical representation:

ϕ =

n∑
i=1

aiXAi

The Lebesgue Integral of ϕ over A is∫
A
ϕ =

n∑
i=1

aim(Ai)
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Lemma 5.1.1
Let m(A) < ∞ where A is measurable, if B1, B2, ...., Bn ⊆ A are measurable and disjoint,
and ϕ : A→ R is defined by

ϕ =

n∑
i=1

biXBi

then ∫
A
ϕ =

n∑
i=1

bim(Bi)

For n = 2: If b1 6= b2, then ϕ = b1XB1 + b2XB2 is the canonical representation, if b1 = b2 then

b1XB1 + b1XB2 = b1{XB1 + XB2} = b1 · XB1∪B2︸ ︷︷ ︸
con rep

then we have∫
A
ϕ = b1m(B1 ∪B2) = b1 · (m(B1) +m(B2)) = b1m(B1) + b2m(B2)

Proposition 5.1.2
Let ϕ,ψ : A→ R be simple function with m(A) <∞, for all α, β ∈ R we have∫

A
(αϕ+ βψ) = α

∫
A
ϕ+ β

∫
A
ψ

Proof: Let

ϕ(A) = {a1, ..., an} and ψ(A) = {a1, ..., an} are distinct

Define

Cij = {x ∈ A : ϕ(x) = ai, ψ(x) = bj} = ϕ−1({ai}) ∩ ψ−1({bj}) measurable

Then we have
αϕ+ βψ =

∑
i,j

(αai + βbj)XCij



36 Chapter 5. Integration

where Cij is pairwise disjoint, so by the Lemma 5.1.1 we have∫
A
αϕ+ βψ =

∑
i,j

(αai + βbj) ·m(Cij)

=
∑
i,j

αaim(Cij) +
∑
i,j

βbim(Cij)

=
∑
i

αai

∑
j

m(Cij)

+
∑
j

βbi

(∑
i

m(Cij)

)

= α
∑
i

α(m({x ∈ A : ϕ(x) = ai})) + β
∑
j

α(m({x ∈ A : ψ(x) = bi}))

= α

∫
A
ϕ+ β

∫
A
ψ

Proposition 5.1.3
Let ε, ψ : A→ R be simple function and m(A) <∞, if ϕ ≤ ψ, then∫

A
ϕ ≤

∫
A
ψ

5.2 Integration II

Step 2: f : A→ R be bounded and measurable with m(A) <∞

Definition 5.2.1 — Upper/Lower Lebesgue Integral.∫
A
f = sup

{∫
A
ϕ : ϕ ≤ f is simple

}
and

∫
A
f = inf

{∫
A
ψ : f ≤ ψ is simple

}

Proposition 5.2.1
Let m(A) <∞ and f : A→ R be bounded and measurable, then∫

A
f =

∫
A
f

Proof: For all n ∈ N, ∃ simple function ϕn, ψn : A→ R such that

ϕn ≤ f ≤ ψn and ψn − ϕn <
1

n
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We see that

0 ≤
∫
A
f −

∫
A
f ≤

∫
A
ψn −

∫
A
ϕn =

∫
A

(ψn − ϕn) ≤
∫
A

1

n
=

1

n
·m(A)→ 0

Definition 5.2.2 — Lebesgue Integral.
Let m(A) <∞ and f : A→ R be bounded measurable functions, we define the (Lebesgue
Integral) of f over A by ∫

A
f =

∫
A
f =

∫
A
f

Proposition 5.2.2
Let f.g : A→ R be bounded measurable and m(A) <∞. For any α, β ∈ R∫

A
(αf + βg) = α

∫
A
f + β

∫
A
g

Proof: Let ϕ1, ϕ2, ψ1, ψ2 be simple function where ϕ1 ≤ f ≤ ψ1 and ϕ2 ≤ g ≤ ψ2, so∫
A

+f + g =

∫
A
f + g ≤

∫
A

(ψ1 + ψ2)

=

∫
A
ψ1 +

∫
A
ψ2

≤ inf

{∫
A
ψ1 +

∫
A
ψ2 : f ≤ ψ1, g ≤ ψ2

}
= inf

{∫
A
ψ1 : f ≤ ψ1 simple

}
+ inf

{∫
A
ψ2 : g ≤ ψ2 simple

}
=

∫
A
f +

∫
A
g

∫
A
f + g =

∫
A
f + g ≥

∫
A
ϕ1 + ϕ2

=

∫
A
ϕ1 +

∫
A
ϕ2

Similarly, by taking sup we have
∫
A
f + g ≥

∫
A
f +

∫
A
g, so we have the addition

∫
A
f + g =

∫
A
f +

∫
A
g

Scalar multiple is similar, then the results follows.
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Proposition 5.2.3
Let f, g : A→ R be bounded and measurable, m(A) <∞. If f ≤ g then∫

A
f ≤

∫
A
g

Proof: ∫
A

(g − f) ≥
∫
A

0 = 0 =⇒
∫
A
g −

∫
A
f ≥ 0 =⇒

∫
A
g ≥

∫
A
f

5.3 Bounded Convergence Theorem

Proposition 5.3.1
Let f : A→ R be bounded and measurable, let B ⊆ A be measurable and m(A) <∞, then∫

B
f =

∫
A

(f · XB)

Proof: If f = XC and C ⊆ A be measurable, then∫
A
XCXB =

∫
A
XB∩C = m(B ∩ C) =

∫
B
XC|B

If f is simple, let f =
∑n

i=1 aiXAi , then∫
A
fXB =

∑
ai

∫
A
XAiXB =

∑
ai

∫
B
XAi =

∫
B

(∑
aiXAi

)
=

∫
B
f

Now f : A→ R bounded and measurable, let f ≤ ψ be simple, so∫
A
fXB ≤

∫
A
ψXB =

∫
B
ψ

By taking the inf over all such ψ, we have that∫
A
fXB ≤

∫
B
f =

∫
B
f

Taking ϕ ≤ f , ϕ is simple, we obtain∫
B
f =

∫
B
f ≤

∫
A
fXb

as desired.
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Proposition 5.3.2
Let f : A → R be bounded measurable and m(A) < ∞. If B,C ⊆ A are measurable and
disjoint, then ∫

B∪C
f =

∫
B
f +

∫
C
f

Proof: ∫
B∪C

f =

∫
A
fXB∪C =

∫
A
f · (XB + XC) =

∫
A
fXB +

∫
A
fXC =

∫
B
f +

∫
C
f

Proposition 5.3.3
Let f : A→ R be bounded and measurable with m(A) <∞, then∣∣∣∣∫

A
f

∣∣∣∣ ≤ ∫
A
|f |

Proof:
−|f | ≤ f ≤ |f | =⇒ −

∫
A
|f | ≤

∫
A
f ≤

∫
A
|f |

Take the absolve value we have ∣∣∣∣∫
A
f

∣∣∣∣ ≤ ∫
A
|f |

as desired.

Proposition 5.3.4
Let (fn) be bounded measurable sequence and fn : A → R with m(A) < ∞. If fn → f
uniformly then

lim
n→∞

∫
A
fn =

∫
A
f

Proof: Let ε > 0 be given and N ∈ N such that

|fn − f | <
ε

m(A) + 1

for n ≥ N , then for n ≥ N we have∣∣∣∣∫
A
fn −

∫
A
f

∣∣∣∣ =

∣∣∣∣∫
A

(fn − f)

∣∣∣∣ ≤ ∫
A
|fn − f | ≤ m(A) · ε

m(A) + 1
< ε
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� Example 5.1
Let fn : [0, 1]→ R,

fn(x) =


0 0 ≤ n ≤ 1

n

n 1
n ≤ x ≤

2
n

0 2
n ≤ x

We can see fn → 0 and ∫
[0,1]

fn = 1 and
∫

[0,1]
0 = 1

�

Theorem 5.3.5 — Bounded Convergence Theorem.
Let (fn) be a sequence of measurable functions and fn : A→ R with m(A) <∞. If ∃M > 0
such that |fn| ≤M for all n and fn → f pointwise, then

lim
n→∞

∫
A
fn =

∫
A
f

Proof: Let ε > 0 be given, by Egoroff’s Theorem, there exists measurable set B ⊆ A and
N ∈ N s.t. for n ≥ N

|fn − f | <
ε

2 · (m(B) + 1)
and m(A \B) <

ε

4M

For n ≥ N we have∣∣∣∣∫
A
fn −

∫
A
f

∣∣∣∣ ≤ ∫
A
|fn − f | =

∫
B
|fn − f |+

∫
A\B
|fn − f |

≤
∫
B
|fn − f |+

∫
A\B

(|fn|+ |f |)

≤
∫
B
|fn − f |+ 2 ·M ·m(A \B)

<
ε

2
+
ε

2
= ε

5.4 Integration III

Definition 5.4.1
1. We say f has finite support if

A0 := {x ∈ A : f(x) 6= 0}

has finite measure.

