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1. Outer Measure

Borel Sets

Definition 1.1.1 — s-algebra.
Let X be a set, we call Q C P(X) a o-algebra of the subset X if

(Hoeq
(2)Ace@Q=X\AeQ

(3) A, Ag, .. € Q= JAi €Q

i=1
mRemark 1.1 For Q € P(X) is a o-algebra:

. XeQand X\P=XeQ
2AB€Q:>AUB€Qbyu51ngAUB AUBUDUD... €@

3. A1, Ao, ... eQ=>ﬂA € Q by using ﬂA X\<UX\A>
i=1 =1
4. ABeQ:>AmBeQ

m Example 1.1 {(), X} is the smallest o-algebra where given a set X

m Example 1.2 ) = P(X) is a o-algebra

m Example 1.3 Q = {A CR: A is open} is not a o-algebra. We take A = (0,1) € @ but

R\ A= (—00,0]U[l,00) ¢ Q
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m Example 14 @ = {ACR: A is open or closed} is not a o-algebra. Q = U {¢} ¢ Q

q€Q
because Q is neither open or closed set. [

Let X be a set, C' C P(X), then Q .= {B : B is a o-algebra, C C B} is a o-algebra, and
it’s also the smallest o-algebra containing C

Definition 1.1.2 — Borel Set.
The elements of @ = ﬂ {B:C C B,B is o-algebra} (Borel o-algebra) are called Borel
sets where C' = {A CR: A is open}

= Remark 1.2
1. Open set =—> Borel set
2. Closed set =—> Borel set

oo
3. Countable set =—> Borel set i.e. {Xi,....} = U X; = Borel set

4 [ab) = [, ]\ 0} = [ b V(R (B} = Borel set

closed open)

Outer Measure 1

Definition 1.2.1 — Measure. (on R)
A function m : P(R) — [0, 00) U {oo} called a measure if:

(1) m(a’ b) = m([a7 b])
(2)

m((a,b)) =b—a

Definition 1.2.2 — (Lebegue) Outer Measure.
Outer Measure is a function m* : P(R) = [0, 00) U {oo} where

m*(A) = inf {EE(IZ) t AC U I; where I; is bounded, open interval }
=1 =1

- 0(1I;) is the length of the interval I;

m Example 1.5 For ¢ > 0, 0 C (0,e) = m*(0) < £(0,e) =c and m*(0) >0 = m*(0) =0 =



1.3 Outer Measure 2

m Example 1.6 m*(A) = 0 where A = {X1, X»,.....}
£ €

Proof:  Note that A C U <Xi ~ 9T X+ 2i+1) for € > 0, then
i=1

Since € > 0 is arbitrary, so we have m*(A) = 0 as desired.

Outer Measure 2

If A C B, then m*(A) < m*(B)

If a,b € R with a < b, then m*([a,b]) =b—a

Proof. Let € > 0 be given, since [a,b] C (a — 5,b+ 5), we have m*([a,b]) < b—a +e.
Since € > 0 is arbitrary, so by definition of outer measure we have m*([a,b]) < b — a. Let I;

(¢ € N) be bounded open interval s.t. [a,b] C U I;. Note that [a,b] is compact, so In € N s.t.
=1l
[a,b] C U I;. Then we have
1=1

n

b—a <Y UI) < 3 0L) = m*([a,b) >b—a
; =1

=1 7

so we have b —a < m*([a,b]) < b — a, this gives us m*([a,b]) =b—a [ |

If I is an interval, then m*(I) = (1)

Proof. When I is bounded with endpoints where a < b, so for e > 0, C [a,b] = m*(I) < b—a
and [a+5,b—5] C I = b—a—c < m*(I) By definition of outer measure we have b—a < m*(I).
Then we have m*(I) +b—a = ¢(I) as desired

When I is unbounded, Vn € N, 31, C [ such that ¢(I,) = n. This gives us that
m*(I) > m*(I,) = n, then m*(I) = oo = ¢(I) as desired.

Hence, we have m*(I) = ¢(I), which completes the proof. [ |
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Properties

— Outer Measure is Translation Invariant. i.e. m*(x + A) = m*(A)

Proof.

m*(z + A) mf{Ze x+ACUIZ}—inf oI) : Ag[j([i—x)}

— Outer Measure has Countably Subadditivity.
oo o0
That means if A; C R, then m* (U Ai> < Zm*(A )

i=1
Proof. WLOG, we assume m*(A4;) < co. Let € > 0 be given and fix ¢ € N. Then there exists
(o] (0.0

open bounded intervals I; j s.t. A C U I; ; and ZE(IM) <m*(4;) + < We can see that

2Z
j=1 =1
] 00
U Al - UIi’j and so
=1 1,5

=1 j=1 =1

Since € > 0 is arbitrary, so we have m”* (
i=1

AZ-) < Zm*(AZ) as desired. [ |
i=1

— Outer Measure has Finitely Subadditivity.
If Al, AQ, ..... 5 An C P(R), then

m* (AL U .. UAy) <m* (A1) + ... +m*(4y)
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Prove that if A C R has positive outer measure, then there exists a bounded subset of A
which also has positive outer measure.

Solution: For sake of contradiction, we suppose every bounded subset of A has 0 outer
measure. Since A C R has positive outer measure, so we say m*(A) > 0. Now we construct
a sequence of bounded subset of A. Consider A; = AN [n,n + 1] for all n € Z, then we have
A= U A;. Then we have

1€EZ

0 < m*(A) :m*<U AZ-) <> mf(A) =) 0=0
1€EZ 1€EZ 1€EZ

That gives 0 < 0, which is a contradiction! Hence, there exists a bounded subset of A has
positive outer measure, which completes the proof.



Measurable Sets

Goal: Restrict the domain of m* to only include sets s.t. whenever AN B = () we have

m*(AU B) = m*(A) + m*(B)

Definition 2.1.1 — Measurable Set.
We say a set A C R is measurable if VX C R, m*(X) =m*(X NA) +m*(X \ A)

mRemark 2.1 Since X = (X NA)U(X\ A), so we always have m*(X) < m*(XNA)+m*(X\A)
m Remark 2.2 If A C R is measurable and B C R with AN B = (), then
m*(AUB) =m*(X NA)+m"(X \ A) =m*(4) + m*(B)

X

Goal: Show a lot of sets are measurable

If m*(A) =0, then A is measurable

Proof: Let X C R, since X N A C A, we have 0 < m*(X N A) < m*(A) =0. Then we have
that m*(X N A) =0, so

m* (X N A) +m*(X \ A) =m*(X \ 4) < m*(X)
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n
Aq, Ag, ..., A, are measurable, then U A; is measurable.

=1
Proof: It suffices to prove the result when n = 2. Let A, B C R be measurable.
Let X C R, then

m*(X)=m* (X NA)+m*(X\A)
=m*(XNA)+m*(X\A)NB)+m*((X\A)\ B)
=m"(X\A)+m*((X\A)NB)+m"(X\ (AU B))
>m*(XNA)U(X\A)NB))+m"(X\ (AU B))
=m* (X N(AUB))+m*(X \ (AU B))

m
m

Note that X = (X N (AU B))U (X \ (AU B)), then
m*(X) <m*(XN(AUB))+m*(X\ (AUB))

Therefore, we have VX C R, m*(X) = m* (X N (AU B)) +m*(X \ (AU B)) as desired.

Ay, ....A;, are measurable and A; N A; =0 fori#j. Let A=A, U...UA,, if X CR, then
m (X NA)=> m*(XNA4)
i=1

Proof: It suffices to prove the result when n = 2. Let A, B C R be measurable set with
ANB=10. Let X CR, then

m*(XN(AUB))=m*(XN(AUB))NA)+m* (XN (AUB))\ A)
=m"(XNA)+m"(XNB)

— Finite Additivity.
Let Ay, ...., Ay be measurable sets and A; N A; # () for i # j, then

m*(A1U...UA,) =Y m*(4))
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Countable Additivity

Let A; € R be measurable sets for ¢ € N, if A; N A; # () for i # j, then

A= [j Az
=1

is measurable.

Proof: Let B, := A1 U...UA,, so for X C R we have

m*(X) =m*(X N B,)+m"(X\ By)
>m*(XNB,) +m"(X\A)

PPN T (X N A) +mT(X )\ A)
=1

By taking n — oo, we have
m*(X) = > m (X N A;)+m (X \ A)
i=1
> m*<U(XmAi)> +m*(X\ A)
i=1

=m* (X NA) +m*(X \ A)

as desired.

If A CR is measurable, then R\ A is measurable.

Proof: Let X C R, so

m* (X N(R\A) +m* (X \ (R\A4) =m*(X\ A) +m*(XNA)
=m"(X)

Let A; € R me measurable for ¢ € N, then A = U A; is measurable.

=1
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13

Proof: Let B, = A, \ (A1 U... A,) for n > 2, so we have

B, = A, N R\(Alu...An_l)
N

Vv
measurable measurable

(0.] o
Then we have B, is measurable and for i # j, B; N B; = (). This gives us that U B; = U A;

i=1
is measurable as desired.

The collection .Z of (Lebesgue) measurable sets is a o-algebra of sets in R

— Countable Additivity.
Let A; C R be measurable for i € N, if A4; N A; # 0 for ¢ # j, then

m* (U Ai> = Zm*m,»)

Proof: Obviously we have m* < AZ-) < m*(A4;), and note that
i=1 i=1

' ([’j Ai) > (U Az-) 3 w4

=1

By taking n — oo we have m* <U Ai> > Z m*(A;), which completes the proof.

Borel Implies Measurable

Goal 1: Show Borel sets are measurable.

If a € R, then (a, 00) is measurable.

Proof: Let X C R, we want to show that m*(X N (a,0)) + m*(X \ (a,00)) < m*(X)

=1
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Case 1: a ¢ X, we will show m*(X N (a,00)) + m*(X N (—o0,a)) < m*(X)

—_——— ~————
X1 X2
o0

Let (I;) be a sequence of bounded open intervals s.t. X C U I;. Define I} = I; N (a, 00) and
i=1
I = I; N (—o0,a). Note that

(o] oo
xiclJ and XoCJIf
i=1 =il
so we have

giE(I{) and *(X2) gi (1)
i=1 i=1

Then we see that

(e 9]

m*(X1) + m*(X f: 1’)+§:z(1” = [ + 1) Ze
=1 =1

=1

By the definition of inf, we have

m*(X1) + m*(X2) < m*(X)

Case 2: a € X, left it as exercise. Hint: X' = X \ {a}

— Every Borel Set is measurable.

