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1. Bayesian Statistics Fundamental

1.1 Bayesian Statistics Fundamental

Definition 1.1.1 — Bayes’ Rule.
The starting point for Bayesian inference is Bayes’ Rule, the simplest form is

P(A | B) = P(AB)
P(B)

=
P(A)P(B | A)

P(A)P(B | A)+P(A)P(B | A)

where P(B)> 0

Posterior Probablity: P(A before B is known to have occurred) = P(A | B) = P(A) · P(B | A)
P(B)

Prior Probablity: P(A after B is known to have occurred) = P(A | B)

More generally, if we have a sequence of events A1, ...,Ak form a partition of A such that with B⊆ A, then
for all i = 1,2, ..,k:

P(Ai | B) =
P(AiB)
P(B)

=
P(Ai)P(B | Ai)

n

∑
j=1

P(A j)P(B | A j)

■ Example 1.1
Medical Testing: Let A be the event that the person has disease and B be the event that has test positive.
Assume the test for disease is 90% accurate and P(A) = 0.01. Find the probability that the person actually
has the disease given that person has test positive.

Note that we want to find P(A | B), first we have

P(B | A) = 0.9 and P(B | A) = 0.1
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then

P(A | B) = P(AB)
P(B)

=
P(A)P(B | A)

P(A)P(B | A)+P(A)P(B | A)
=

0.01 ·0.9
0.01 ·0.9+(1−0.01) ·0.1

≈ 0.08333

■

Definition 1.1.2 — Bayes Factor.
Suppose that on the basis of an observed event D (standing for data), wish to test the null hypothesis
H0 : E0 versus an alternative hypothesis H1 : E1, where E0 and E1 are two events (not necessarily mutually
exclusive or even exhaustive of the event space), then we define

π0 = P(E0) = the prior probability of the null hypothesis

π1 = P(E1) = the prior probability of the alternative hypothesis

PRO =
π0

π1
= the prior odds in favour of the null hypothesis

p0 = P(E0 | D) = the posterior (data is given) probability of the null hypothesis

p1 = P(E1 | D) = the posterior (data is given) probability of the alternative hypothesis

POO =
p0

p1
= the posterior odds in favour of the null hypothesis

The Bayes Factor is defined as

BF =
POO
PRO

=
p0π1

p1π0
= P(D) · p0

π0
· 1

P(D)

π1

p1
=

[
P(D) · P(E0 | D)

P(E0)

]
·
[

1
P(D)

P(E1)

P(E1 | D)

]
=

P(D | E0)

P(D | E1)

If BF > 1, then data has increased the relative likelihood of the null; if BF < 1, the data has decreased the
relative likelihood of the null. The magnitude of BF tells us how much effect the data has had on relative
likelihood.

Definition 1.1.3 — Bayesian Models.
A Baysian Model has the following basic components:

y : data

θ : model parameter

f (y | θ) or F(y | θ) : model distribution

f (θ) : prior distribution

Definition 1.1.4 — Prior and Posterior Distribution.
The posterior distribution of θ has pdf:

f (θ | y) = f (θ) f (y | θ)
f (y)
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and the prior (unconditional) distribution of y is:

f (y) =
∫

f (y | θ)dF(θ) =


∫

f (θ) f (y | θ)dθ if θ is continuous

∑
θ

f (θ) f (y | θ) if θ is discrete

■ Example 1.2
Consider the biased dices, A has 0.1 probability of coming up 6, B,C have 0.2 probability of coming up 6 and
D,E,F have 0.3 probability of coming up 6. Now given a die rolled twice, and both have 6 comes up. What
is the posterior probability distribution of θ , the probability of 6 comes up on the given die.