2. We say f is BF function if f is bounded and has finite support.
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3. If f : A→ R is BF then ∫
A
f :=

∫
A0

f

Definition 5.4.2
Let f : A→ R be measurable and f ≥ 0, we define∫

A
f := sup

{∫
A
h : 0 ≤ h ≤ f BF

}

Proposition 5.4.1
Let f, g : A→ R be measurable function and f, g ≥ 0, then

1. ∀α, β ∈ R ∫
A

(αf + βg) = α

∫
A
f + β

∫
A
g

2. If f ≤ g, then
∫
A f ≤

∫
A g

3. If B,C ⊆ A are measurable and B ∩ C = ∅, then∫
B∪C

f =

∫
B
f +

∫
C
f

Proposition 5.4.2 — Chebychev’s Inequality.
f : A→ R be non-negative measurable function, then for all ε > 0

m({x ∈ A : f(x) ≥ ε}) ≤ 1

ε

∫
A
f

Proof: Let ε > 0 be given and let

Aε = {x ∈ A : f(x) ≥ ε}

such that m(Aε) < ε and ϕ︸︷︷︸
BF

= ε · XAε ≤ f , so εm(Aε) =
∫
A ϕ ≤

∫
A f

If m(Aε) =∞, for n ∈ N define Aε,n := Aε ∩ [−n, n]. By the continuity of measure

∞ = m(Aε) = lim
n→∞

m(Aε,n)

For n ∈ N, ϕn = εXAε,n (BF) we see that ϕn ≤ f . Therefore, we have

∞ = m(Aε) = lim
n→∞

m(Aε,n) = lim
n→∞

1

ε

∫
A
ϕn ≤

∫
A
f
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Proposition 5.4.3
Let f : A→ R with f ≥ 0, then ∫

A
f = 0 ⇐⇒ f = 0 ae

Proof: =⇒
∫
A f = 0.

m({x ∈ A : f(x) 6= 0}) ≤
∑

m

({
x ∈ A : f(x) ≥ 1

n

})
≤
∑

n ·
∫
A
f︸︷︷︸

=0

= 0

⇐= Suppose B = {x ∈ A : f(x) 6= 0} has measure 0, so∫
A
f =

∫
B
f +

∫
A\B

f︸ ︷︷ ︸
=0

=

∫
B
f = 0

5.5 Fatou’s Lemma and MCT

Theorem 5.5.1 — Fatou’s Lemma.
Let (fn) be a measurable, non-negative sequence of functions and fn : A → R. If fn → f
pointwise then ∫

A
f ≤ lim inf

∫
A
fn

Proof: Let 0 ≤ h ≤ f be a BF function, we say A0 = {x ∈ A : h(x) 6= 0}. It’s suffices to
show ∫

A
h ≤ lim inf

∫
A
fn

Since for each n ∈ N we let

hn = min {h, fn} measurable

Note:
1. 0 ≤ hn ≤ h ≤M for some M > 0 for all n ∈ N.
2. For x ∈ A0 and n ∈ N, (a) hn(x) = h(x) or (b) hn(x) = fn(x) ≤ h(x) and

0 ≤ h(x)− hn(x) = h(x)− fn(x) ≤ f(x)− fn(x)→ 0

Then hn → h pointwise on A0. By BCT

lim
n→∞

∫
A0

hn =

∫
A0

h =⇒ lim
n→∞

∫
A
hn =

∫
A
h
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Since hn ≤ fn on A, so∫
A
h = lim

n→∞

∫
A
hn = lim

n→∞
inf

∫
A
hn ≤ lim

n→∞
inf

∫
A
fn

� Example 5.2
Let A = (0, 1] and fn = n · X(0, 1

n
), so fn → 0 pointwise. We also have

∫
A

0 = 0

∫
A
fn = n ·m

(
0,

1

n

)
= 1 lim

n→∞
inf

∫
A
fn = 1

�

Theorem 5.5.2 — MCT.
Let (fn) be a non-negative measurable function and fn : A → R. If (fn) is increasing and
fn → f pointwise then

lim
n→∞

∫
A
fn =

∫
A
f

Proof: ∫
A
f ≤︸︷︷︸

FL

lim
n→∞

inf

∫
A
fn ≤ lim

n→∞
sup

∫
A
fn ≤

∫
A
f

� Remark 5.1
1. If ϕ : A→ R is simple and m(A) <∞ then

∫
A
ϕ <∞

2. If f : A→ R is bounded and measurable, also m(A) <∞, then

∫
A
f <∞

Definition 5.5.1
If f : A→ R is measurable and f ≥ 0, then we say f is integrable iff∫

A
f <∞
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5.6 Integration IV

The general integral

Definition 5.6.1
Let f : A→ R be measurable function

f+(x) = max {f(x), 0} positive part

f−(x) = max {−f(x), 0} negative part

Note:
f+ + f− = |f | f+ − f− = f f+, f− are measurable

Proposition 5.6.1
Let f : A → R be measurable function, then f+, f− are integrable if and only if |f | is
integrable

Proof: =⇒:
|f | = f+ + f− =⇒

∫
A
|f | =

∫
A
f+︸ ︷︷ ︸

<∞

+

∫
A
f−︸ ︷︷ ︸

<∞

⇐=: ∫
A
f+ ≤

∫
A
|f | <∞

∫
A
f− ≤

∫
A
|f | <∞ =⇒ f+, f− are integrable

Definition 5.6.2 — Integrable Function.
Let f : A→ R be measurable, we say f is integrable if and only if |f | is integrable if and
only if f+, f− are integrable, and we define∫

A
f =

∫
A
f+ −

∫
A
f−

Proposition 5.6.2 — Comparison Test.
Let f : A→ R be measurable, g : A→ R be non-negative and integrable. If |f | ≤ g then f is
integrable and ∣∣∣∣∫

A
f

∣∣∣∣ ≤ ∫
A
|f |

Proof: ∫
A
|f | ≤

∫
A
g <∞ =⇒ f is integrable∣∣∣∣∫

A
f

∣∣∣∣ =

∣∣∣∣∫
A
f+ −

∫
A
f−
∣∣∣∣ ≤ ∫

A
f+ +

∫
A
f− =

∫
A

(f+ + f−) =

∫
A
|f |
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Proposition 5.6.3
Let f, g : A→ R be integrable

1. ∀α, β ∈ R, αf + βg is integrable and
∫
a
αf + βg = α

∫
A
f + β

∫
A
g

2. If f ≤ g, then
∫
A
f ≤

∫
A
g

3. If B,C ⊆ A are measurable with B ∩ C = ∅, then
∫
B∪C

=

∫
B
f +

∫
C
f

Theorem 5.6.4 — Lebesgue Dominated Convergence Theorem.
Let (fn) be a sequence of measurable function with fn : A → R and fn → f pointwise. If
there exists an integrable g : A→ R such that |fn| ≤ g for all n ∈ N, then f is integrable and

lim
n→∞

∫
A
fn =

∫
A
f

Proof: Since we can see that |fn| → |f | pointwise and |fn| ≤ g, and so |f | ≤ g. By
comparision, f is integrable. Next, observe that g − f ≥ 0, by Fatou’s Lemma∫

A
g −

∫
A
f =

∫
A

(g − f) ≤ lim
n→∞

inf

∫
A

(g − fn) =

∫
A
g − lim

n→∞
sup

∫
A
fn

Then, cancel the g we have

lim
n→∞

sup

∫
A
fn ≤

∫
A
f

Also ∫
A
g +

∫
A
f =

∫
A

(g + f) ≤ lim
n→∞

inf

∫
A

(g + fn) =

∫
A
f + lim

n→∞
inf

∫
A
fn

Then, cancel the g again we have ∫
A
f ≤ lim

n→∞
inf

∫
A
fn

so we have ∫
A
f = lim

n→∞
inf

∫
A
fn = lim

n→∞
sup

∫
A
fn = lim

n→∞

∫
A
fn

which completes the proof.
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5.7 Riemann Integration

Definition 5.7.1 — Riemann Sum.
Let f : [a, b]→ R be bounded function

1. A partition of [a, b] is a finite set P = {x0, x1, ...., xn} ⊆ R such that

a = x0 < x1 < x2 < .... < xn = b

2. Relative to P , we define the lower Darboux sum:

L(f, P ) =
n∑
i=1

mi(xi − xi−1) where mi = inf {f(x) : x ∈ [xi−1, xi]}

3. Similarly, we define the upper Darboux sum:

U(f, P ) =
n∑
i=1

Mi(xi − xi−1) where Mi = sup {f(x) : x ∈ [xi−1, xi]}

Definition 5.7.2
Let f : [a, b]→ R be bounded function

1. Lower Riemann Integral:

R

∫ b

a
f = sup {L(f, P ) : P is a partition}

1. Upper Riemann Integral:

R

∫ b

a
f = inf {U(f, P ) : P is a partition}

3. We say f is Riemann Intetrable if and only if

R

∫ b

a
f = R

∫ b

a
f

Definition 5.7.3 — Step Function.
Let Ii, ...., In be pointwise disjoint intervals such that

[a, b] =
n⋃
i=1

Ii
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A Step function is a function of the form

f =
n∑
i=1

aiXIi

for some ai ∈ R

� Remark 5.2 Let f : [a, b]→ R be a bounded fuction and

a = x0 < x1 < ...... < xn = b

and Ii = [xi−1, xi] for i = 1, 2, ..., n− 1 and In = [xn−1, xn]. Then

L(f, P ) =

n∑
i=1

mi`(Ii) = R

∫ b

a
ϕ

where ϕ(x) = mi on Ii (ϕ ≤ f) and

U(f, P ) =

n∑
i=1

Mi`(Ii) = R

∫ b

a
ψ

where ψ(x) = Mi on Ii (f ≤ ψ) and

� Remark 5.3 Let f : [a, b]→ R be a bounded fuction, then

R

∫ b

a
f = sup {L(f, P ) : P is a partition} = sup

{
R

∫ b

a
ϕ : ϕ ≤ f is a step function

}
and

R

∫ b

a
f = inf {U(f, P ) : P is a partition} = inf

{
R

∫ b

a
ψ : f ≤ ψ is a step function

}

5.8 Riemann Integral VS Lebesgue Integral

Definition 5.8.1
Let f : [a, b]→ R be bounded function and let x ∈ [a, b] and δ > 0