Proof: omitted

Definition 2.3.1 — Lebesgue Measure.
A function m : £ — [0,00) U {oo} defined by m(A) = m*(A) is called Lebesgue Measure

Properties

— Excision Property.
If AC B and A is measurable with m(A) < co. Then

m*(B\ A) = m*(B) — m(A)
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Proof:

m*(B) =m*(BNA)+m*(B\ A)
=m(A)+m*(B\ A) since m*(BNA) =m*(A) = m(A4)
——

<0

— Continuity of Measure.
1. If Ay C Ay C A3 C ... are measurable, then

m(U Ai> = li_>m m(Ay)
i=1

2. If By D By 2 B3 D ... are measurable and m(B;) < oo, then
o0
(1) = i s
=1

Proof for 1: Since m(Ag) < m(U AZ-> for all k € N, we have lim m(A4,) < m(U Ai>.
i=1

n—o0
i=1
If 3k € N such that m(Ay) = oo, then le m(A,) = co and we are done. Then we may
assume each m(Ay) < oo. For each k € N, let Dy, = A \ Ax_1 and Ag = . Note that Dy’s

are measurable and they are pairwise disjoint. We also have U D; = U A;, then

i=0 i=0
i=0 i=0
= Zm(Dz) by Prop 2.2.5
1=0

= Z (m(4;) —m(A;—1)) by Prop 2.4.1

= 2 () =)

= lim m(4,) —m(Ap) since Ay =10
——

as desired.

Proof for 2: For k € N, we define Dy = By \ Bx. Note that Djy’s are measurable and
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D1 C Dy C D3 C.... Then by 1 we have

o0
n(Uni) = oy o
i=1
and we see that

oo oo (e.9]
UDi:UBl\Bi:B1\< B,;)
i=1 =1 i=1

and so

However, we note that

lim m(D,) = lim m(By) — m(B,) =m(By) — lim m(By,)

n— o0 n—oo n—o0

This gives us that

m(By) — m(oo Bi> =m(B;1) — lim m(B,)

n—oo

That is

oo
m( Bi> = lim m(By)

which completes the proof.

= Example 2.1
Let B; = (i,00) then we have

m<ﬁ Bi> =m(0)=0 and lim m(B,) =

n—0o0

Why this does not fit Theorem 2.4.27 Because m(B;) = o
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Let A C R has finite outer measure, prove that A is measurable if and only if
b—a=m"((a,b) N A)+m*((a,b) \ A)
for any open bounded interval (a,b)
Solution: = Assume that A is measurable, then for any X C R we have
m (X)=m*(XNA) +m"(X\A)
Now we can just take X be an arbitrary open bounded interval (a,b), so we have
m*((a,b)) = m*((a,b) N A) +m*((a,b) \ A)
Note that m*((a,b)) = £((a,b)) = b — a, then we have
b—a=m"((a,b) N A)+m*((a,b) \ A)

as desired.

<= Assume that
b—a=m*((a,b) N A) +m*((a,b) \ )

for any open bounded interval (a,b).
Since m*(A) < oo, so for any € > 0 and by the definition of outer measure we have

i UI) < m*(A) + e
=1

o
where A C U I;. Since each I; is open bounded interval so it’s a Borel set. We also note
i=1
that m*(I;) = €(I;) for each ¢, then we have
m*(Il) = m*([i N A) 2 m*(Ii \ A)

Consider to sum each ¢ for the equation above, we get

S omHL) = mrLinA)+ > m(I\ A)
i=1 i=1 =1
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this gives us that

i=1 i=1

Notice that

i=1 i=1

Then we have that

m*(A) +m* ((U Ii> \A) < Zm*([z) = ZE(I}) <m*(A)+e¢
j i=1 i=1

m<<fjf)\A) <

oo
Note that U I; is an open set and contains A, then by A1Q5b the set A is measurable,

This gives us that

=1
which completes the proof.

Non-Measurable Set

Let A C R be bounded and measurable, A C R be bounded and countably infinite. If A + A
with A € A are pairwise disjoint, then m(A) =0

Proof: Note that U()\—i—A) is bounded and measurable. Then we have m (U(/\ 4 A)) < 00,

A A
so that
m(U()\+A)> = Zm(A+A) = Zm(A) < 0o
A A A
Then m(A) =0
Construction

We start with ) # A C R, consider
a~b < a-beQ

Then this ~ is an equivalence relation.
Let C4 denote a single choice of equivalence class representatives for A relative to ~.
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m Remark 2.3 The sets A + C4 with A € Q are pairwise disjoint. Because
reM+C+A) NN+ Ca)
implies x = A1 +a = Ay + b where a,b € C4, then a — b = A9 — A\; € Q. This gives us that

a~b = a=b = A =X\

— Vitali Theorem.
Every set A C R with m*(A) > 0 contains a non-measurable set.

Proof: By Quiz 1, we may assume A is bounded. Say A C [—-N, N]| for some N € N.
Claim: (' is non-measurable.

Assume Cj is measurable, let A C Q be bounded and countable. By the Lemma and
Remark we have m(Cy) = 0. Let a € A, then a ~ b for some b € Cy4. In particular,
a—b=X\€Q. Moreover, A € [-2N,2N]. Taking Ag = QN [-2N,2N] we have that

AC U (A + Ca)
A€AQ -0

This leads to a contradiction!

There exists A, B C R s.t.
ANB=0 and m"(AUB)<m*(A)+m*(B)
Proof: Let C' be non-measurable set, then there exists X C R s.t.
m* (X)) <m*(XNC)+m*(X\C)

Take A= X NC and B = X \ C, then we are done.

Cantor-Lebesgue Function

— The Cantor set is Borel and has measure zero.

(o.)
Proof: (' is closed so it’s Borel. Note that C' = ﬂ C; and C; are measurable with

i=1
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C1D2Cy 205D ... and m(C1) < co. By continuity of measure, we have

m(C) = lim m(C;) = lim 2— —0

n—00 n—o0 3¢

Construction of Cantor-Lebesgue Function

1. For i € N, let U; be union of open intervals deleted in the process of constructing C1, Cs, ....C;
ie. U; =10,1]\ C;
o

2. U= JUiie U=[0,1]\C

i=1
3. Say U; = i1 U Ii72 U...u Ii’Qifl, we define
o Ui =101 byeln=2
- U ) Ii’j 22
1 2 12 12 78
eg) 1 <373> an 2 <9>9> <373> <9’9>
—_——— —_——— ———

1 2

4. Define ¢ : [0,1] — [0,1] by for 0 £z € C

I

o(z) =sup{e(t): teUN|0,x)}

and ¢(0) = 0. This is the Cantor-Lebesgue Function:

3/

1/2

1/4

m Remark 2.4 Things to know about ¢:

1. ¢ is increasing

2. ¢ is continuous.

- o is continuous on U

-x € C with x # 0,1. For large 4, Ja; € I; ; and b; € I; j11 s.t.

ai<x<bi
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but ¢(b;) — ¢(a;) = j;l - % = % — 00. Then there is no jump up! The point for = € {0,1}’s
proof is similar, so it’s continuous.
- :U —[0,1] is differentiable and ¢’ =0

- @ is onto, p(0) =0, (1) =1, IVT

Non-Borel Set

A non-Borel Set
Let ¢ be the Cantor-Lebesgue Function, consider v : [0,1] — [0, 2] defined by

(x) =+ p(z)

Then 1) is strictly increasing, continuous and onto. This implies v is invertible.

1. ¢(C) is measurable and has positive measure.
2. 1 maps a particular (measurable) subset of C' to a non-measurable set.

(¥=1)~Y(C) is closed. Then

Proof (for 1): By A1, ¢! is continuous, then ¥(C) =
— 9, 50 [0,2] = $(C) U(U) with

1 (C) measurable. Note that [0,1] = CUU and C NU
P(C)N(U) = 0. Then
2 =m(p(C)) +m(U))
it’s suffices to show that
m(yU)) =1
We say U = U I; a disjoint union of open intervals, then (U U ¥ (I;) so that m(()yp(U)) =
=1
Zm . No that Vi € N, 3r € Rs.t. p(z) =r for all z € I;. In particular, ¥(z) = x+r

for all z € I; and so ¥(I;) = r + I;. Then
=3ty = (U
Since [0,1] = U U C we have that

1 =m(U) +m(C) =m(U)
=

Hence, m(y(U)) =m(U) =1>0

Proof (for 2): By Vitali, ¢(C) contains a subset A C 9(C) which is non-measurable.
Let B =1"(A) C C, then ¢)(B) = A is non-measurable as resquired.
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The Cantor set contains an element of £ \ B

Proof: Take B C C, so B is measurable, then ¢(B) is not measurable. By A1l, if B
is Borel, then 1 (B) is Borel this leads to a contradiction. Hence B is not Borel.

Let A C R be a non-measurable set with finite outer measure. Prove that
there does not exists a measurable set B C A such that m(B) = m*(A)

Solution: Let A C R is non-measurable and m*(4) < oo
For sake of contradiction, we suppose there exists a measurable set B C A such that
m(B) = m*(A)
Since m*(A) < oo so we have m*(B) < m*(A) < oo, note that B is measurable. Then we
have

m*(A\ B) =m*(A) —m(B) =0

This gives us that A\ B is measurable, that is A\ B € Z. Since B C A and B € ., then

(A\BJU B —Aec &
—_——
cy eZ

That means A is measurable, it’s a contradiction!
Hence, there does not exists B C A is measurable s.t. m(B) = m*(A), which completes the
proof.



Measurable Functions

Definition 3.1.1 — Measurable Function.
A C R is measurable, we say f : A — R is measurable if and only if for all open U C R,
f~YU) is measurable

If A C R is measurable and f : A — R is continuous, then f is measurable.

A C R is measurable, and X4 : R — R where

o 1 reA
470 r¢ A

Then X4 is measurable.

Let A C R be measurable, f : A — R, the following are equivalent:
1. f is measurable

2. Va € R, f~!(a, 00) is measurable.

3. Va < b with a,b € R, f~!(a,b) is measurable.

Proof:
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1 — 2: Trivial

2 = 3: Let b € R so that f~1(b,00) is measurable, then R\ f~1(b,00) = f~}(R\ (b, 0)) =

- 1
f71((—o0,b]) is measurable as well. We see that (—oo,b) = U (—oo, b— z) and so
i=1

i (—o0t) = | £ (oo,b - )

=1

Q| =

is measurable. Finally, for a < b, we can write
(CL, b) = (a7 OO) U (_007 b) => fﬁl(aa b) = fﬁl(aa OO) N fﬁl(_oo7 b)
is measurable.

3 = 1: Trivial

Let A C R be measurable and f,g: A — R are measurable.
1. For all a,b € R, af + bg is measurable.
2. The function fg is measurable.

Proof for 1: Let a € R, for « € R (af) }(a,00) = {x € A:af(x) > a}

If a >0,
@

(af)Meyoo) = {ze A: (@) > 2} = 57(Z, o0)
is measurable. N
Ifa <0, (af) (a,00) = f7* (—oo, —) is measurable.
a
If a =0, af continuous = measurable.
We now show that f 4 ¢ is measurable. For o € R

(f +9) Ha,00) ={z € A: f(x) + g(x) > a}
={z€A: f(z)>a—g(z)}
={reA:3¢e€Q, f(x)>q¢>a—g()}

= U({xGA:f(JJ)>q}ﬂ{$€A3g(x)>0‘_Q})
q€Q

=J |/ (@o0)ng™!(a—g )

9€Q measurable measurable

is measurable. Then we have f + g is measurable.
Since af and f + g are measurable, so we have af + bg is measurable.
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Proof for 2: By the quiz, |f| is measurable. For a € R:

() a,00)={z € A: f*(2) > a}
_{ A a<0
- {zeA:|fl®) >va} a20

B A a <0
Tl T Wa,) a>0

is measurable, then f? is measurable. Since (f + g)? = f2 + 2fg + g° is measurable, so we
have 2fg is measurable. By 1, the function fg is measurable.

m Example 3.1 ¢ : [0,1] — R, ¢(z) = 2 + ¢(z). A C [0,1] s.t. A is measurable but 1(A) is
——

C-L
not measurable. Extend 1 : R — R continuously to a strictly increasing surjective function s.t.