Note that

f (θ) =


1
6 If θ = 0.1
1
3 If θ = 0.2
1
2 If θ = 0.3

and (y | θ)∼ Bin(2,θ)

then

f (y = 2 | θ) =
(

2
y

)
θ

y(1−θ)2−y = θ
2 and f (y) = ∑

θ

f (θ) f (y | θ) = 0.06

Then the posterior probability distribution of θ is

f (θ | y) = f (θ) f (y | θ)
f (y)

=


0.02778 If θ = 0.1

0.22222 If θ = 0.2

0.75 If θ = 0.3

This result means that if the chosen die were to be tossed again a large number of times then there is a 75%
chance that 6 would come up about 30% of the time, a 22.2% chance that 6 would come up about 20% of the
time, and a 2.8% chance that 6 would come up about 10% of the time. ■

Proposition 1.1.1 — Proportionality Formula.
If f (y) is a constant with respect to θ , then we can write

f (θ | y) = f (θ)( f (y | θ)
f (y)

= c · f (θ) f (y | θ) where c =
1

f (y)

That can be represent as f (θ | y) ∝θ f (θ) f (y | θ) or f (θ | y) ∝θ f (θ)L(θ | y) where L(y | θ) is the
likelihood function.

Definition 1.1.5 — Conjugate Pair.
When the prior and posterior distributions are members of the same class of distributions, we say that
they form a conjugate pair.
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■ Example 1.3
Consider the binomial-beta model:

(y | θ)∼ BIN(n,θ)

θ ∼ Beta(α,β ) prior
(θ | y)∼ Beta(α + y,β +n− y) posterior

Both prior and posterior are beta distribution (same class of distribution), then they form a conjugate pair
(prior is conjugate) ■

1.2 Bayesian Estimation

Definition 1.2.1 — Bayesian Point Estimation.
When f (θ | y) is given, the Bayesian Point Estimation of the model parameter θ can be calculated, it
usually called best estimate. The following are three common point estimation function:

E(θ | y) =
∫

θdF(θ | y)

Mode(θ | y) = max
θ

f (θ | y)

Median(θ | y) = the value of λ such that P(θ ≤ λ | y)≥ 1
2

and P(θ ≥ λ | y)≥ 1
2

Definition 1.2.2 — Bayesian Interval Estimation (HPDR and CPDR).
The 100(1−α)% HPDR (highest posterior density region) for θ is the smallest S s.t.

P(θ ∈ S | y)≥ 1−α and f (θ1 | y)≥ f (θ2 | y) if θ1 ∈ S and θ2 /∈ S

The 100(1−α)% CPDR (central posterior density region) for θ is the smallest interval [a,b] such that

P(θ < a | y)≤ α

2
and P(θ > b | y)≥ α

2
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■ Example 1.4
Given that

f (θ | y) =


0.1 θ = 1

0.4 θ = 2

0.5 θ = 3

Find 40% HPDR.

Only for S = {2} or {3} we have P(θ ∈ S | y) ≥ 0.4, but we also need f (θ1 | y) ≥ f (θ2 | y) if θ1 ∈ S
and θ2 /∈ S, then we can only take S = {3} ■

Proposition 1.2.1 — Inference on Function.
Let’s define λ = g(θ) for some function g strictly increasing (decreasing), then by one-to-one transformation
we have

f (λ | y) = f (θ | y)
∣∣∣∣dθ

dλ

∣∣∣∣
Then the estimated mean is

E[λ | y] =
∫

λ f (λ | y)dλ =
∫

g(θ) f (θ | y)dθ = E[g(θ) | y]

Definition 1.2.3 — Credibility Estimation.
Credibility Estimation is the one can be expressed in a weighted average form:

C = (1− k)A+ kB

A: subjective estimate (collateral data estimate. ex. expected value)

B: objective estimate (direct data estimate, ex. MLE)

k: credibility factor with range [0,1], the weight of B

Proposition 1.2.2 — Frequentist Characteristics of Bayesian Estimators.
Consider (y1, ...,yn | u)∼ N(µ,σ2) are i,i.d and µ ∼ N(µ0,σ

2
0 ). This leads to the point estimate µ̂ = y and

interval estimate I = y± z α

2
σ√

n
. These estimates are exactly the same as the usual estimates used in the

context of the corresponding classical model

y1, ...,yn ∼ N(µ,σ2)

are i.i.d and µ is unknown constant and σ2 is given. Therefore, Bayesian estimation is considered as a
proxy for classical estimates and the frequentist operating characteristics of the Bayesian estimates are
immediately known.