1.
mδ(x) = inf {f(x) : x ∈ (x− δ, x+ δ) ∩ [a, b]}

2.
Mδ(x) = sup {f(x) : x ∈ (x− δ, x+ δ) ∩ [a, b]}

3. Lower boundary of f :
m(x) = lim

δ→0
mδ(x)
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4. Upper boundary of f :
M(x) = lim

δ→0
Mδ(x)

5. Oscillation of f:
ω(x) = M(x)−m(x)

� Remark 5.4 Let f : [a, b]→ R be bounded function, the following are equivalent:

1. f is continuous at x ∈ [a, b]
2. M(x) = m(x)
3. ω(x) = 0

Lemma 5.8.1
Let f : [a, b]→ R be bounded function, then

1. m is measurable
2. If ϕ : [a, b]→ R is a step function with ϕ ≤ f , then

ϕ(x) ≤ m(x)

at all points of continuity of ϕ

3. R
∫ b

a
f =

∫
[a,b]

m

Proof 1: Let α ∈ R and c ∈ [a, b] s.t. m(c) > α. Choose any m(c) > β > α, by the
definition of m, there exists ε > 0 such that mε > β. However, this means that f(x) > β
for any x ∈ (c − ε, c + ε) ∩ [a, b]. Take x ∈ (c − ε, c + ε) ∩ [a, b] so that there exists δ > 0
such that (x − δ, x + δ) ∩ [a, b] ⊆ (c − ε, c + ε) ∩ [a, b]. It follows that mδ(x) ≥ β and so
m(x) ≥ mδ(x) ≥ β > α as well. Therefore, {c ∈ [a, b] : m(c) > α} is relatively open in [a, b]
(i.e. is the intersection of an open set and [a, b]) and so is measurable.

Proof 2: Suppose ϕ ≤ f is a step function and let x be a point of continuity of ϕ. Since
x is not an endpoint of a middle step, we see that there exists δ > 0 and z ∈ R such that
ϕ(y) = z for all y ∈ (x− δ, x+ δ) ∩ [a, b]. Therefore, for all y ∈ (x− δ, x+ δ) ∩ [a, b], we have
f(y) ≥ ϕ(y) = z. Hence, m(x) ≥ mδ(x) ≥ z = ϕ(x) as required.

Proof 3: We begin by observing that if ϕ ≤ f is a step function then, by (2) ϕ ≤ m
a.e. Therefore

R

∫ b

a
f = sup

{
R

∫ b

a
ϕ : ϕ ≤ f step

}
= sup

{∫
[a,b]

ϕ : ϕ ≤ f step

}
≤
∫

[a,b]
m

by monotonicity a.e.
Now for each n ∈ N, let Pn = {a = x0 < x1 < .... < x2n = b}, where each xi − xi−1 = b−a

2n .
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Then let In,1 = [a, x1] and In,k = (xk−1, xk] for 2 ≤ k ≤ n. Define a step function ϕn ≤ f

by setting ϕn(x) = inf {f(x) : x ∈ In,k} for all x ∈ In,k. Let P =

∞⋃
i=1

Pi and note that P has

measure 0 (countable)

Fix x ∈ [a, b] \ P . For all n ∈ N, let In(x) denote the interval In,k (as above) which
contains x. Let δ > 0 be given and let N ∈ N be such that In(x) ⊆ (x − δ, x + δ) for all
n ≥ N . By (2), for n ≥ N we have

m(x) ≥ ϕn(x) ≥ mδ(x)

as δ → 0 (and so N →∞) we see that

lim
n→∞

ϕn(x) = m(x)

In particular, we have that ϕn → m pointwise a.e.. Let α ∈ R such that |f | ≤ α. Then
|ϕn| ≤ α for every n, where constant function α is integrable over [a, b] and so we have by
LDCT that

lim
n→∞

∫
[a,b]

ϕn =

∫
[a,b]

m

Since the Riemann and Lebesgue integrals clearly agree for step functions:

lim
n→∞

R

∫ b

a
]ϕn =

∫
[a,b]

m

Therefore, ∫
[a,b]

m = lim
n→∞

R

∫ b

a
ϕn ≤ sup

{
R

∫ b

a
ϕ : ϕ ≤ f step

}
= R

∫ b

a
f

Lemma 5.8.2
Let f : [a, b]→ R be bounded function, then

1. M is measurable
2. If ψ : [a, b]→ R is a step function with f ≤ ψ, then

M(x) ≤ ψ(x)

at all points of continuity of ψ

3. R
∫ b

a
f =

∫
[a,b]

M

Proof: Similar as the last lemma.
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Theorem 5.8.3 — Lebesgue.
Let f : [a, b] → R be bounded function, then f is Riemann Integrable if and only if f is
continuous a.e.. In that case:

R

∫ b

a
f =

∫
[a,b]

f

Proof: Note that

R

∫ b

a
f =

∫
[a,b]

m ≤
∫

[a,b]
M = R

∫ b

a
f

so f is Riemann integrable. Then∫
[a,b]

m =

∫
[a,b]

M ⇐⇒
∫

[a,b]
(M −m) = 0 ⇐⇒ M = m a.e.

⇐⇒ ω = 0 a.e.
⇐⇒ f is continuous a.e.

If f is continuous a.e., then f is measurable and

R

∫ b

a
f ≤

∫
[a,b]

m ≤
∫

[a,b]
f ≤

∫
[a,b]

M = R

∫ b

a
f

Then we have

R

∫ b

a
f =

∫
[a,b]

f

as desired.

� Example 5.3 Let f : [0, 1]→ R where

f(x) =

{
1 x ∈ Q
0 x /∈ Q

so f is discontinuous on [0, 1]. Then f is not Riemann Integrable
However, f = 0 a.e. on [0, 1] and so ∫

[0,1]
f =

∫
[0,1]

0 = 0

so f is Lebesgue Integrable �

� Example 5.4 Let Q∩ [0, 1] = {q1, q2, ......} and fn = X{q1,q2,...,qn} and fn → f pointwise. Then
fn is increasing but fn ≤ 1, so

R

∫
[0,1]

fn︸ ︷︷ ︸
=0

9 R

∫
[0,1]

f︸ ︷︷ ︸
DNE

�



6. Lp Spaces

6.1 Lp Spaces

Goal: Create Banach Spaces whose norm is given by Lebesgue Integration.
Recall
1. For 1 ≤ p <∞, (C([a.b]), ‖·‖p) is a normed vector space, where

‖f‖pp =

∫ b

a
|f |p

2. For p =∞, (C([a.b]), ‖·‖∞):

‖f‖∞ = sup {|f(x)| : x ∈ [a, b]}

is a Banach space.

Problem: Let A ⊆ R be measurable and 1 ≤ p <∞, then

‖f‖p =

(∫
A
|f |p

) 1
p

is not a norm on the vector space of integrable function f : A→ R. Because
∫
A
|f |p = 0 ⇐⇒

f = 0 a.e.
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Definition 6.1.1
Let A ⊆ R be measurable.

1. M(A) = {f : A→ R measurable} (vector space). f ∼ g if and only if f = g a.e..
The [f ] is the equivalence class

2. M(A)/ ∼= {[f ] : f ∈M(A)} (vector space) and

α[f ] + β[g] = [αf + βg]

� Remark 6.1 If f ∼ g and f is integrable, then g is integrable and
∫
A
f =

∫
A
g

Definition 6.1.2 — Lp Space.
Let A ⊆ R be measurable set and 1 ≤ p <∞, the Lp space is defined by

Lp(A) =

{
[f ] ∈M(A)/ ∼:

∫
A
|f |p <∞

}

� Remark 6.2 Suppose [f ], [g] ∈ Lp(A), then
∫
A
|f |p,

∫
A
|g|p <∞

1.

|f + g|p ≤ (|f |+ |g|)p ≤ (2 max {|f |, |g|})p ≤ 2p(|f |p + |g|p)

Then |f + g|p is integrable by comparison.

2. Lp(A) is a subspace of M(A)/ ∼

Definition 6.1.3 — L∞ Space.
Let A ⊆ R be measurable set, then L∞(A) is defined by

L∞(A) = {[f ] ∈M(A)/ ∼: f is bounded a.e.}

� Remark 6.3 1. [f ], [g] ∈ L∞(A), we have |f | ≤M and |g| ≤ N , so we can find B,C ⊆ A s.t.
m(B) = m(C) = 0. For x /∈ B ∪ C, we have

|f(x) + g(x)| ≤ |f(x)|+ |g(x)| ≤M +N

2. L∞(A) is a subspace of M(A)/ ∼
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� Remark 6.4 For all n ∈ N,

|f | ≤ ‖[f ]‖∞ +
1

n
off m(An) = 0

and

B =

∞⋃
i=1

An → measure 0

so |f | ≤ ‖[f ]‖∞ off B.