1~ ! is continuous.

Consider X4 o 9~1, then

aov ) (53.5) = v (2 (5:3) ) —va

which is not measurable. Then X4 o ~! is not measurable. L]

Let A C R be measurable set, if g : A — R is measurable and f : R — R is continuous, then
f o g is measurable.

Proof: Let U C R be open, (fog)~(U) = g~ ' (f 1 (U)) is measurable.
—

open

Definition 3.1.2
Let A C R, we say a property P(x) (z € A) is true almost everywhere (ae) if

m({zx € A: P(z) false}) =0

Let f : A — R be measurable, if g : A — R is a function and f = g ae, then g is measurable.

Proof: Consider

B={zc A: f(z) # g(=)}
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so we have m(B) = 0. Let o € R, so

g (a,00) = {z € A:g(z) > a}
={r e A\ B:g(zx) >a}lU{zx € B:g(x) > a}
={r € A\B: f(z) >a}lU{zx € B:g(x) > a}

= | fYa,00)n (A\B) |U{zeB:g(x)>al
—_—— N —

measurable measurable measure 0

is measurable.

Let A be measurable, B C A measurable and a function f : A — R is measurable if and only
if f|p and f |4\ p are measurable.

Proof: = suppose f: A — R is measurable, let o € R, then

(f I5) Ha,00) = {z € B: f(z) > a}
= f~Ya,00)NB

is measurable, then f |p is measurable. The proof for f |4\ p is similar.
<= Suppose f |p and f |4\ p are measurable. For a € R,

fHa,00)={z€A: f(x) > a}
={xeB: f(z)>a}lU{z e A\ B: f(z) > a}
= (f |5) (e, 00) U(f |a\B) ™[, 00)
—_————

measurable measurable

is measurable, and so f is measurable.

Let f, be a sequence of measurable functions where f, : A — R. If f,, — f pointwise ae,
then f is measurable.

Proof: Let B={z € A: f,(z) » f(x)}, so that m(B) = 0. Now for a € R,

(f |B)_1(aa OO) = f_l(a7oo) NnB
—_—

measure 0

is measurable.
If suffices to show that f | A\B 1s measurable. By replacing f by f | A\B> W€ may assume
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fn — f pointwise. Let a € R, since f, — f pointwise, we see that for x € A
1
flz)y>a <= n,NeN, Vi>N, fi(zx)>a+—
n
Then we see that

= U N fi1<a+;,oc>>

neEN NeNi=N

measurable

is measurable. Therefore, we have f is measurable.

Simple Approximation

Definition 3.2.1 — Simple.
A function ¢ : A — R is called simple if ¢ is measurable and ¢(A) is finite.

m Remark 3.1 — Canonical Representation.

Let ¢ : A — R be measurable, ¢(A) = {c1, 2, ...c; } where ¢;s are distinct and 4; = o~ ({¢;})
k k

is measurable. We can see that A is a disjoint union of A4; i.e. A = U A; and ¢ = Z ciXa,
=1 i=1

Goal: Show measurable functions can be approximated by simple functions

Let f : A — R be measurable and bounded, for all £ > 0 there exists simple ., 1. : A - R
such that
e < f < e and 0<vY:—pe <e

Proof: Since f(A) is bounded, so f(A) C [a,b]. Now for any € > 0, we consider a = yg <
Y1 < eennn < yn = b where y;11 —y; < . We define I, = [yx_1,yx), Ax = fﬁl(Ik) . Let
——

measurable

we: A— R and 9. : A — R where
n n
0e: Y ye-1Xa, and oY ypda,
k=1 k=1

s0 e and 1. are simple. Let € A, since f(z) € [a,b], so Ik € {0,1,..,0} such that f(z) € Ij.
ie. yr—1 < f(z) < yk, ¢ € Ay Moreover, () = yp—1 < f(2) < yx = P=(z) and so

pe < f < e

Now for the same z, we see that 0 < 9.(z) — ¢<(x) = yr — yr—1 < €, which completes the
proof.
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— Simple Approximation.
Let A C R be measurable. A function f : A — R is measurable if and only if there is a
sequence (¢,,) of simple functions on A such that ¢, — f pointwise and Vn, |p,| < | f]

Proof: <= Done
= Suppose f: A — R is measurable.
Case 1: f > 0, for each n € N we define

Ap={z€A: f(z) <n}

so that A, is measurable and f |4, is measurable and bounded. By the Lemma 3.2.1, there
exists simple function (¢,) and (¢y,) such that ¢, < f < 1, on A, and 0 < ¢, — ¢, < %
Fix n € N, extend ¢, : A — R by setting p,(x) = nif z ¢ A,, so 0 < ¢, < f. For each
n €N, ¢, : A— Ris simple.

Claim: ¢, — f pointwise.

Let x € A and N € N such that f(z) < N ie. x € Ay. Forn > N, z € A, and so
0 < f(x) — n < Yn(x) — n(x) < %

Case 2: f: A — R measurable.
We define
B={zeA: f(x)>0} and C={zxecA: f(z) <0}

are measurable. Now define g,h: A - R
g = XBf and h= —ch

so that g, h are measurable and non-negative. By Case 1, there exists sequences (¢,,) and
(1) of simple functions such that ¢, — ¢ pointwise and v,, — h pointwise with 0 < ¢, <g¢
and 0 < 1, < h. Then we have

on —UYp —g—h=f pointwise
~——
simple

and
|0n — Vn| < |@n] + |[¥n] = @n + n < g+ b = |f]

which completes the proof.
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Up to certain finiteness conditions:

1. Measurable sets are "almost" finite, disjoint union of bounded open intervals.
2. Measurable functions are "almost" continuous.

3. Pointwise limits of measurable functions are "almost" uniform limits.

Let A be measurable set and m(A) < oco. For all € > 0 there exists finitely many open
bounded, disjoint intervals Iy, Is, ....., I,, such that

m(AAU) < e

where =11 Uy U ...... ul,
Note: m(AAU) = m(A\U) +m(U \ A)

Proof: Let € > 0 be given, we may find an open set U such that

mU \ A) <

DN | ™

By PMATH 351, there exists bounded open, disjoint intervals I; (i € N) such that

=l
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[o.¢]
Note that Z I; = m(U) < co. In particular, 3N € N such that

=1

i E(IZ) <

i=N+1

IR

Take V.= I U .... U Iy we see that m(A\V) < mU\V) and m(V\ A) < mU\) <
S .Therefore, we have m(AAU) < € as desired.

Littlewood Principle lli

Goal: Prove that pointwise limits of measurable functions are almost uniform limits.

Let A be a measurable set with m(A) < co and f, : A — R be a sequence of measurable
functions. Assume f : A — R such that f,, — f pointwise. For all o, 8 > 0, there exists a
measurable subset B C A and N € N such that

L. |fo(z) = f(z)] < aforallz € B,n>N
2. m(A\B) < f

Proof: Let «, 8 > 0 be given, for n € N define

An={z e A:|fpx) - f(@)| <o, VE=n}=)|fr—fI ' (~00,0)

= e

Then every A, is measurable.

o0
Since f, — f pointwise, A = U A, and (A,) is ascending, by continuity of measure

n=1

m(A) = li_>m m(A4,) < oo
We may find N € N such that for all n > N
m(A) —m(4Ay) < B

we can just pick B = Ay, then the proof is completed.
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— Littlewood 3 - Egoroff’s Theorem.
Let A be a measurable set with m(A) < co and f, : A — R be a sequence of measurable
functions. If f, — f pointwise, then for all € > 0 there exists a closed set C C A such that

1. fn — f uniformly on C'
2. m(A\C)<e

Proof: Let ¢ > 0 be given, by the Lemma 4.2.1 for every n € N, there exists a mea-
surable set A,, C A and N(n) € N s.t.

1. For all z € A,, and k > N(n), |fx(z) — f(2)] <

£
2. m(A\ 4p) < PTEs]

S|

e}
We take B = ﬂ A, (measurable). For n € Nsit, L <, k> N(n) andz € B

n=1

ila) — f(@)l <

then f,, — f uniformly on B
Moreover we have

m(A\ B) =m<A\ N An> =m<U A\An> <Y mANA) <Y =
n=1 n=1 n=1 n=1

By A1, there exists a closed set C' s.t. C C B and m(B\ C) < §
Since C' C B, f; — f uniformly on C'and m(A\ C) =m(A\B)+m(B\C)<§+§5=¢
which completes the proof.

= Example 4.1 — Warning.
Let f, : R — R with f,,(z) = 7, fu — 0 pointwise but f, - 0 uniformly on any measurable
sets B C R such that m(R\ B) < 1

Need: m(A) < oo "

Littlewood Principle I

Goal: Prove that measurable functions are "almost" continuous. (i.e. Littlewood’s 2"¢ Principle/
Lusin’s Theorem)

Let f: A — R be a simple function. For all £ > 0 there exists a continuous g : R — R and a
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closed set C' C A such that f =g on C and m(A\C) <e

n
Proof: Let f = ZaiXAi where A; = {z € A: f(z) = a;} is measurable. By A1l we have
there exists C; C A; is closed such that m(A; \ C;) <. Note that A = U A; and C = U C;
i=1 i=1
are disjoint union. We can see that for all x € C;, f(x) = a;, by A1 we have f is continuous
on C and we can extend f |¢ to a continuous function g : R — R, also we have

m(A\C):m<U (4;\ C; ) ZmA \ Cy)
=1

as desired.

— Littlewodd 2 - Lusin’s Theorem.
Let f: A — R be a measurable function. For all € > 0, there exists a continuous function
g: R — R and a closed set C' C A such that f =g on C and m(A\ C) < e.

Proof: Let € > 0 be given

Case 1: m(4) < >

Let f: A — R be measurable, by the SAT (simple approximation theorem) there exists
the simple function f,, such that f, — f pointwise. By the lemma, there exists the continuous
function g, : R — R and closed C;, C A such that f,, = g, on C, and m(A\ Cy,) < sy By
Egorff, there exists a closed set Cp C A such that f,, — f uniformly on Co and m(A \ Cp) < §.

o

Let C = ﬂ Ci, 80 gn = frn — f uniformly on C' C Cy so f is continuous on C. By Al we
i=0

may extend f |¢ to a continuous function g : R — R and

m(A\ C) = <A\ﬂc)_m<u> (A\ C;) gi m(A\ C))

=1
=m(A\ Cy) + Zm(A \ C))
=1

<t
2

M | M

which completes the proof of Case 1

Case 2: m(4) =
For n € N, we define
Ay, ={a€A:|al€n—1,n)}
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(o9}
so that A = U A, by case 1 there exists continuous function g, : R — R and closed set

n=1

Cp C A, such that f = g, on C,, and m(4, \ C,) < Consider C' = U C; which is a disjoint
i=1
union, so we have

m(A\ C) = m(U(AZ- \ ci)) =Y m(4;\Ci) <e
=1

and let g : C' — Rand z € C so that x € C), for exactly one n € N. Define g(x) = g, (x) = f(z).
——

ct.s
By A1 we can extend g to a continuous function on R, which completes the proof.
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1. Simple functions, ¢ : A - R, m(A) < oo
2. f: A— Ris bounded and measurable with m(A4) < oo, . < f < 1,
3. f: A — R measurable, f >0

sup{/h: h €2, oghgf}
A

4. f: A — R be measurable function, f* = max{f,0} and f~ = max {—f,0}.
Step 1: ¢ : A — R be simple function and m(A) < oco.

Definition 5.1.1 — Lebesgue Integral.
Let m(A) < o0, ¢ : A — R be simple function with canonical representation:

n
¥ = Z a;iXa,
i=1

The Lebesgue Integral of ¢ over A is

/AW = Zz:; aim(A;)
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Let m(A) < oo where A is measurable, if By, By, ...., B, C A are measurable and disjoint,
and ¢ : A — R is defined by
n
o= biXs,
i=1

then .
/ p=> bm(B)
A i=1
For n = 2: If by # ba, then ¢ = b; X, + b2 X', is the canonical representation, if by = by then

b1Xp, + b1 X, = b1{XB, + XB,} = b1 - AB,uB,
—_——

con rep

then we have

/AQO = blm(Bl U Bg) =b; - (m(Bl) + m(BQ)) = blm(Bl) + bgm(BQ)

Let ¢,% : A — R be simple function with m(A) < oo, for all a, 8 € R we have

/A(OésoJr&/J):a/Acerﬁ/Aw

Proof: Let
o(A) ={ai,...,an,} and P(A)={ai,..,a,} are distinct
Define
Cij={z€A:p@)=a;, ¥(@)=0b}=¢"'({a})Ny '({b;}) measurable
Then we have

0]
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where Cj; is pairwise disjoint, so by the Lemma 5.1.1 we have
[ o+ B0 = 3 (aai+ oby) - m(Cy)
T

J
= Z aa;m(C;j) + Z Bbim(Cij)
4,3

2]

= Zaai Zm(Cij) + Zﬁbi (Z m(C’ij))
i J j i
= aza(m({fﬂ € A:p(z) =ai})) + 5Za(m({$ € A:¢(z) =b;}))

za/AsoJrﬁ/Aw

Let £,1 : A — R be simple function and m(A) < oo, if ¢ < 1), then

IREIR.

Integration li

Step 2: f: A — R be bounded and measurable with m(A) < co

Definition 5.2.1 — Upper/Lower Lebesgue Integral.

/Af:sup{/Ago:gogf issimple} and /Af:inf{/Ad}:fgw issimple}

Let m(A) < oo and f: A — R be bounded and measurable, then

Jr=1s

Proof: For all n € N, 3 simple function ¢y, %, : A — R such that

1
@n§f§¢n and ¢n_¢n<ﬁ
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We see that
o< [r=[r< [ v [ on= [n-v< [ =2 ma) 0

Definition 5.2.2 — Lebesgue Integral.
Let m(A) < oo and f: A — R be bounded measurable functions, we define the (Lebesgue

Integral) of f over A by o
Jr=]r=1

Let f.g : A — R be bounded measurable and m(A) < oco. For any «, 8 € R

[ (@t +80) —a/f+6/

Proof: Let ¢1, v, 11,12 be simple function where ¢ < f <1 and o < g < 19, so

/A+f+g=/Af+g§/A(wl+w2)
:/Aﬂ}l-i-/A%
Sinf{Aw1+Aw2:fswl,gs¢2}

= inf {/Azpl f <y simple} + inf {/A”L/JQ 1 g < o simple}

[+ ]

/Af+g=/Af+gZ/As01+s02
Z/ASDH-/ASOQ

Similarly, by taking sup we have / f+g> / [+ / g, so we have the addition
A A A

/Af+g=/Af+/Ag

Scalar multiple is similar, then the results follows.
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Let f,g: A — R be bounded and measurable, m(A) < oo. If f < g then

/AfS/Ag
/A(g—f)Z/AO:U = /Ag—/AfZO = /AQZ/Af

Proof:

Bounded Convergence Theorem

Let f: A — R be bounded and measurable, let B C A be measurable and m(A) < oo, then

/sz/Au-xf;)

Proof: If f = X and C C A be measurable, then

/XcXBZ/XBmC:m(BﬂC)Z/X0|B
A A B

If f is simple, let f=>"" | a;X4,, then

/AfXFZai/AXA,.XB:Zai/BXAi=/JB(ZaiXAi)=/Bf

Now f: A — R bounded and measurable, let f < be simple, so

/AfXBs/AMB:/Bw

By taking the inf over all such v, we have that

/AfXBs/sz/Bf

Taking ¢ < f, ¢ is simple, we obtain

/sz/st/Abe

as desired.
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Let f : A — R be bounded measurable and m(A) < co. If B,C C A are measurable and

disjoint, then
Joe? =S+ L7
BUC B C
Proof:

[ =] sxme= [ 1-@xa+rxo)= [ s+ [ 1xe= [ 14 [ 1

Let f: A — R be bounded and measurable with m(A) < oo, then

[ 4= [

—Wngﬂ:i»—AmsAngm

Take the absolve value we have
‘ / f‘ < / | f]
A A

Proof:

as desired.

Let (fn) be bounded measurable sequence and f, : A — R with m(A4) < co. If f,, = f

uniformly then
i [ = [ 1

Proof: Let € > 0 be given and N € N such that

€
— < -
[fn = 1 m(A) +1
for n > N, then for n > N we have

fi= [ 4

€

Amlfﬁ;LmLﬂSmm»mMHﬂ<e




40 Chapter 5. Integration

m Example 5.1
Let f,:]0,1] = R,

1
fa@)=<n L<a<2
0 %Sx

We can see f,, — 0 and

fn=1 and / 0=1
[0,1] [0,1]

— Bounded Convergence Theorem.

Let (fn) be a sequence of measurable functions and f,, : A — R with m(A4) < co. If IM >0
such that |f,| < M for all n and f,, — f pointwise, then

s [ =[5

Proof: Let € > 0 be given, by Egoroff’s Theorem, there exists measurable set B C A and
N e Ns.t. forn> N

€ €

|fn—f|<m and m(A\B) < AN

For n > N we have

’/Afn—/Af‘S/Alfn—fl=/B\fn—f\+/A\B|fn_f|
< [ 1= a1 [ sl 4150

/\fn—f\+2'M'm(A\B)

< = _
+2

=E
Integration il

Definition 5.4.1
1. We say f has finite support if

Ag={x € A: f(z) #0}

has finite measure.

2. We say f is BF function if f is bounded and has finite support.



5.4 Integration lll

41

3. If f: A— R is BF then

/ f=[ g
A Ao
Definition 5.4.2

Let f: A — R be measurable and f > 0, we define

/Afi=sup{/Ah:O§h§f BF}

Let f,g: A — R be measurable function and f,g > 0, then

Jat+so=a [ s+5 [ g

2. If f<g,then [, f< [,g
3. If B,C C A are measurable and BN C = (), then

Joue? = I ?

— Chebychev’s Inequality.
f : A — R be non-negative measurable function, then for all € > 0

1. Va, 8 € R

mfzed: f@zeN <z [ 1
Proof: Let € > 0 be given and let
A.={z € A: f(z) > ¢}

such that m(A:) <eand ¢ =e- Xy < fosoem(A) = [0 < [4f
~~

BF
If m(A;) = oo, for n € N define A, ,, := A. N [—n,n]. By the continuity of measure

oo =m(A:) = lim m(A. )

n—o0

For n € N, ¢, = eXy,_, (BF) we see that ¢, < f. Therefore, we have

oo =m(A:) = lim m(A4A;p) = lim — <Pn / f

n—00 n—oo &
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Let f: A — R with f > 0, then
/f:() — f=0 ae
A

Proof: = [, f = 0.
m({z € A: f(z) £0}) <) m ({meA f(x i}) > n /f_o

<= Suppose B = {x € A: f(z) # 0} has measure 0, so

Ji7= Jo?* fua? = 7=
o

Fatou’s Lemma and MCT

— Fatou’s Lemma.
Let (f,) be a measurable, non-negative sequence of functions and f, : A = R. If f, — f

pointwise then
/fgliminf/fn
A A

Proof: Let 0 < h < f be a BF function, we say Ag = {x € A: h(x) # 0}. It’s suffices to

show
/hgliminf/ T
A A

hy, = min{h, f,} measurable

Since for each n € N we let

Note:
1. 0< h, < h< M for some M > 0 for all n € N.
2. For x € Ag and n € N, (a) h,(x) = h(x) or (b) h,(x) = fo(x) < h(x) and

Then h,, — h pointwise on Ay. By BCT

lim hn:/ h =— lim hn:/h
n—o0 Ao Ao n—o0 A A
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Since hy, < f, on A, so
/h: lim h, = lim inf/ h, < lim inf/ T

m Example 5.2
Let A= (0,1] and fn =n- X 1), so fn — 0 pointwise. We also have

[o=0 /fn:n.m(o,1>=1 i inf [, =1

— MCT.
Let (fn) be a non-negative measurable function and f,, : A — R. If (f,,) is increasing and

fn — f pointwise then
lim fn = / f

/f < liminf/fng limsup/fng/f

Proof:

= Remark 5.1
1. If o : A — R is simple and m(A) < co then

/go<oo
A

2. If f: A — R is bounded and measurable, also m(A) < oo, then

/Af<oo

Definition 5.5.1
If f: A— R is measurable and f > 0, then we say f is integrable iff

/Af<oo
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Integration IV

The general integral

Definition 5.6.1
Let f: A — R be measurable function

fT(x) = max {f(x),0} positive part
f(z) = max {—f(x),0} negative part

Note:
T+ =|fl fr—f=f ft,f~ are measurable

Let f : A — R be measurable function, then f*, f~ are integrable if and only if |f| is
integrable

Proof: —:

f=fr+r = Afég;+é;

/Af+§/A|f|<oo Af_SA]f|<m — fT,f are integrable

Definition 5.6.2 — Integrable Function.
Let f: A — R be measurable, we say f is integrable if and only if |f]| is integrable if and
only if f*, f~ are integrable, and we define

Jt= =)

— Comparison Test.
Let f : A — R be measurable, g : A — R be non-negative and integrable. If | f| < g then f is

integrable and
‘ / fl < / |f1
A A

/|f\§/g<oo = f is integrable
A A

/Af+—/Af"SAf*+Af‘=A(f*+f‘)=A\f!