Proposition 6.1.1
Let A ⊆ R be measurable set, then

‖[f ]‖∞ = inf {M ≥ 0 : |f | ≤M a.e.}

is a norm on L∞(A)

Proof: 1. ‖[f ]‖∞ = 0 =⇒ |f | ≤ ‖[f ]‖∞ a.e. so [f ] = [0] in L∞(A)

2. |f | ≤ ‖[f ]‖∞ off B and |g| ≤ ‖[g]‖∞ off C, off B ∪ C → measure 0, then

|f + g| ≤ |f |+ |g| ≤ ‖[f ]‖∞ + ‖[g]‖∞

By the definition of inf, we have

‖[f + g]‖∞ = ‖[f ] + [g]‖∞ ≤ ‖[f ]‖∞ + ‖[g]‖∞

Abusive Notation

f ≡ [f ] ∈ Lp(A)

and f = g in Lp(A) means f = g a.e.

Definition 6.1.4 — Holder Conjugates.
For p ∈ (1,∞) we define q = p

p−1 to be the Holder conjugates of p

Note:
1. q = p

p−1 ⇐⇒ p = q
q−1

2. 1
p + 1

q = 1 3. We also define 1 and ∞ to be Holder conjugates
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Proposition 6.1.2 — Young’s Inequality.
Let p, q ∈ (1,∞) be Holder conjugates , for all a, b > 0

ab ≤ ap

p
+
bq

q

Proof:We define f(x) =
1

p
xp +

1

q
− x where x ∈ (0,∞). Then we have f ′(x) = xp−1 − 1

and f ′′(x) = (p − 1)xp−2. When f ′(x) = 0, we can get the critical point of f(x) at x = 1.
Since the Holder conjugates p, q ∈ (1,∞), then f ′′(x) = (p − 1)xp−2 > 0 for all x ∈ (0,∞).

Therefore, we can know f(x) has global minimum at x = 1. Since We have
1

p
+

1

q
= 1, so

f(1) =
1

p
+

1

q
− 1 = 0, then f(x) ≥ 0 on x ∈ (0,∞). Now we take x =

a

b
q
p

, then

f(
a

b
q
p

) =
1

p
·
(
a

b
q
p

)p
+

1

q
− a

b
q
p

≥ 0 =⇒ 1

p
· a

p

bq
+

1

q
− a

b
q
p

≥ 0

=⇒ ap

p
+
bq

q
≥ abq−

q
p

Since
1

p
+

1

q
= 1, then we have q− q

p
= q ·

(
1− 1

p

)
= q · 1

q
= 1 Therefore, by

ap

p
+
bq

q
≥ abq−

q
p

and q − q

p
= 1, we have

ap

p
+
bq

q
≥ ab as desired.

Proposition 6.1.3
Let A ⊆ R be measurable set and 1 ≤ p < ∞ and q is the Holder conjugate of p. If
f ∈ Lp(A) and g ∈ Lq(A), then fg ∈ L1(A) and∫

A
|fg| ≤ ‖f‖p‖g‖q

Proof: If p = 1 and q =∞,

|fg| ≤ |f ||g| ≤ |f |‖g‖∞ a.e.

then fg ∈ L1(A).
If 1 < p <∞ and q is the Holder conjugate of p, so

|fg| = |f ||g| ≤ |f |
p

p
+
|g|q

q
by Young’s Inequality

so fg is integrable by comparison, then fg ∈ L1(A). Also we have∫
A
|fg| ≤ 1

p

∫
A
|f |p +

1

q

∫
A
|g|q =

1

p
‖f‖pp +

1

q
‖g‖qq
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Now we have two cases, Case 1: ‖f‖p = ‖g‖q = 1, so∫
A
|fg| ≤ 1

p
+

1

q
= 1 = ‖f‖p‖g‖q

Case 2: f
‖f‖p

, g
‖g‖q

by case 1 we have

1

‖f‖p‖g‖q

∫
A
|fg| ≤ 1

Lemma 6.1.4
Let p, q be Holder conjugate and f ∈ Lp(A), if f 6= 0

f∗ = ‖f‖1−pp sign(f)|f |p−1

is in Lq(A) and ∫
A
ff∗ = ‖f‖p, ‖f

∗‖q = 1

Proof: If p = 1 and q =∞, we have

f∗ = sign(f) ∈ L∞(A)

and ∫
A
ff∗ =

∫
A
|f | = ‖f‖1

2. If 1 < p <∞ and q is the Holder conjugate of p,∫
A
ff∗ = ‖f‖1−pp

∫
A
|f |p = ‖f‖1−pp ‖f‖pp = ‖f‖p

and
‖f∗‖qq = ‖f‖(1−p)qp

∫
A
|f |(p−1)q = ‖f‖−pp

∫
A
|f |p = ‖f‖−pp ‖f‖

p = 1

Theorem 6.1.5 — Minkowski’s Inequality.
Let A ⊆ R be measurable and 1 ≤ p <∞. If f, g ∈ Lp(A), then

‖f + g‖p ≤ ‖f‖p + ‖g‖p

Proof: If p = 1, the result is trivial. Now we look at 1 < p <∞, we can see that

‖f + g‖p =

∫
A

(f + g)(f + g)∗ =

∫
A
f(f + g)∗ +

∫
A
g(f + g)∗

≤ ‖f‖p‖(f + g)∗‖q + ‖g‖p‖(f + g)∗‖q
= ‖f‖p + ‖g‖p
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6.2 Completeness

Theorem 6.2.1 — Riesz-Fisher.
For every measurable set A ⊆ R and 1 ≤ p ≤ ∞, Lp(A) is a Banach Space

Proof: If p = ∞, it’s trivial. Now we look at 1 ≤ p < ∞. Let (fn) ⊆ Lp(A) be strongly
Cauchy. Then there exists (εn) ⊆ R such that

‖fn+1 − fn‖p ≤ ε
2
n and

∑
εn <∞

Since R is complete, if (fn(x)) is strongly Cauchy, then it converges. Now for each n ∈ N, we
define

An := {x ∈ A : |fn+1(x)− fn(x)| ≥ ε} = {x ∈ A : |fn+1(x)− fn(x)|p ≥ εp}

By Chebychev’s Inequality

m(An) ≤ 1

εpn

∫
A
|fn+1 − fn|p ≤

1

εpn
· ε2p
n = εpn

Then we have ∑
m(An) ≤

∑
εpn ≤

(∑
εpn

)
<∞

so m
(

lim
n→∞

supAn

)
= 0. Now we fix x /∈ lim

n→∞
supAn, let

N = max {n : x ∈ An}

and for n > N ,
|fn+1(x)− fn(x)| < ε2

n and
∑

εi <∞

so (fn(x)) is Cauchy. Then fn → f pointwise a.e.. For k ∈ N, we have

‖fn+k − fn‖p ≤
∞∑
i=n

ε2
i

so |fn+k − fn|p → |fn − f |p pointwise a.e. as k →∞. By Fatou’s Lemma we have∫
A
|fn − f |p ≤ lim

k→∞
inf

∫
A
|fn+k − fn|p = lim

k→∞
inf ‖fn+k − fn‖pp ≤

[ ∞∑
i=n

ε2
i

]p
→ 0

6.3 Separability

� Example 6.1 Let p = ∞, suppose {fn : n ∈ N} is dense in L∞[0, 1]. For every x ∈ [0, 1] we
may find ∥∥X0,x − fθ(x)

∥∥
∞ <

1

2
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For x 6= y in [0, 1],

∥∥X[0,x]−X0,y

∥∥
∞ = 1

so θ : [0, 1]→ N is injective, which is a contradiction

Notation:
1. Simp(A)=simple functions on measurable set A
2. Step[a, b]= Step functions on [a,b]
3. StepQ[a, b]=step functions on [a,b], with rational partition function values. �

Proposition 6.3.1
Let A ⊆ R be measurable and 1 ≤ p <∞, then Simp(A) is dense in Lp(A)

Proof: Let f ∈ Lp(A) so f is measurable. Then ∃(ϕn) simple function so that ϕn → f
pointwise and |ϕn| ≤ |f |, then |ϕn|p ≤ |f |p. By comparison we have (ϕn) ⊆ Lp(A). Note that

‖ϕn − f‖pp =

∫
A
|ϕn − f |p and |ϕn − f |p ≤ 2p(|ϕn|p + |f |p) ≤ 2p+1|f |p

which is integrable. By LDCT we have

lim
n→∞

∫
A
|ϕn − f |p

∫
A

0 = 0

as desired. (This is also true for p =∞)

Proposition 6.3.2
Step[a, b] is dense in Lp[a, b]

Proof: Let A ⊆ [a, b] be measurable, so XA : [a, b] → R. By Littlewood I, so for any

ε > 0, there exists a collection of bounded open interval such that the disjoint union
n⋃
i=1

Ii = U

and m(U∆A) < εp. Since XU is a step function so

‖XU −XA‖pp =

∫
A
|XU −XA| = m(A∆U)

so we have ‖XU −XA‖ < ε as desired.