Proof:

s
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Let f,g: A — R be integrable

1. Va, B € R, af—i—ﬂgisintegrableand/af+ﬁg:a/f_|_5/g
a A A
2. Iff<g,then/f</

3. If B,C C A are measurable with BN C = (), then / f+ / f
BUC C

— Lebesgue Dominated Convergence Theorem.
Let (fn) be a sequence of measurable function with f, : A — R and f,, — f pointwise. If
there exists an integrable g : A — R such that |f,| < g for all n € N| then f is integrable and

YRR

Proof: Since we can see that |f,| — |f| pointwise and |f,| < g, and so |f| < ¢g. By
comparision, f is integrable. Next, observe that g — f > 0, by Fatou’s Lemma

Jo=[ = [@-n<tmnt [ @=p)= [ o= lm s [ £,

Then, cancel the g we have
hm sup / fn < / f

Jo+ [ 1= [@+n<tmnt [ @+ r)= [ 1+ it [ £,

Then, cancel the g again we have

Also

f< lim 1nf/fn

n—o0

so we have

f = lim inf / fn= lim sup [ f, = lim fn
n—0o0 A

n—0o0 n—o0

which completes the proof.
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Riemann Integration

Definition 5.7.1 — Riemann Sum.
Let f : [a,b] — R be bounded function

1. A partition of [a,b] is a finite set P = {xg, 21, ...., 2} C R such that
a=xp <11 <9< ... <xTp=2"

2. Relative to P, we define the lower Darboux sum:
n
L(f,P)= Z:mz(a:Z —x;—1) where m;=inf{f(z):x € [z;_1, 2]}
i=1
3. Similarly, we define the upper Darboux sum:

U(f,P)=>Y M(x;—x;1) where M;=sup{f(z):x € [zi1,2]}
=1

Definition 5.7.2
Let f : [a,b] — R be bounded function

1. Lower Riemann Integral:
b
R/ f=sup{L(f,P):P is a partition}
Ja_

1. Upper Riemann Integral:

b
R/ f=inf{U(f,P): P is a partition}

3. We say f is Riemann Intetrable if and only if
b b
R[r=r[7

Definition 5.7.3 — Step Function.
Let I, ...., I, be pointwise disjoint intervals such that

n

la,0] = | I

i=1
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A Step function is a function of the form

f= Z a; X,
i=1

for some a; € R

m Remark 5.2 Let f : [a,b] — R be a bounded fuction and
a=29g <21 < .eonn. <xp,=D>

and I; = [x;_1,z;] for i =1,2,...,n— 1 and I, = [xy,—1,zy]. Then
n b
L(.P) = S omitll) =R [ ¢
i=1 a
where ¢(z) =m; on I; (¢ < f) and
n b
U(fP) =Y Mt = R [
i=1 @
where ¢(x) = M; on I; (f <) and
mRemark 5.3 Let f : [a,b] — R be a bounded fuction, then

b b
R/ f=sup{L(f,P): P is a partition} = sup {R/ p:p < f is a step function}
Ja a
and

b b
R/ f=mf{U(f,P): P is a partition} = inf{R/ P f <1 is a step function}

Riemann Integral VS Lebesgue Integral

Definition 5.8.1
Let f : [a,b] — R be bounded function and let = € [a,b] and 6 > 0

1.
ms(z) =inf {f(z):z € (x — 0,z + ) N [a,b]}

Ms(z) =sup{f(z) :x € (x —d, x4+ ) Na,b]}

3. Lower boundary of f:

m(z) = %i_r)r(l) ms(x)
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4. Upper boundary of f:

5. Oscillation of f:

mRemark 5.4 Let f : [a,b] — R be bounded function, the following are equivalent:

1. f is continuous at = € [a, ]
2. x) = m(x)
3. w(z) =0

&
8

Let f :[a,b] — R be bounded function, then

1. m is measurable
2. If ¢ : [a,b] — R is a step function with ¢ < f, then

p(x) < m(z)

at all points of continuity of ¢
b
3. R / 7= m
Ja [a,b]

Proof 1: Let @ € R and ¢ € [a,b] s.t. m(c) > a. Choose any m(c) > f > «, by the
definition of m, there exists £ > 0 such that m. > 5. However, this means that f(xz) >
for any x € (¢ —e,c+¢)Nja,b]. Take x € (¢ —¢e,c+€) N [a,b] so that there exists § > 0
such that (z — 6,2+ 9) N[a,b] C (c —e,c+¢)NJa,b]. It follows that ms(z) > S and so
m(z) > ms(z) > S > a as well. Therefore, {c € [a,b] : m(c) > a} is relatively open in [a, b]
(i.e. is the intersection of an open set and [a, b]) and so is measurable.

Proof 2: Suppose ¢ < f is a step function and let x be a point of continuity of ¢. Since
x is not an endpoint of a middle step, we see that there exists § > 0 and z € R such that
o(y) =z for all y € (x — 6,2 + J) N [a,b]. Therefore, for all y € (x — J, 2+ 0) N [a, b], we have
f(y) > ¢(y) = z. Hence, m(z) > ms(z) > z = ¢(x) as required.

Proof 3: We begin by observing that if ¢ < f is a step function then, by (2) ¢ < m
a.e. Therefore

b b
R/f:sup{R/cp:gogf step}:sup{/ p:rp<f step}g m
Ja_ a [a,b] [a,b]

by monotonicity a.e.
Now for each n € N, let P, = {a =x9 < z1 < .... < x2n = b}, where each z; — z;_1 = I’Q_—n“.
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Then let I,1 = [a,z1] and I, = (xj—1, 2] for 2 < k < n. Define a step function ¢, < f
o0
by setting ¢, (x) = inf {f(x) : © € I, 1} for all x € I, ;. Let P = U P; and note that P has

i=1
measure 0 (countable)

Fix € [a,0] \ P. For all n € N, let I,,(x) denote the interval I, (as above) which
contains x. Let 6 > 0 be given and let N € N be such that I,,(x) C (x — d,z + J) for all
n > N. By (2), for n > N we have

m(x) = n(z) = ms(z)
as 0 — 0 (and so N — oo) we see that

lim ¢n(z) = m(z)

n—oo

In particular, we have that ¢, — m pointwise a.e.. Let a € R such that |f| < a. Then
lon| < a for every n, where constant function « is integrable over [a,b] and so we have by
LDCT that

lim By = m
n=00 Ja,b] [a,b]

Since the Riemann and Lebesgue integrals clearly agree for step functions:

b
lim R/ e = m
n—oo a [a,b]

Therefore,

b b b
m= lim R @ngsup{R/go:apgf step}:R/f

Let f : [a,b] — R be bounded function, then

1. M is measurable
2. If ¢ : [a,b] — R is a step function with f <4, then

M(z) < 9(x)
at all points of continuity of v

b
3. R / = M
a [a,b]

Proof: Similar as the last lemma.
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— Lebesgue.
Let f : [a,b] = R be bounded function, then f is Riemann Integrable if and only if f is
continuous a.e.. In that case: .
R[ =]
a [a,b]

b b
- e o]
Ja [avb] [a7b] a

so f is Riemann integrable. Then

Proof: Note that

/ m—/ M = (M—m)=0 <= M=m a.e.
[a,b] [a,b] [a,b]

<— w=0 a.e.

<= f is continuous a.e.

If f is continuous a.e., then f is measurable and

b b
R/fS/ ms/ f< MzR/f
Ja [a,b] [a,b] [a,b] a
b
R[ =] s
a [a,b]

Then we have

as desired.

m Example 5.3 Let f: [0,1] — R where

1 z€eQ
O T

so f is discontinuous on [0, 1]. Then f is not Riemann Integrable

HOWQVGI‘, [ = 0 a.e. on [0, 1] and so
/ /
[0,1] [0,1]

so f is Lebesgue Integrable [

m Example 5.4 Let QN [0,1] = {q1, ¢, ...... }and fn = X(q1.40,....q,3 a0d fr, — f pointwise. Then
fn is increasing but f, <1, so

R fn» R f

[0,1] [0,1]
———
=0 DNE



L? Spaces

Goal: Create Banach Spaces whose norm is given by Lebesgue Integration.
Recall
1. For 1 <p < oo, (C([a.b]),|]|,) is a normed vector space, where

b
1IE = / Tk

2. For p = oo, (C([ab), ||.0):

[flloe = sup{[f (@) : x € [a, b]}

is a Banach space.

Problem: Let A C R be measurable and 1 < p < oo, then

i1, =/ |f|p);

is not a norm on the vector space of integrable function f : A — R. Because / Iff=0 «—
A
f=0a.e.
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Definition 6.1.1
Let A C R be measurable.

1. M(A) = {f: A— R measurable} (vector space). f ~ g if and only if f = g a.e..
The [f] is the equivalence class

2. M(A)) ~={[f]: f € M(A)} (vector space) and

alf] + Blg] = [af + By

m Remark 6.1 If f ~ g and f is integrable, then g is integrable and / f= / g
A A

Definition 6.1.2 — L? Space.
Let A C R be measurable set and 1 < p < 0o, the LP space is defined by

r) ={ ey ~ [ 17 < oo

m Remark 6.2 Suppose [f], [g] € LP(A), then / |f|p,/ lg]P < o0
A A
1.

If+ 9l < (If1+19D)" < 2max{[f], |g]})" < 2°(|f]" + |g]")

Then |f + g|” is integrable by comparison.
2. LP(A) is a subspace of M(A)/ ~

Definition 6.1.3 — L*>° Space.
Let A C R be measurable set, then L*(A) is defined by

L>(A) ={[f] € M(A)/ ~: fis bounded a.e.}

m Remark 6.3 1. [f],[g] € L°(A), we have |f| < M and |g| < N, so we can find B,C C A s.t.
m(B) =m(C) =0. For x ¢ BUC, we have

[f(x) + g(x)] < [f(2)| +|g(x)] < M + N

2. L*>°(A) is a subspace of M(A)/ ~



6.1 L? Spaces

53

m Remark 6.4 For all n € N,
1
<1l o off m(Au) =0

and

(e,
B = U A,, — measure 0
i=1

50 || < [/l off B.

Let A C R be measurable set, then
11l = inf {M > 0: [f] < M ace.}
is a norm on L>(A)
Proof: 1. [|[f]llc =0 = [fI < [llfllls a-e. so [f] =[0] in L>(A)
2. [f| < |llfll off B and |g| < ||[g]]|,, off C, off BUC — measure 0, then

If + 9l < [f1+ 19l < Nl + N9l

By the definition of inf, we have

IS + 9l = IIfT+ [9llloe < IFllo + N9l

Abusive Notation

f=1el”(4)

and f =g in LP(A) means f = g a.e.

Definition 6.1.4 — Holder Conjugates.
For p € (1,00) we define g = p%l to be the Holder conjugates of p

Lg=2% < p=%
2.1 4 % =1 3. We also define 1 and oo to be Holder conjugates
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— Young'’s Inequality.
Let p,q € (1,00) be Holder conjugates , for all a,b > 0

alP bl
ab< — + —
P q

1 1
Proof:We define f(z) = —a? + — — 2 where z € (0,00). Then we have f'(z) = 277! — 1
p q

and f"(z) = (p — 1)zP~2 When f'(x) = 0, we can get the critical point of f(x) at z = 1.
Since the Holder conjugates p,q € (1,00), then f”(z) = (p — 1)zP=2 > 0 for all = € (0, c0).

Therefore, we can know f(x) has global minimum at = 1. Since We have — + — =1, so
p q

1 1 a
f(1) :§+§_1:07 then f(z) >0 on z € (0,00). Now we take = —, then
br
a 1 a\’ 1 a 1 a®» 1 a
f(q):'<q> +to-g20=—-"t-——72>0
br' P \b» q  pr p b g by
aP q
:}—+—>abqp
1 1 1 1 aP b _a
Since+:1,thenwehaveq—q:q-<1—> = q-~ = 1 Therefore, by — + — > ab? »
P q p p q p q
q af bl .
and ¢ — = = 1, we have — + — > ab as desired.
p p q

Let A C R be measurable set and 1 < p < oo and ¢ is the Holder conjugate of p. If
f e LP(A) and g € LI(A), then fg € L'(A) and

/A 1Fol < I£1L gl

Proof: If p=1 and ¢ = oo,

[fal < Ifllgl < [flllgll a-e

then fg € L'(A).
If 1 <p < oo and q is the Holder conjugate of p, so
P q
P, lal*
p q

|fgl = 1fllgl < by Young’s Inequality

so fg is integrable by comparison, then fg € L*(A). Also we have

1 1 1 1
/!fglé/ !f|p+/ 91" = =N f1I> + =gl
A pJja q.JA p q
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Now we have two cases, Case 1: || f|[, = [lgll, =1, so

1 1
<-4-=1=
/Alfgl i £l N9l

Case 2: | S 0 g” by case 1 we have

1
[ — <1
GAED /A 79l <

Let p,q be Holder conjugate and f € LP(A), if f #0

£r =1, Psign(f)l P~
is in LI(A) and
/A FEE =0, 1, =

Proof: If p =1 and ¢ = oo, we have

" = sign(f) € L™(4)

[ = [1a=11,

2. If 1 < p < oo and q is the Holder conjugate of p,

and

LA[ﬁ-HMﬁfAUV—HNﬁﬂVM—HMp

and

17117 = P /A &1 = | £ /A P = IR =1

— Minkowski’s Inequality.
Let A C R be measurable and 1 < p < oo. If f,g € LP(A), then

1 +gll, < If1l, +1lgll,

Proof: If p =1, the result is trivial. Now we look at 1 < p < oo, we can see that

I£+9l,= [ (F+at +or = [ 17+97+ [ o+

< FIIC +9)* M, + gl (F + 9)*
= [I£ll, + llgll,

o
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Completeness

— Riesz-Fisher.
For every measurable set A CR and 1 < p < oo, LP(A) is a Banach Space

Proof: If p = oo, it’s trivial. Now we look at 1 < p < co. Let (f,) C LP(A) be strongly
Cauchy. Then there exists (g,,) C R such that

Ifns1 = fall, <2 and > g, < oo

Since R is complete, if (f,(x)) is strongly Cauchy, then it converges. Now for each n € N, we
define

An = {z € At |far1(2) — fale)l 2 €} = {£ € A: | far1(2) — ful2)” 2 €7}

By Chebychev’s Inequality

2
/ |fn+1 fn = np_ap
gn ’I'L

Then we have

>omlAn) < 3oeh < (3oeh) <oo
SO m( lim sup An) = 0. Now we fix z ¢ lim sup 4,, let
n—o00 n—00

N =max{n:z € A4,}

and for n > N,
fani(@) — fa@] < and Y < oo
o (fn(x)) is Cauchy. Then f, — f pointwise a.e.. For k € N, we have

0
an-i—k - anp < 2612
i=n

SO | faak — ful? = |fn — fIP pointwise a.e. as k — oo. By Fatou’s Lemma we have

/ |fn_ |p < hm lnf/ |fn+k:_fn|p_ hm lanfn—‘rk_fn’ [25]

Separability

m Example 6.1 Let p = oo, suppose {f, : n € N} is dense in L*°[0,1]. For every x € [0,1] we
may find

HXva - fg(x)Hoo <
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For z # y in [0, 1],

| X0, -0, |, =1

so 0 :[0,1] — N is injective, which is a contradiction
Notation:
1. Simp(A)=simple functions on measurable set A

2. Stepla, b]= Step functions on [a,b]
3. Stepgla, b]=step functions on [a,b], with rational partition function values. n

Let A C R be measurable and 1 < p < oo, then Simp(A) is dense in LP(A)

Proof: Let f € LP(A) so f is measurable. Then 3(¢,) simple function so that ¢, — f
pointwise and |p,| < |f], then |p,|? < |f[’. By comparison we have (¢,) C LP(A). Note that

o= FIE= [ len=fF  and  lou= P < Pllpul + 1) < 2P
which is integrable. By LDCT we have

lim/]cpn—f\p/O—O

as desired. (This is also true for p = co)

Step|a, b] is dense in LP[a, b]

Proof: Let A C [a,b] be measurable, so X4 : [a,b] — R. By Littlewood I, so for any
n

e > 0, there exists a collection of bounded open interval such that the disjoint union U L, =U
i=1
and m(UAA) < eP. Since Ay is a step function so

| — Xall? = / Xy — X = m(AAT)
A

so we have || Xy — X4|| < € as desired.

Let 1 < p < oo, Stepgla, b] is dense in LP[a, b], then LP[a, ] is separable.
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Let 1 < p < oo, LP(R) is separable
Proof: Consider to define F,, = f € LP(R) where

_ | Stepg[-n,n] if z € [-n,n]

n_{O if © ¢ [-n,n]

o
So we have F' = U F; is countable. Take f € LP(R), fix n € N so f |_, € LP[-n,n], we

=1

show
fX[—n,n} — f in LP(R>
Note that
|| f Xrn) = in = / |f X nm — ] = / |fIP = / | 1P 2R\ [~ ]
R R\[—n,n] R
and

|1f[P X\ (=, | < |fIP integrable
By LDCT we have

Hm [| £ = f[; = lim /R\f?f[n,n]—f}pZ/RU:O

n— o0 n—oo

SO HfX[_n’n] — f”p — 0. Then for each n € N, d¢,, € F' such that HfX[—n,n] = pr <

lon — pr — 0 as desired.

Let A C R be measurable set and 1 < p < oo, then LP(A) is separable.

Proof: Similar as above.



Hilbert Spaces

Welet F=R or C

Definition 7.1.1
Let V' be a vector space over F. An inner product on V' is a map (-,-) : V' x V' — F such that

1. Yo € V, (v,v) € R and (v,v) > 0 with (v,v) =0 if and only if v =0
2. For all v,w € V, (v,w) = (w,v)  (complex conjugate)
3. Foralla € F, u,v,w €V, (au+v,w) = a{u,w) + (v, w)

We call (V,(-,-)) an inner product space.

Let V be a inner product space, then |[v|| = y/(v,v) is a norm on V. We call ||-|| the norm
induced by (v, v).

m Example 7.1 Let A C R be measurable, V = L?(A) with

(f.9)= /Afg

is an inner product space. Note that

VIR = ([ 1#)" =171,

[
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m Example 7.2 Let A C R be measurable, V = L?3(4,C) (see A3) with

~ [ 19
A
so we can see \/(f, f) = ||fll, -

— Porollelogrom Law.
Let V' be a inner product space, for all u,v € V'

2 2 2 2
w0l + llw = olf” = 2(Jfull” + 1o}
Proof:

llu 4 ol|? + flu = l|* = (u+v,u +v)

yu) + (u, v)
2(<><v)

)
= 2(Jlull® + 1ol

(u—v,u—v)

+
+< >+<U7U>+<u7u>*<uvv>*<vau>+<vvv>

/\/\

m Example 7.3 Let 1 < p < oo and V = LP[0, 2], define

f= X[0,1] 9= X[1,2]

then

2
2 P i 2 3 2 2 2
112 = %;Hﬂ —15=1 el2=1f=1 [f+gl2=2F |f-gl=

By Porollelogrom Law
2% 425 =2.(141) =2

so ||l p 1s induced by an inner product space if and only if p = 2. L]

m Remark 7.1 ||||, is not induced by an inner product space.

Definition 7.1.2 — Hilbert Space.
A Hilbert Space is a complete inner product space. (i.e. A Banach space whose norm is
induced by an inner product space)

m Example 7.4 [?(A), L?(A,C) are Hilbert Spaces "
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Orthogonality

Definition 7.2.1
Let V be an inner product space, we say v,w € V are orthogonal if (v, w) =0

m Example 7.5 Let f,g € L?(A,C) where A = [~7, 7], define f(z) = €™ and g(x) = "™ with
n # m, then

R N e ™
:/Acos((n—m)x)—ki/sin((n—m)a:)

A
= cos((n —m)z)dr + R cos((n —m)z)
—Tr —T
L sin(n—m)a)| + |- cos((n—m)a)|
= sin((n —m)x - cos((n —m)x
n—m —r n—m -
| |
Definition 7.2.2
A CV is orthogonal if the elements of A are pair-wise orthogonal and |[v|]| =1 forallv € A
Let V be a inner product space and {vy, ....,v,} is orthogonal, then

2 n
-3 lod?
i=1

n
g QU5
=1

— Pythagorean Theorem.
Let V be an inner product space, if vy, ....,v, € V are pairwise orthogonal, then

n 2 n
> il =2 il
i=1 i=1
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m Example 7.6 Let L = L?(S,C) where S = [, 7], so

1 .
A= e nelk
{\/27T }

is pairwise orthogonal. Now we can see

1 ) 1 . ; 1
?Heznacuz :2/ emme—znazdx: 27 1=1
T T J[—mm) T J[—m,m]
Then we have A is orthogonal. m

Definition 7.2.3 — Orthogonal Basis.
An Orthogonal Basis is a maximal orthogonal subset of V

Fact: An inner product space always has an orthogonal basis.

Fact: Let H be Hilbert Space. if W C H is closed subspace, then there exists a sub-
space W+ C H s.t.
H=wPHw

and (w,z) =0 for all w € W and z € W+

Let H be a Hilbert Space, then H has a countable orthogonal basis if and only if H is
separable.

Proof: = Let B be a countable orthogonal basis for H

Claim: W = Span(B), W = H

Suppose W # H, since H = W@WL. We may find 0 # = € W', We may assume ||z| = 1.
Then B U {z} is orthogonal, which is a contradiction, so we have W = H. This gives us
that Spang(B) = H, so H is separable.

<= Suppose H does not have a countable orthogonal basis. Let B be orthogonal basis
of H, so B is uncountable. For v # v in B we have

lu—o)* = ull* +ol* =2 = Ju—vll=V2

Suppose X C H s.t. X = H. For any u € B, there exists z, € X s.t. |u— 2, < g
For u # v in B we have z,, # x,. Then ¢ : B — X with ¢(u) = x, is an injection, which
completes the proof.