Corollary 6.3.3
Let 1 ≤ p <∞, StepQ[a, b] is dense in Lp[a, b], then Lp[a, b] is separable.
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Proposition 6.3.4
Let 1 ≤ p <∞, Lp(R) is separable

Proof: Consider to define Fn = f ∈ Lp(R) where

Fn =

{
StepQ[−n, n] if x ∈ [−n, n]

0 if x /∈ [−n, n]

So we have F =

∞⋃
i=1

Fi is countable. Take f ∈ Lp(R), fix n ∈ N so f |[−n,n]∈ Lp[−n, n], we

show
fX[−n,n] → f in Lp(R)

Note that ∥∥fX[−n,n] − f
∥∥p
p

=

∫
R

∣∣fX[−n,n] − f
∣∣p =

∫
R\[−n,n]

|f |p =

∫
R
|f |pXR\[−n,n]

and ∣∣|f |pXR\[−n,n]

∣∣ ≤ |f |p integrable

By LDCT we have

lim
n→∞

∥∥fX[−n,n] − f
∥∥p
p

= lim
n→∞

∫
R

∣∣fX[−n,n] − f
∣∣p =

∫
R

0 = 0

so
∥∥fX[−n,n] − f

∥∥
p
→ 0. Then for each n ∈ N, ∃ϕn ∈ F such that

∥∥fX[−n,n] − f
∥∥
p
< 1

n so
‖ϕn − f‖p → 0 as desired.

Theorem 6.3.5
Let A ⊆ R be measurable set and 1 ≤ p <∞, then Lp(A) is separable.

Proof: Similar as above.



7. Hilbert Spaces

7.1 Hilbert Spaces

We let F = R or C

Definition 7.1.1
Let V be a vector space over F. An inner product on V is a map 〈·, ·〉 : V × V → F such that

1. ∀v ∈ V , 〈v, v〉 ∈ R and 〈v, v〉 ≥ 0 with 〈v, v〉 = 0 if and only if v = 0
2. For all v, w ∈ V , 〈v, w〉 = 〈w, v〉 (complex conjugate)
3. For all α ∈ F , u, v, w ∈ V , 〈αu+ v, w〉 = α〈u,w〉+ 〈v, w〉

We call (V, 〈·, ·〉) an inner product space.

Proposition 7.1.1
Let V be a inner product space, then ‖v‖ =

√
〈v, v〉 is a norm on V . We call ‖·‖ the norm

induced by 〈v, v〉.

� Example 7.1 Let A ⊆ R be measurable, V = L2(A) with

〈f, g〉 =

∫
A
fg

is an inner product space. Note that

√
〈f, f〉 =

(∫
A
|f |2

) 1
2

= ‖f‖2

�
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� Example 7.2 Let A ⊆ R be measurable, V = L23(A,C) (see A3) with

〈f, g〉 =

∫
A
fg

so we can see
√
〈f, f〉 = ‖f‖2 �

Proposition 7.1.2 — Porollelogrom Law.
Let V be a inner product space, for all u, v ∈ V

‖u+ v‖2 + ‖u− v‖2 = 2
(
‖u‖2 + ‖v‖2

)
Proof:

‖u+ v‖2 + ‖u− v‖2 = 〈u+ v, u+ v〉+ 〈u− v, u− v〉
= 〈u, u〉+ 〈u, v〉+ 〈v, u〉+ 〈v, v〉+ 〈u, u〉 − 〈u, v〉 − 〈v, u〉+ 〈v, v〉
= 2(〈u, u〉+ 〈v, v〉)

= 2
(
‖u‖2 + ‖v‖2

)

� Example 7.3 Let 1 ≤ p <∞ and V = Lp[0, 2], define

f = X[0,1] g = X[1,2]

then

‖f‖2p =

(∫
[0,2]
|f |p

) 2
p

= 1
2
p = 1 ‖g‖2p = 1

2
p = 1 ‖f + g‖2p = 2

2
p ‖f − g‖2p = 2

2
p

By Porollelogrom Law

2
2
p + 2

2
p = 2 · (1 + 1) = 2

so ‖‖p is induced by an inner product space if and only if p = 2. �

� Remark 7.1 ‖‖∞ is not induced by an inner product space.

Definition 7.1.2 — Hilbert Space.
A Hilbert Space is a complete inner product space. (i.e. A Banach space whose norm is
induced by an inner product space)

� Example 7.4 L2(A), L2(A,C) are Hilbert Spaces �
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7.2 Orthogonality

Definition 7.2.1
Let V be an inner product space, we say v, w ∈ V are orthogonal if 〈v, w〉 = 0

� Example 7.5 Let f, g ∈ L2(A,C) where A = [−π, π], define f(x) = einx and g(x) = eimx with
n 6= m, then

〈f, g〉 =

∫
A
fg =

∫
A
einxe−imxdx =

∫
A
ei(n−m)xdx

=

∫
A

cos((n−m)x) + i

∫
A

sin((n−m)x)

= R

∫ π

−π
cos((n−m)x)dx+R

∫ π

−π
cos((n−m)x)

=

[
1

n−m
sin((n−m)x)

]π
−π

+

[
− 1

n−m
cos((n−m)x)

]π
−π

= 0

�

Definition 7.2.2
A ⊆ V is orthogonal if the elements of A are pair-wise orthogonal and ‖v‖ = 1 for all v ∈ A

Corollary 7.2.1
Let V be a inner product space and {v1, ...., vn} is orthogonal, then∥∥∥∥∥

n∑
i=1

αivi

∥∥∥∥∥
2

=

n∑
i=1

|αi|2

Theorem 7.2.2 — Pythagorean Theorem.
Let V be an inner product space, if v1, ...., vn ∈ V are pairwise orthogonal, then∥∥∥∥∥

n∑
i=1

vi

∥∥∥∥∥
2

=

n∑
i=1

‖vi‖2
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� Example 7.6 Let L = L2(S,C) where S = [−π, π], so

A =

{
1√
2π
einx : n ∈ Z

}
is pairwise orthogonal. Now we can see

1

2π

∥∥einx∥∥2

2
=

1

2π

∫
[−π,π]

einxe−inxdx =
1

2π

∫
[−π,π]

1 = 1

Then we have A is orthogonal. �

Definition 7.2.3 — Orthogonal Basis.
An Orthogonal Basis is a maximal orthogonal subset of V

Fact: An inner product space always has an orthogonal basis.

Fact: Let H be Hilbert Space. if W ⊆ H is closed subspace, then there exists a sub-
space W⊥ ⊆ H s.t.

H = W
⊕

W⊥

and 〈w, z〉 = 0 for all w ∈W and z ∈W⊥

Theorem 7.2.3
Let H be a Hilbert Space, then H has a countable orthogonal basis if and only if H is
separable.

Proof: =⇒ Let B be a countable orthogonal basis for H
Claim: W = Span(B), W = H

Suppose W 6= H, since H = W
⊕
W
⊥. We may find 0 6= x ∈W⊥. We may assume ‖x‖ = 1.

Then B ∪ {x} is orthogonal, which is a contradiction, so we have W = H. This gives us
that SpanQ(B) = H, so H is separable.

⇐= Suppose H does not have a countable orthogonal basis. Let B be orthogonal basis
of H, so B is uncountable. For u 6= v in B we have

‖u− v‖2 = ‖u‖2 + ‖v‖2 = 2 =⇒ ‖u− v‖ =
√

2

Suppose X ⊆ H s.t. X = H. For any u ∈ B, there exists xu ∈ X s.t. ‖u− xu‖ <
√

2
2 .

For u 6= v in B we have xu 6= xv. Then ϕ : B → X with ϕ(u) = xu is an injection, which
completes the proof.

� Example 7.7 {
1√
2π
einx : n ∈ Z

}
is a countable orthogonal set in L2([−π, π],C). It’s countable and orthogonal.
Question: Is it maximal? �
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7.3 Big Theorems

Definition 7.3.1
Let H be inner product space with {v1, v2, ...., vn} orthogonal. If v =

∑
λivi, then λi = 〈v, vi〉.

We call 〈v, vi〉 the Fourier coefficient of v with respect to {v1, v2, ...., vn}.

Definition 7.3.2
Let H be Hilbert Space and {v1, v2, ......} be orthogonal. For v ∈ H, we call

∞∑
i=1

〈v, vi〉vi

the Fourier Series of v relative to {v1, v2, ......} and write

v ∼
∞∑
i=1

〈v, vi〉vi

Theorem 7.3.1 — Best Approximation.
Let H be Hilbert Space and {v1, v2, ....., vn} be orthogonal. For v ∈ H, ‖v −

∑
λi‖ is

minimized when
λi = 〈v, vi〉

Moreover, ∥∥∥v −∑〉v, vi〉vi∥∥∥2
= ‖v‖2 −

∑
|〈v, vi〉|2

Proof: Let W = Span{v1, ...., vn} is closed, we can see V = W
⊕
W⊥. Also, for x ∈W and

we let v = w + z where w ∈W and z ∈W⊥. Then

‖v − x‖2 = ‖w + z − x‖2 = ‖w + x+ z‖2 = ‖w − x‖2 + ‖z‖2 ≥ ‖z‖2 = ‖v − w‖2

which gives us that
‖v − x‖ ≥ ‖v − w‖

Now we see that v =
∑
λivi + z for z ∈W⊥, then

〈v, vi〉 = λi + 0 = λi

Note that we can also write v =
∑
〈v, vi〉vi + z for z ∈W⊥, then

‖v‖2 =
∥∥∥∑〈v, vi〉vi∥∥∥2

+ ‖z‖2 =
∑
|〈v, vi〉|2 + ‖z‖2

Therefore, we have ∥∥∥v −∑ |〈v, vi〉vi|
∥∥∥2

= ‖z‖2 = ‖v‖2 −
∑
|〈v, vi〉|2

which completes the proof.
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Theorem 7.3.2 — Bessel’s Inequality.
Let H be Hilbert Space and {v1, v2, ....., vn} be orthogonal, if v ∈ H,

n∑
i=1

|〈v, vi〉|2 ≤ ‖v‖2

Theorem 7.3.3 — Parseval’s Identity.
Let H be Hilbert Space and {v1, v2, .....} be orthogonal. For v ∈ H,

n∑
i=1

|〈v, vi〉|2 = ‖v‖2 ⇐⇒ lim
n→∞

∥∥∥∥∥v −
n∑
i=1

〈v, vi〉vi

∥∥∥∥∥ = 0

Theorem 7.3.4 — Orthogonal Basis Test.
Let H be separable Hilbert space and {v1, v2, .....} be orthogonal. The followings are equivalent

1. {v1, v2, .....} is a basis

2. Span{v1, v2, .....} = H

3. lim
n→∞

∥∥∥∥∥v −
n∑
i=1

〈v, vi〉vi

∥∥∥∥∥ = 0 for every v ∈ H

Proof:
1 =⇒ 2 : Done.
2 =⇒ 1: If {v1, v2, ...} is not maximal, then we may find u ∈ H with ‖u‖ = 1 such that
〈u, vi〉 = 0 for all i ∈ N. Since C = {x ∈ H : 〈x, u〉 = 0} is closed, so u /∈ Span{v1, v2, .....}
2 =⇒ 3: Let v ∈ H and ε > 0 be given, also let

N∑
i=1

αivi ∈ Span{v1, v2, .....}

such that ∥∥∥∥∥v −
n∑
i=1

αivi

∥∥∥∥∥ < ε

This gives us that ∥∥∥∥∥v −
n∑
i=1

〈v, vi〉vi

∥∥∥∥∥ < ε
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Now for n ≥ N , we have∥∥∥∥∥v −
n∑
i=1

〈v, vi〉vi

∥∥∥∥∥ ≤
∥∥∥∥∥v −

N∑
i=1

〈v, vi〉vi

∥∥∥∥∥+

∥∥∥∥∥
n∑

i=N+1

〈v, vi〉vi

∥∥∥∥∥ < ε+

√√√√ ∞∑
i=N+1

|〈v, vi〉|2 → 0

as N →∞.
3 =⇒ 2: Similar.

7.4 Appendix

Definition 7.4.1 — Direct Sum.
Let V be a vector space and let U and W be the subspaces of V . We say V is the direct
sum of U and W , written V = U

⊕
W , if every element of V can be uniquely written in

the form of u+ w where u ∈ U and w ∈W .

If may be easily verified that V = U
⊕
W if and only if V = U+W = {u+ v : u ∈ U, w ∈W}

and U ∩W = {0}. Our goal is the show if H is a Hilbert space and W is a closed subspace
of H, then H = W +

⊕
W⊥, where

W⊥ = {x ∈ H : 〈x,w〉 = 0 for all w ∈W}

It’s straightforward to verify that W⊥ is a subspace of H.

Proposition 7.4.1
Let H be a Hilbert space and let W be a closed subspace of H. For every v ∈ H, there exists
a unique w ∈W such that

inf {‖x− v‖ : x ∈W} = ‖w − v‖

Proof: Let δ = inf {‖x− v‖ : x ∈W}, for a, b ∈W we see that

‖a− b− (b− v)‖2 + ‖a− v + b− v‖2 = 2‖a− v‖2 + 2‖b− v‖2

by the Parallelogram Law. Notice that

‖a+ b− 2v‖2 = 4

∥∥∥∥1

2
(a+ b)− v

∥∥∥∥2

≥ 4δ2

Therefore,
‖a− b‖2 ≤ 2‖a− v‖2 + 2‖b− v‖2 − 4δ2 (∗)

By the definition of inf, there exists a sequence (wn) ⊆W such that ‖wn − v‖ → δ, but then

‖wn − wm‖ ≤ 2‖wn − v‖2 + 2‖wm − v‖2 − 4δ2 → 0
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so that (wn) is Cauchy. Since H is a Hilbert space and W is closed, wn → w for some w ∈W .
Finally, we see that ‖wn − v‖ → ‖w − v‖ and ‖wn − v‖ → δ. From which we have that
‖w − v‖ = δ. Uniqueness follows immediately from (∗).



8. Fourier Analysis

8.1 Fourier Series

Motivating Questions:

1. Is
{

1√
2π
einx : n ∈ Z

}
an orthogonal basis for L2([−π, π],C)?

2. Is Span
{
einx : n ∈ Z

}
dense in L2([−π, π],C)?

3. Is Span
{
einx : n ∈ Z

}
dense in L1([−π, π],C)?

Given f ∈ L1([−π, π]) with

Can we approximate f using sinusoidal functions:
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Definition 8.1.1
Let T = [−π, π), we call T the Torus or the Circle. We define Lp(T ) := Lp([−π, π],C) for
1 ≤ p <∞ using the norm

‖f‖p =

(
1

2n

∫
T
|f |p

) 1
p

and Lp(T ) is a separable Banach Space.

� Remark 8.1
1. As a group under addition modulo 2π:

T ∼= R/Z ∼= {z ∈ C : |z| = 1}

2. In this way, T is locally compact abelian group.
3. There is a one-to-one correspondence between f : T → C and 2π-periodic functions f : R→ C

Definition 8.1.2
Let f ∈ L1(T ).

1. We define the nth (n ∈ Z) Fourier coefficient of f by

〈f, einx〉 :=
1

2π

∫
T
f(x)e−inxdx

2. We define the Fourier Series of f by

f ∼
∑
n∈Z

ane
inx

where an = 〈f, einx〉.
3. We let

SN (f, x) =
N∑
−N

ane
inx

denote the nth partial sum of the above Fourier Series.

Proposition 8.1.1
Consider the trigonometric polynomial f ∈ L1(T ) given by

f(x) =
N∑

n=−N
ane
−inx

for some ai ∈ C.
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For each −N,n ≤ N ,
〈f, einx〉 = an

Why?
1

2π

∫
T
eimxe−inxdx = δm,n

� Remark 8.2 Suppose f ∈ L1(T ) is real-valued

f ∼
∑
n∈Z

ane
inx

For N ∈ N

SN (f, x) =
N∑

n=−N
ane

inx = a0 +

N∑
n=1

(
ane

inx + a−ne
−inx)

= a0 +
N∑
n=1

(an + a−n)︸ ︷︷ ︸
bn

cos(nx) + i(an − a−n)︸ ︷︷ ︸
cn

sin(nx)


= a0 +

N∑
n=1

bn cos(nx) + cn sin(nx)

Now
a0 =

1

2π

∫
T
f(x)e−i0xdx =

1

2π

∫
T
f(x)dx

bn = an + a−n =
1

2π

∫
T
f(x)

(
e−inx + einx

)
dx =

1

π

∫
T
f(x) cos(nx)dx

cn = i(an − a−n) =
i

2π

∫
T
f(x)

(
e−inx − einx

)
dx =

1

π

∫
T
f(x) sin(nx)dx

are all real-valued.

8.2 Fourier Coefficients

Proposition 8.2.1
Let f, g ∈ L1(T )

1.
〈f + g, einx〉 = 〈f, einx〉+ 〈g, einx〉

2. For α ∈ C,
〈αf, einx〉 = α〈f, einx〉

3. If f : T → C is defined by f(x) = f(x), then f ∈ L1(T ) and

〈f, einx〉 = 〈f, einx〉
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Proof (3): Since |f | =
∣∣f ∣∣ implies f ∈ L1(T ), then

〈f, einx〉 =
1

2π

∫
T
f(x)e−inxdx =

1

2π

∫
T
f(x)einxdx

=
1

2π

∫
T

Re
(
f(x)einx

)
+

i

2π

∫
T

Im
(
f(x)einx

)
dx

=
1

2π

∫
T

Re
(
f(x)einx

)
− i

2π

∫
T

Im
(
f(x)einx

)
dx

=
1

2π

∫
T
f(x)einxdx

= 〈f, e−inx〉

Proposition 8.2.2
Let f ∈ L1(T ) and α ∈ R. (By a previous remark, we may view f : R→ C as a 2π-periodic
function which is integrable over T .) For α ∈ R, define fα : R→ C by fα(x) = f(x− α) is
integrable over T and

〈fα, einx〉 = 〈f, einx〉e−inx

Proposition 8.2.3
Let f ∈ L1(T ), for all n ∈ Z ∣∣〈f, einx〉∣∣ ≤ ‖f‖1
Proof:∣∣〈f, einx〉∣∣ =

∣∣∣∣ 1

2π

∫
T
f(x)einxdx

∣∣∣∣ ≤ 1

2π

∫
t

∣∣f(x)e−inx
∣∣dx =

1

2π

∫
T
|f(x)|dx = ‖f‖1

Corollary 8.2.4
Let a sequence fk → f in L1(T ), so for all n ∈ Z,

〈fk, einx〉 → 〈f, einx〉

Proof: ∣∣〈fk, einx〉 − 〈f, einx〉∣∣ =
∣∣〈fk − f, einx〉∣∣ ≤ ‖fk − f‖1 → 0

� Remark 8.3 Let Trig(T ) denote the set of Trigonometric polynomials on T , by A3 we have
Trig(T ) = L1(T )
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Theorem 8.2.5 — Riemann-Lebesgue Lemma.
If f ∈ L1(T ), then

lim
|n|→∞

〈f, einx〉 = 0

Proof: Let ε > 0 be given and let P ∈ Trig(T ) such that ‖f − P‖1 < ε. We say

P (x) =

N∑
k=−N

ake
ikx

for n > N or n < −N (|n| > N). We have that 〈P, einx〉 = 0. For |n| > N ,∣∣〈f, einx〉∣∣ =
∣∣〈f − P, einx〉∣∣ ≤ ‖f − P‖1 < ε