=m Example 7.7
1

—c€
{ V2
is a countable orthogonal set in L?([—n,7],C). It’s countable and orthogonal.

Question: Is it maximal? n

" nez)
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Big Theorems

Definition 7.3.1
Let H be inner product space with {v1, v, ...., v, } orthogonal. If v = > \jv;, then \; = (v, v;).
We call (v, v;) the Fourier coefficient of v with respect to {v1, v, ...., v, }.

Definition 7.3.2
Let H be Hilbert Space and {vy,va, ...... } be orthogonal. For v € H, we call

oo
Z@, V) V;
i=1
the Fourier Series of v relative to {vy, ve, ......} and write

o0
v~ Z(v,vﬁvi
i=1

— Best Approximation.
Let H be Hilbert Space and {v1,v2,.....,v,} be orthogonal. For v € H, |[v— > A\ is
minimized when
)\i = <U, Ui>

Moreover,
2
o= 0w wivw||” = ol = > 1w, vi)

Proof: Let W = Span{vy, ....,v, } is closed, we can see V =W @ W+. Also, for x € W and
we let v = w + z where w € W and z € W+. Then

2 2 2 2 2 2 2
lo —2]” = llw+ 2z =2l = [w+ 2+ 2" = lw =zl + [[2]" = [|2]" = lv - w]|

which gives us that
[0 —z|| = [lv—w|

Now we see that v = 3" \v; + 2 for z € W+, then
<U7vi> = )\z +0= )\’L

Note that we can also write v = (v, v;)v; + z for z € W+, then

2
2 2 2 2
ol = |3, vavwr]| + el = 3 1w, 0l + 112

Therefore, we have

o= S wayonl|| = 1218 = ol = 3 o) P

which completes the proof.
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— Bessel’s Inequality.
Let H be Hilbert Space and {v1, v, ....., v, } be orthogonal, if v € H,

n

>l w)* < Jlolf?

=1

— Parseval’s Identity.
Let H be Hilbert Space and {v1, v, .....} be orthogonal. For v € H,

n

v — Z(vjviﬁ)i

=1

=0

n— 00

n
> v, v ? = |lv)® — lim
i=1

— Orthogonal Basis Test.
Let H be separable Hilbert space and {v1,va, .....} be orthogonal. The followings are equivalent

1. {v1,v2,.....} is a basis

2. Span{vy,va,....} = H

n

3. nlgrolo ¥ — Z(v, v;)v;|| = 0 for every v € H
i=1

Proof:

1 = 2 : Done.

2 = 1: If {v1,v9,...} is not maximal, then we may find v € H with ||u| = 1 such that
(u,v;) =0 for all i € N. Since C = {z € H : (x,u) =0} is closed, so u ¢ Span{vi,va,.....}
2 =—> 3: Let v € H and ¢ > 0 be given, also let

N
Zaivi € Span{vy,va,.....}

=l
such that

<e

n
v — g Q;v;
=1

This gives us that

n

v — Z(v, Vi YU;

=1

<e€
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Now for n > N, we have

n N n o0
v— Z(v, vi)vi|| < ||v — Z(v,w)w + Z (v,vi)vi|| < e+ Z (v, v:)|> = 0
i=1 i=1 i=N+1 i=N+1
as N — oo.

3 =— 2: Similar.

Appendix

Definition 7.4.1 — Direct Sum.

Let V be a vector space and let U and W be the subspaces of V. We say V is the direct
sum of U and W, written V = U @ W, if every element of V' can be uniquely written in
the form of u + w where u € U and w € W.

If may be easily verified that V = U @ W ifand only if V =U+W ={u+v:u e U, w € W}
and U N W = {0}. Our goal is the show if H is a Hilbert space and W is a closed subspace
of H, then H=W + @ W+, where

Wt ={zeH: (z,w)=0 for all we W}

It’s straightforward to verify that W+ is a subspace of H.

Let H be a Hilbert space and let W be a closed subspace of H. For every v € H, there exists
a unique w € W such that

inf {||lz —v|| :z € W} = [Jw— v

Proof: Let ¢ =inf {||lz —v|| : x € W}, for a,b € W we see that

la=b— (b =0)[* +la=v+b—o|* = 2lla —v]|* + 2]} - ]

by the Parallelogram Law. Notice that

2

1
la+b— 20| = 4“2(a+b) — || > 462

Therefore,
la —b]1* < 2lla —v]|* +2||b — v[|* — 46 (%)

By the definition of inf, there exists a sequence (w,) C W such that ||w, — v|| — J, but then

lwn = win|l < 2lwn = v|* + 2l|wm — 0] — 467 = 0



66 Chapter 7. Hilbert Spaces

so that (wy,) is Cauchy. Since H is a Hilbert space and W is closed, w,, — w for some w € W.
Finally, we see that ||w, —v| — ||w—v| and ||w, —v|| — §. From which we have that
||lw — v|| = d. Uniqueness follows immediately from (x).



8. Fourier Analysis

Fourier Series

Motivating Questions:

1. Is {ﬁemx tne Z} an orthogonal basis for L?([—, 7], C)?

2. Is Span{e™® : n € Z} dense in L*([—n,n],C)?
3. Is Span{e™® : n € Z} dense in L'([—m,n],C)?

Given f € L'([—m, 7)) with




68 Chapter 8. Fourier Analysis

Definition 8.1.1
Let T' = [—m,m), we call T the Torus or the Circle. We define LP(T") .= LP([—m, x|, C) for

1 < p < 0o using the norm
1
1 »
_ P
171, (QH/TW )

and LP(T) is a separable Banach Space.

= Remark 8.1
1. As a group under addition modulo 27:

T=R/Z={ze€C:|z]| =1}

2. In this way, T is locally compact abelian group.
3. There is a one-to-one correspondence between f : T" — C and 27-periodic functions f : R — C

Definition 8.1.2
Let f € LY(T).

1. We define the n'* (n € Z) Fourier coefficient of f by
<f einx) . 1/ f(a:)e*m”da;
’ o 2w T
2. We define the Fourier Series of f by

f ~ Z aneinx

where a,, = (f, ™).

3. We let
N .
Sn(f,z) = Z ane"™®
-N

denote the n* partial sum of the above Fourier Series.

Consider the trigonometric polynomial f € L'(T) given by

N <
flz) = Z ane” "
n=—N

for some a; € C.
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For each —N,n < N, ‘
<f’ ezn:p> — an
Why?
1

- eiMT o —INT 4. 6m,n
2 T

m Remark 8.2 Suppose f € L'(T) is real-valued

f ~ Z aneinz

ne”L
For N e N
T) = Z ane™ = ag + Z (ane™ + a_pe ")
n=—N n=1
=ap+ Z (an + a—p) cos(nx) +i(a, — a_p) sin(nx)
\—b,_/ \ﬂ,_/
n Cn
N
=ap+ Z by, cos(nx) + ¢, sin(nx)
n=1
Now

= i / f(z)e 0%dx = i / f(z)dx
bp =an +a_p, = / e~ ine ””” / f(x) cos(nz)

cn =i(an —a_yp) = o /T f(z)(e™™ — ™) dx = = /T f(x)sin(nz)dx

are all real-valued.

Fourier Coefficients

Let f,g € LY(T)
1.
(f +9,e™) = (f,e"®) + (g, €M)
2. For a € C,
(af,€"%) = a(f, ")
3. If f : T — C is defined by f(z) = f(z), then f € L'(T) and

(f,e"®) = (f,en=)
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Proof (3): Since |f| = | f| implies f € L'(T), then

/ f e'macd:C

_ 1 _ .
(Fem) = 5= [ Fo)emda =

- 5, ve ()
— 1 Re (f mx
/f eznxdx
f’e znx

eznw d.’L’

znar: dx

Let f € L'(T) and a € R. (By a previous remark, we may view f : R — C as a 27-periodic

function which is integrable over T.) For o € R, define f, : R — C by f,(x)

integrable over T and

<fa, eina:> — <f, einz>e—in$

Let f € LY(T), for alln € Z '
[(Fre™ )| < NIl
Proof:

inx
| e ‘ =

1 nT
27r/Tf(az)e dx

Let a sequence f, — f in LY(T), so for all n € Z,

(fu,€M7) = (f,€™)

Proof: 4
‘<fka ezn:c) - <f7

1 —inx
< L [y

= f(z —a)is

1
o [ 1f@ldz =111,

e = [(fr — f,e™)| < I fx — fll; = 0

m Remark 8.3 Let Trig(T') denote the set of Trigonometric polynomials on T', by A3 we have

Trig(T) = L'(T)
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— Riemann-Lebesgue Lemma.
If f € L}(T), then ‘
lim (f,e"*) =0

[n|]—o0

Proof: Let ¢ > 0 be given and let P € Trig(T) such that ||f — P|; <e. We say
N .
P(x) = Z apet®
k=—N

forn > N orn < —N (|n| > N). We have that (P, e"*) = 0. For |n| > N,

(f,e™®)| = [{f = Pe™)| < |If - Pll, <e

Vector-Valued Integration

Definition 8.3.1
Let B be a Banach space and let f : [a,b] — B be a function. Consider a partition
P=a=t)<t <... < tn = b of [a,b]. We define a Riemann sum of f over P by

S(f,P) =Y f(t5)(ti—ti1) € B
i=1
where each t* € [t;_1, ;]

Definition 8.3.2

Let B and f be as above. We say f is Riemann integrable if there exists z € B such that
for all € > 0 there exists a partition P of [a, b] such that whenever P is a refinement partition
of P. and S(f, P) is a Riemann sum then

IS(f; P) =zl <

b
We call z the integral of f over [a,b] and write z = R/ f(z)dx

— Cauchy Citerion.
Let B be a Banach space and let f : [a,b] — B be a function. Then f is Riemann integrable
if and only if for all £ > 0 there exists a partition P: of [a,b] so that whenever P and @ are
refinements of P. we have

HS(f,P)_S(f,Q)H <e
for any Riemann sums S(f, P) and S(f, Q)
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Proof: = Suppose f is Riemann integrable with z = Rf; f(z)dz. Let e > 0 be given,
we may find a partition P, /5 such that whenever P is a refinement partition of P/, then
|S(f, P) — 2|l < §. In particular, if P and Q are refinement of P_ /5, then

IS(f; P) = S(f, QN < [IS(f, P) = 2l + |z = S(f, Q)] < e

<= Assume the Cauchy criterion. In particular, for each n € N we may find a partition P, of
[a, b] which corresponds to e = l as per the Cauchy criterion. WLOG we may assume each
P41 is a refinement of P,. For each n € N, elt S(f, P,) be a Riemann sum. Let € > 0 be
given, choose N € N such that N < §, we see that for m,n > N

I1S(f, Br) = S(f, )| < % e

Since B is a Banach space, so S(f, P,) — z € B.