8.3 Vector-Valued Integration

Definition 8.3.1
Let B be a Banach space and let f : [a, b] → B be a function. Consider a partition
P = a = t0 < t1 < ..... < tn = b of [a, b]. We define a Riemann sum of f over P by

S(f, P ) =
n∑
i=1

f(t∗i )(ti − ti−1) ∈ B

where each t∗ ∈ [ti−1, ti]

Definition 8.3.2
Let B and f be as above. We say f is Riemann integrable if there exists z ∈ B such that
for all ε > 0 there exists a partition Pε of [a, b] such that whenever P is a refinement partition
of Pε and S(f, P ) is a Riemann sum then

‖S(f, P )− z‖ < ε

We call z the integral of f over [a, b] and write z = R

∫ b

a
f(x)dx

Theorem 8.3.1 — Cauchy Criterion.
Let B be a Banach space and let f : [a, b]→ B be a function. Then f is Riemann integrable
if and only if for all ε > 0 there exists a partition Pε of [a, b] so that whenever P and Q are
refinements of Pε we have

‖S(f, P )− S(f,Q)‖ < ε

for any Riemann sums S(f, P ) and S(f,Q)
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Proof: =⇒ Suppose f is Riemann integrable with z = R
∫ b
a f(x)dx. Let ε > 0 be given,

we may find a partition Pε/2 such that whenever P is a refinement partition of Pε/2, then
‖S(f, P )− z‖ < ε

2 . In particular, if P and Q are refinement of Pε/2, then

‖S(f, P )− S(f,Q)‖ ≤ ‖S(f, P )− z‖+ ‖z − S(f,Q)‖ < ε

⇐= Assume the Cauchy criterion. In particular, for each n ∈ N we may find a partition Pn of
[a, b] which corresponds to ε = 1

n , as per the Cauchy criterion. WLOG we may assume each
Pn+1 is a refinement of Pn. For each n ∈ N, elt S(f, Pn) be a Riemann sum. Let ε > 0 be
given, choose N ∈ N such that 1

N < ε
2 , we see that for m,n ≥ N

‖S(f, Pm)− S(f, Pn)‖ < 1

N
< ε

Since B is a Banach space, so S(f, Pn)→ z ∈ B.

We claim that f is Riemann integrable with R
∫ b

a
f(x)dx = z. Let N and PN be as above.

Moreover, there exists M > N such that ‖S(f, PM )− z‖ < ε
2 . Now, if P is any refinement

partition of PN , then

‖S(f, P )− z‖ ≤ ‖S(f, P )− S(f, PM )‖+ ‖S(f, PM )− z‖ < ε

This result can then be used to show the following, which we shall state and use as a fact.
The proof is quite similar to the proof for B = R

Theorem 8.3.2
If B is a Banach space and f : [a, b]→ B is continuous, then f is Riemann integrable.

8.4 Summability Kernels

Goal: Given f ∈ L1(T ), determine when Sn(f, x)→ f(x) pointwise in L1?

Main tool: Summability Kernels and convolution.

Definition 8.4.1 — Convolution.
Let f, g ∈ L1(T ), the convolution of f and g is the function f ∗ g : T → C given by

(f ∗ g)(x) =
1

2π

∫
T
f(t)g(x− t)dt =

1

2π

∫
T
f(t)gt(x)dt
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Facts:
1. Given f, g ∈ L1(T ), f ∗ g ∈ L1(T ) as well
2. ‖f + g‖1 ≤ ‖f‖1 · ‖g‖1
3. This makes L1(T ) a Banach Algebra

Let C(T ) denote the set of continuous function T → C

Definition 8.4.2 — Summability Kernel.
A Summability Kernel is a sequence (Kn) ⊆ C(T ) s.t.

1.
1

2π

∫
T
Kn = 1

2. ∃M > 0, ∀n ∈ N, ‖Kn‖1 ≤M
3. For all 0 < δ < π,

lim
n→∞

(∫ −δ
−π
|Kn|+

∫ π

δ
|Kn|

)
= 0

Proposition 8.4.1
Let (B, ‖·‖B) be a Banach Space, let ϕ : T → B be continuous function. Let (Kn) ⊆ C(T )
be a summability kernel, then

lim
n→∞

1

2π

∫
T
Kn(t)ϕ(t)dt = ϕ(0)

in the B-norm

Proof: Let 0 < δ < π, notice that

1

2π

∫
T
kn(t)ϕ(t)− ϕ(0) =

1

2π

∫
T
kn(t)(ϕ(t)− ϕ(0))dt

=
1

2π

∫ δ

−δ
kn(t)(ϕ(t)− ϕ(0))dt+

1

2π

∫ −δ
−π

kn(t)(ϕ(t)− ϕ(0))dt

+
1

2π

∫ π

δ
kn(t)(ϕ(t)− ϕ(0))dt

Let the sum of the last two integrals in the above equation be labelled by (∗), but then∥∥∥∥ 1

2π

∫ δ

−δ
kn(t)(ϕ(t)− ϕ(0))dt

∥∥∥∥
B

≤ max
|t|≤δ
‖ϕ(t)− ϕ(0)‖B‖kn‖T (1)

and

‖∗‖B ≤ max
t∈[−π,π]

‖ϕ(t)− ϕ(0)‖B
1

2π

(∫ −δ
−π
|kn(t)|dt+

∫ π

δ
|kn(t)|dt

)
(2)
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By continuity, (1) can be made as small as we like by letting δ → 0. Let n→∞ to make (2)
as small as we like, so the result follows.

� Remark 8.4 By A3, ϕ : T → L1(T ) given by ϕ(t) = ft = f(x− t) is continuous.

Theorem 8.4.2
Let f ∈ L1(T ) and (Kn) be summability kernel in L1(T ), then

lim
n→∞

Kn ∗ f = f

Proof: Since
lim
n→∞

1

2π

∫
T
Kn(t)ϕ(t)dt = ϕ(0)

where ϕ : T → L1, t 7→ ft. That is

lim
n→∞

1

2π

∫
T
Kn(t)f(x− t)dt = f(x)

implies
lim
n→∞

(Kn ∗ f)(x) = f(x)

as desired.

8.5 Dirichlet Kernel

Recall: If (Kn) is a Summability Kernel and f ∈ L1(T ), then lim
n→∞

Kn ∗ f = f in L1(T )

Want: Find (Kn) s.t. Kn ∗ f = Sn(f)

� Remark 8.5 Let f ∈ L1(T ), for n ∈ Z consider ϕn(x) = einx ∈ L1(T ), then

(ϕn ∗ f)(x) =
1

2π

∫
T
ϕn(t)ft(x)dt =

1

2π

∫
T
eintf(x− t)dt

=
1

2π
einx

∫
T
e−in(x−t)f(x− t)dt

=
1

2π
einx

∫
T
eintf(−t)dt by A3

=
1

2π
einx

∫
T
e−intf(t)dt exercise

= einx〈f, einx〉
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� Remark 8.6 Let f ∈ L1(T ), if P (x) =
n∑

k=−n
ake

ikx, then

(P ∗ f)(x) =
1

2π

∫
T
P (t)f(x− t)dt =

n∑
k=−n

an
2π

∫
T
eiktf(x− t)dt

=
n∑

k=−n
an(ϕk ∗ f)(x)

=
n∑

k=−n
ane

ikx〈f, eikx〉

Definition 8.5.1 — Dirichlet Kernel.

Let Dn(x) =
n∑

k=−n
eikx, this is called Dirichlet Kernel of order n, so we have

(Dn ∗ f)(x) =
n∑

k=−n
eikx〈f, eikx〉 = Sn(f, x)

where Sn is the n-th particle sum.

� Remark 8.7 The (Dn) is not a summability kernel

Proof: It’s easy to show that

Dn(t) =
sin
(
n+ 1

2

)
t

sin
(

1
2 t
)

for all t 6= 0. Therefore

‖Dn‖1 =
1

2π

∫
T

∣∣∣∣∣sin
(
n+ 1

2

)
t

sin
(

1
2 t
) ∣∣∣∣∣dt ≥ 1

π

∫
T

∣∣∣∣∣sin
(

1
2 t
)

t

∣∣∣∣∣dt
Since

∣∣sin( t2)∣∣ ≤ ∣∣ t2 ∣∣ for all t, so
‖Dn‖1 ≥

1

π

∫ π(n+ 1
2

)

−π(n+ 1
2

)

|sin t|
|t|

dt =
2

π

∫ π(n+ 1
2

)

0

|sin(t)|
t

dt >
2

π

n∑
k=1

1

kπ

∫ kπ

(k−1)π
|sin(t)|dt =

4

π2

n∑
k=1

1

k

Therefore, lim
n→∞

‖Dn‖1 =∞, which is not bounded so Dn is not summability kernel

8.6 Fejer Kernel

Idea: Consider
yn =

x1 + x2 + .........+ xn
n
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exercise: If xn → x, then yn → x

Definition 8.6.1 — Fejer Kernel.
We say the

Fn(x) =
D0(x) +D1(x) + ......+Dn(x)

n+ 1

be the Fejer Kernel of order n

� Remark 8.8
F0(x) = D0(x) = 1

F1(x) =
e−i2x + 2e−ix + 3ei0x + 2eix + ei2x

3
........