We claim that f is Riemann integrable with R [ f(x)dx = z. Let N and Py be as above.

a
Moreover, there exists M > N such that [|S(f, Py) — 2| < §. Now, if P is any refinement
partition of Py, then

IS(f, P) = 2l < IS(f, P) = S(f, Pa)ll + 1S (f, Par) — 2]l <€

This result can then be used to show the following, which we shall state and use as a fact.
The proof is quite similar to the proof for B = R

If B is a Banach space and f : [a,b] — B is continuous, then f is Riemann integrable.

Summability Kernels

Goal: Given f € L'(T), determine when S, (f,z) — f(x) pointwise in L'?

Main tool: Summability Kernels and convolution.

Definition 8.4.1 — Convolution.
Let f,g € L'(T), the convolution of f and g is the function f x g : T — C given by

(f*g)( 27r/f (z—t)d /f gi(z
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Facts:
1. Given f,g € LY(T), f*g € LY(T) as well

217 gl < 171 - Nlglly
3. This makes L'(T) a Banach Algebra

Let C(T') denote the set of continuous function 7' — C

Definition 8.4.2 — Summability Kernel.
A Summability Kernel is a sequence (K,,) C C(T) s.t.

1
1. — [ K,=1
2 T

2.3IM >0,¥n €N, |K,|, <M

3. Forall0 < <,
-0 T
lim (/ |Kn]+/ Kn\> —0
n—oo - Fy

Let (B, ||| z) be a Banach Space, let ¢ : T'— B be continuous function. Let (K,) C C(T)
be a summability kernel, then

n—oo 27

1
nm/mmwwzwn
T
in the B-norm

Proof: Let 0 < 0 < 7, notice that

s | En(090) = 90) = 5= [ Ea(0)l) = (0
5 -4
:% _6kn(t)(go(t)go(0))dt+217r | ka()(e() — (0))dt
+ o0 [ Baol®) - o)
T Js

Let the sum of the last two integrals in the above equation be labelled by (x), but then

_6 T
41l < mm|ﬂw—ﬂmm;(/ mama+ﬂ|mmuQ @)

)
1/kM@W®—w®Mt

2m Js

< max|le(®) — O llknllz - (1)
B i<

and

te[—m,m] —
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By continuity, (1) can be made as small as we like by letting 6 — 0. Let n — oo to make (2)
as small as we like, so the result follows.

m Remark 8.4 By A3, o : T — LY(T) given by ¢(t) = f; = f(z —t) is continuous.

Let f € L(T) and (K,) be summability kernel in L!(7T), then
i 1S =
Proof: Since
i - [ Kt A0
where ¢ : T — L', t — f;. That is

qulgnolo%/K flx —t)dt = f(x)

implies
Tim (K * £)(@) = £(2)

as desired.

Dirichlet Kernel

Recall: If (K,,) is a Summability Kernel and f € L*(T), then lim Ky« f=[in LY(T)
Want: Find (K,,) s.t. Ky * f = S,(f)
m Remark 8.5 Let f € LY(T), for n € Z consider ¢, (z) = ¢* € LY(T), then

(o D) = 5= [ enOfi@t =5 [ e pto— e

1 )
27r€ /Te_m(x_t)f(a: —t)dt
1 ,
—ein / e f(—t)dt by A3
27T T
1, ,
= %emx /T e”™f(t)dt  exercise

— emx<f einx>
)
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= Remark 8.6 Let f € LY(T), if P(x Z are™ then
k=—n
(PP = 5 [ POS@—ta= 30 52 [ Mfa
= Z an(pr * f)(2)
k=—n
— zn: aneikz<f’ eik:x>
k=—n

Definition 8.5.1 — Dirichlet Kernel.

Let Dy( Z e’kx this is called Dirichlet Kernel of order n, so we have
k=—n

n

(Dn# f)(@) = Y e*(f,e") = 8,(f,x)

k=—n

where S), is the n-th particle sum.

m Remark 8.7 The (D,,) is not a summability kernel

Proof: It’s easy to show that
sin (n + %)t

sin(%t)
1
I1Dull = 57 /.

dtzl/
T Jr
Since ‘sm( )‘ < ‘2‘ for all ¢, so

1 [r(n+y) |sin ¢| 9 [m(nts )|SIIl 4
D > — dt = — )dt = —=
iD= 2 [ a2 Z / sin(0)]dt =

7r(n+%)

Dn(t) =
for all t # 0. Therefore

sin(%t)
t

sin(n+ %)t

sin(%t) dt

n

1
k
k=1

Therefore, lim || D,l|; = oo, which is not bounded so D, is not summability kernel
n—oo

Fejer Kernel

Idea: Consider
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exercise: If ,, — x, then y, =

Definition 8.6.1 — Fejer Kernel.
We say the

be the Fejer Kernel of order n

= Remark 8.8
Fy(x) = Do(z) =1

—i2z —iz i0x T 2z
2 3 2
Fi(z) = e + Ze +oe™ + 2 t+e 3

n

LI
Fn: 1— ikx
Z < n+1 c

k=—n

1 Sin(@) 2

vVt #£ 0
Fp(t)=qn+1\ sin(3t) >
n+1 t=20
Proof: Notice that .
t 1 1 ., 1 1°
) —t
= (1= 1) = — - _ =z
sin” o 2( cos(t)) 1€ + 51

and

R R A Gl Y\ i 1 1 11,
- - - 1— M et — = [ _— i(n+1)t - T i(nt1)t
(46 571 ) 2 n+1)° Tnr1\ 4° T ge

j==n

then take the values of ¢, the results follows.

m Remark 8.9 (F),) is a summability kernel

Proof: First, we will show 5= [, F,(t)dt = 1. Since 5= [, ce¥tdt # 0 if j # 0, then

1 1
L[ pwdt = / 1t = 1
27T T 27T T

It’s obviously from Lemma 8.6.1 that F,,(t) > 0, so 5= [.|F,(t)|dt < M for some M. If
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t ¢ (—9,0), then |F,(t)| < % where

M:sup{

Hence, the third condition holds, so F;, is a summability kernel.

2

int
sin 3

it e [—m,—0]Ud, Tr]}

Definition 8.6.2 — Cesaro Mean.

Bpef = 03 Dpef = oY sy = I AN L E5U) )

n-th Cesaro Mean

Let f € L(T) and (F,) be the Fejer Kernel, then

lim F, * f = lim o,(f) = f

n—00 n—00

in L(T)

m Remark 8.10 If (S, (f)) converges in L(T), then S, (f) — f in LY(T).

Fejer’s Theorem

Idea: L' convergence is great theoretically, but pointwise convergence is practical.

— Fejer’'s Theorem.
For f € LY(T) and t € T, consider

wi() = = lim (f(t+ @)+ f(t - 2))

2 z—0+

provided the limit exists, then
Un(fa t) — wf(t)

In particular, if f is continuous at ¢, then

on(f,t) = f(?)
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Proof: Assume that wy (o) exists and let ¢ > 0 be given. Since o, (f) = F), * f, then

1

oul f,to) — wy(to) = /F@U%—ﬂ—w%wﬁ

o
1 76F 1 7TF
=5 | n(t)(f(to —t) — wy(to))dt + 277/5 W) (f(to — t) — wr(to))dt
o
o [ RO 1) - wpl)ar

= (1) + (2) +(3)

Since F),(t) = F,(—t), so

g _
® =2 [ mo( =0T o) )ar

T 2

By hypothesis, we may choose ¢ such that if 0 < ¢ < d, then

'f(t()_t);_f(t()"’_t) —cc)f(to) <g
so that -
@) <5 | Fult)ar=c

WE can also choose N s.t. if n > N, then

g
I feo = wy (to)ll +1

sup{F,(t) |t € (—m, ) U (6,m)} <

Hence, we have

€
Ifio —ws(t)[+1 27

1)+ @) < = [ 1t =0 wsteolar <

so the result follows.

In partice:

1. FixzeT

2. Prove (S,(f,z)) converges

3. Then S, (f,z) = wy(x)

4. If f is continuous at z, then S, (f,z) — f(x) i.e. S(f,x) = f(x)

m Example 8.1 Let f € LY(T) and f(x) = |z|, then

Sn(f,x) =ao+ Z (bg, cos(kx) + ¢y sin(kx))
k=1
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where

1 ™
ayg = —

5 |z|dx =

o

—T
Then we have

Sp(f,x) ==+

D

k=1

m
2

Note that (S, (f,x)) converges by comparsion test with Z

@ =5-2%
k=1

1. Taking « = O:

(2k

cos((2k — 1)x)
(2k — 1)?

1
(2k — 1)

1 ™
ok = / |z| sin(kx)dx = 0
T

™

=2
—1)2

cos((2k — 1)x)

5. Since f is continuous, so

T4 1 > 1 w2
0=73 Ez(zk—w Z(2k—1)2z§
k=1 k=1
2. 00 0 0o 0 2 0 2
1 1 1 1 1 7 1
L=l lmop-ilets = XeE=g



Homogeneous Banach Spaces

Goal: Generalize what we have done for L*(T) to LP(T) with p < co. In particular, we look at
L2(T).

Definition 9.1.1 — Homogeneous Banach Space.
A homogeneous Banach space is a Banach space (B, |||| 5) such that

1. B is a subspace of LY(T)
2.1l < Mg
3.vfeB, VaeTl, | falg=Ifllp translation invariant
4. Vf S B, Vto S T, tligl ||ft — ftOHB =0
0

= Example 9.1 (LP(T), [|-||,,) for p < oo is a homogeneous Banach space. "

Let B be a homogeneous Banach space and (k;,) be summability kernel, then for all f € B
Tim [k % f = I =0

Proof: First we have |
% . kn(t)ftdt = kn * f
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We note that

for all continuous function ¢ : T'— B. By previous result we have for ¢ : T'— B, ¢(t) = f; is
continuous (for all f € B), then we have

[kn % f = fllg =0

as desired.

= Remark 9.1

1. In the homogeneous Banach space B, taking k, = F,, then we have ||o,,(f) — f||z — 0 for
all fe B

2. Taking B = LP(T):

() [lon(f) = fll, =0

(b) Trig(T) = LP(T)

m Remark 9.2 In L?(T):

Trig(T) = L*(T)

span{e™® :n € Z} = L*(T)

{em”” inc Z} is ONB

Let the above ONB be written as {vy,va, ...}, then for all f € L*(T)

W=

n

Jim D (i = f

i=1
5. If v = eth®,
1 —ikx ikx ikx\ jikx
footo= (5 [ Freods )i = (f.coyet

6. For all f € L*(T), ||Sn(f) — flls = 0

Additional Materials
Definition 9.2.1 — Lebesgue Point.
We say zg € R is a Lebesgue Point of f is

lim 1/
h—0+ h [0,h]

Fact: For f as above, almost every xg € R is a Lebesgue Point of f.

f(zo — ) + f(z0 + 7)
2

— [(@o)|dz =0
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Let f the same as before, if z( is a Lebesgue Point of f, then

on(f;w0) = f(20)

— Dini’s Test.
Let f: R — C with period 2, / |f| < oo. If
T

r

fota)+fl@wo—2) ,ldz _
2 a8

then S, (f,z0) = L

Proof: BBT, pg 681
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