Fn =

n∑
k=−n

(
1− |k|

n+ 1

)
eikx

Lemma 8.6.1

Fn(t) =


1

n+ 1

sin
(

(n+1)t
2

)
sin
(

1
2 t
)
2

∀t 6= 0

n+ 1 t = 0

Proof: Notice that

sin2 t

2
=

1

2
(1− cos(t)) =

1

4
e−it +

1

2
− 1

4

it

and (
1

4
e−it +

1

2
− 1

4

it
) n∑
j=−n

(
1− |j|

n+ 1

)
eijt =

1

n+ 1

(
−1

4
e−i(n+1)t +

1

2
− 1

4
ei(n+1)t

)
then take the values of t, the results follows.

� Remark 8.9 (Fn) is a summability kernel

Proof: First, we will show 1
2π

∫
T Fn(t)dt = 1. Since 1

2π

∫
T ce

ijtdt 6= 0 if j 6= 0, then

1

2π

∫
T
Fn(t)dt =

1

2π

∫
T

1dt = 1

It’s obviously from Lemma 8.6.1 that Fn(t) ≥ 0, so 1
2π

∫
T |Fn(t)|dt < M for some M . If
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t /∈ (−δ, δ), then |Fn(t)| ≤ M
n+1 where

M = sup

{∣∣∣∣ 1

sin t
2

∣∣∣∣2 : t ∈ [−π,−δ] ∪ [δ, π]

}

Hence, the third condition holds, so Fn is a summability kernel.

Definition 8.6.2 — Cesaro Mean.

Fn∗f =
1

n+ 1

n∑
k=0

Dk∗f =
1

n+ 1

n∑
k=0

Sk(f) =
S0(f) + S1(f) + ......+ Sn(f)

n+ 1
:= σn(f)︸ ︷︷ ︸

n-th Cesaro Mean

Theorem 8.6.2
Let f ∈ L1(T ) and (Fn) be the Fejer Kernel, then

lim
n→∞

Fn ∗ f = lim
n→∞

σn(f) = f

in L1(T )

� Remark 8.10 If (Sn(f)) converges in L1(T ), then Sn(f)→ f in L1(T ).

8.7 Fejer’s Theorem

Idea: L1 convergence is great theoretically, but pointwise convergence is practical.

Theorem 8.7.1 — Fejer’s Theorem.
For f ∈ L1(T ) and t ∈ T , consider

ωf (t) =
1

2
lim
x→0+

(f(t+ x) + f(t− x))

provided the limit exists, then
σn(f, t)→ ωf (t)

In particular, if f is continuous at t, then

σn(f, t)→ f(t)
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Proof: Assume that ωf (t0) exists and let ε > 0 be given. Since σn(f) = Fn ∗ f , then

σn(f, t0)− ωf (t0) =
1

2π

∫
T
Fn(t)(f(t0 − t)− ωf (t0))dt

=
1

2π

∫ −δ
−π

Fn(t)(f(t0 − t)− ωf (t0))dt+
1

2π

∫ π

δ
Fn(t)(f(t0 − t)− ωf (t0))dt

+
1

2π

∫ δ

−δ
Fn(t)(f(t0 − t)− ωf (t0))dt

:= (1) + (2) + (3)

Since Fn(t) = Fn(−t), so

(3) =
1

π

∫ δ

0
Fn(t)

(
f(t0 − t) + f(t0 + t)

2
− ωf (t0)

)
dt

By hypothesis, we may choose δ such that if 0 < t < δ, then∣∣∣∣f(t0 − t) + f(t0 + t)

2
− ωf (t0)

∣∣∣∣ < ε

2

so that
|(3)| ≤ ε

2π

∫ π

−π
Fn(t)dt = ε

WE can also choose N s.t. if n ≥ N , then

sup {Fn(t) | t ∈ (−π, δ) ∪ (δ, π)} < ε

‖ft0 − ωf (t0)‖+ 1

Hence, we have

|(1) + (2)| ≤ ε

‖ft0 − ωf (t0)‖+ 1
· 1

2π

∫
T
|f(t0 − t)− ωf (t0)|dt < ε

so the result follows.

In partice:
1. Fix x ∈ T
2. Prove (Sn(f, x)) converges
3. Then Sn(f, x)→ ωf (x)
4. If f is continuous at x, then Sn(f, x)→ f(x) i.e. S(f, x) = f(x)

� Example 8.1 Let f ∈ L1(T ) and f(x) = |x|, then

Sn(f, x) = a0 +

n∑
k=1

(bk cos(kx) + ck sin(kx))
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where

a0 =
1

2π

∫ π

−π
|x|dx =

π

2
bk =

1

π

∫ π

−π
|x| cos(kx)dx =

2(−1)k − 2

k2π
ck =

1

π

∫ π

−π
|x| sin(kx)dx = 0

Then we have

Sn(f, x) =
π

2
+

2

π

n∑
k=1

(
(−1)k − 1

k2
cos(kx)

)
=
π

2
+

2

π

n+1
2∑

k=1

−2

(2k − 1)2
cos((2k − 1)x)

Note that (Sn(f, x)) converges by comparsion test with
∑ 1

(2k − 1)2
. Since f is continuous, so

f(x) =
π

2
− 4

π

∞∑
k=1

cos((2k − 1)x)

(2k − 1)2

1. Taking x = 0:

0 =
π

2
− 4

π

∞∑
k=1

1

(2k − 1)2
=⇒

∞∑
k=1

1

(2k − 1)2
=
π2

8

2.
∞∑
k=1

1

k2
=
∞∑
k=1

1

(2k)2
+
∞∑
k=1

1

(2k − 1)2
=

1

4

∞∑
k=1

1

k2
+
π2

8
=⇒

∞∑
k=1

1

k2
=
π2

6

�



9. Homogeneous Banach Spaces

9.1 Homogeneous Banach Spaces

Goal: Generalize what we have done for L1(T ) to Lp(T ) with p <∞. In particular, we look at
L2(T ).

Definition 9.1.1 — Homogeneous Banach Space.
A homogeneous Banach space is a Banach space (B, ‖‖B) such that

1. B is a subspace of L1(T )
2. ‖·‖1 ≤ ‖·‖B
3. ∀f ∈ B, ∀α ∈ T , ‖fα‖B = ‖f‖B translation invariant
4. ∀f ∈ B, ∀t0 ∈ T , lim

t→t0
‖ft − ft0‖B = 0

� Example 9.1 (Lp(T ), ‖·‖p) for p <∞ is a homogeneous Banach space. �

Theorem 9.1.1
Let B be a homogeneous Banach space and (kn) be summability kernel, then for all f ∈ B

lim
n→∞

‖kn ∗ f − f‖B = 0

Proof: First we have
1

2π

∫
T
kn(t)ftdt = kn ∗ f
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We note that
lim
n→∞

1

2π

∫
T
kn(t)ϕ(t)dt = ϕ(0)

for all continuous function ϕ : T → B. By previous result we have for ϕ : T → B, ϕ(t) = ft is
continuous (for all f ∈ B), then we have

‖kn ∗ f − f‖B → 0

as desired.

� Remark 9.1
1. In the homogeneous Banach space B, taking kn = Fn, then we have ‖σn(f)− f‖B → 0 for
all f ∈ B
2. Taking B = Lp(T ):

(a) ‖σn(f)− f‖p → 0

(b) Trig(T ) = Lp(T )

� Remark 9.2 In L2(T ):

1. Trig(T ) = L2(T )
2. span{einx : n ∈ Z} = L2(T )
3.
{
einx : n ∈ Z

}
is ONB

4. Let the above ONB be written as {v1, v2, ....}, then for all f ∈ L2(T )

lim
n→∞

n∑
i=1

〈f, vi〉vi = f

5. If v = eikx,

〈f, v〉v =

(
1

2π

∫
T
f(x)e−ikxdx

)
eikx = 〈f, eikx〉eikx

6. For all f ∈ L2(T ), ‖Sn(f)− f‖2 → 0

9.2 Additional Materials
Definition 9.2.1 — Lebesgue Point.
We say x0 ∈ R is a Lebesgue Point of f is

lim
h→0+

1

h

∫
[0,h]

∣∣∣∣f(x0 − x) + f(x0 + x)

2
− f(x0)

∣∣∣∣dx = 0

Fact: For f as above, almost every x0 ∈ R is a Lebesgue Point of f .
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Theorem 9.2.1
Let f the same as before, if x0 is a Lebesgue Point of f , then

σn(f, x0)→ f(x0)

Corollary 9.2.2
σn(f)→ f a.e.

Theorem 9.2.3 — Dini’s Test.

Let f : R→ C with period 2π,
∫
T
|f | <∞. If

∫ π

0

∣∣∣∣f(x0 + x) + f(x0 − x)

2
− L

∣∣∣∣dxx <∞

then Sn(f, x0)→ L

Proof: BBT, pg 681
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