Frequentist: bias of µ̂ is 0 and coverage probability is exactly 1−α

Baysian: expected value of (y | µ) is µ for all value of µ , P(µ ∈ I) = 1−α for all value of µ

Definition 1.2.4 — Frequentist Relative Bias.
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The Frequentist Relative Bias of Baysian point estimate is defined as

Rθ =
Bθ

θ
where Bθ = E[θ̂ −θ | θ ]

Definition 1.2.5 — Frequentist Coverage Probability.
The Frequentist Coverage Probability (FCP) of a Baysian interval estimate is

Cθ = P(θ ∈ I | I) where I = I(y) = [L(y),R(y)]

Definition 1.2.6 — Mixture Distribution.
A random variable X with mixture distribution has a distribution of the form

f (x) =
n

∑
i=1

ci · fi(x) where
n

∑
i=1

ci = 1 and ci ≥ 0 and fi(x) is proper density for some distribution

If our prior beliefs for θ do not follow any single well-know distribution, it can conveniently approximated
to any degree precision by the mixture prior distribution from the above formula.

Remark: It can be shown if each fi(θ) is conjugate then f (θ) is also conjugate.

Definition 1.2.7 — Priori Ignorance.
Priori Ignorance means there is no prior information at all.

■ Example 1.5
The normal-normal model (y1, ..yn | µ)∼ N(µ,σ2) and µ ∼ N(µ0,σ

2
0 ), a uninformative prior is given by

σ0 = ∞, this gives f (µ) ∝ 1 for all µ

The normal-gamma (y1, ..yn | µ) ∼ N(µ, 1
λ
) and λ ∼ Gamma(α,β ), a uninformative prior is given by

α = β = 0, this gives f (λ ) ∝
1
λ

■

Definition 1.2.8 — Jeffreys Prior.
The Jeffreys Prior is given by the following

f (θ)∝
√

I(θ) where I(θ)=E

[(
∂

∂θ
log f (y | θ)

)2

| θ

]
=−E

[
∂ 2

∂θ 2 log f (y | θ) | θ
]

Fisher Information

This is a prior which is invariant under reparameterisation, the following is the proof.
Let a prior be f (θ) ∝

√
I(θ) and transformated parameter φ = g(θ) with g is strightly increasing, then

f (φ) ∝ f (θ)
∣∣∣∣∂θ

∂φ

∣∣∣∣ ∝

√
I(θ)

(
∂θ

∂φ

)2

=

√√√√E

[(
∂

∂θ
log f (y | θ)∂θ

∂φ

)2

| θ

]

=

√√√√E

[(
∂

∂φ
log f (y | φ)

)2

| φ

]
=
√

I(φ)

That is if we have f (θ) ∝
√

I(θ), then for other parameter φ = g(θ), then f (φ) ∝
√

I(φ)
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1.3 Bayesian Decision Theory

Definition 1.3.1 — Loss Function.
The loss function L represents the cost incurred when the true value θ is estimated by θ̂ and usually
satisfies the property L(θ , θ̂) = 0

■ Example 1.6

Absolute Error Loss: L(θ̂ ,θ) =
∣∣θ̂ −θ

∣∣
Quadratic Error Loss: L(θ̂ ,θ) = (θ̂ −θ)2

Indicator Error Loss: L(θ̂ ,θ) = I(θ̂ ̸= θ)

■

Definition 1.3.2 — Risk Functions.
The risk function of θ is defined as:

R(θ) = E[L(θ̂ ,θ) | θ ] =
∫

L(θ̂(y),θ) f (y | θ)dy

which provides the idea of expected loss given any particular value of θ

If we want to obtain the expected loss, we need to find the overall expected loss, which is called Bayes
Risk for L is defined as

r = EL(θ̂ ,θ) = E[E[L(θ̂(y),θ) | θ ]] = E[R(θ)] =
∫

R(θ) f (θ)dθ

Definition 1.3.3 — Posterior Expected Loss.
The Posterior Expected Loss (PEL) is the expectation of the loss function given the data, which is defined
by

PEL(y) = E[L(θ̂ ,θ) | y] =
∫

L(θ̂(y),θ) f (θ | y)dθ

Then the Bayes Risk for PEL is

r = EL(θ̂ ,θ) = E[E[L(θ̂(y),θ) | y]] = E[PEL(y)] =
∫

PEL(y) f (y)dy

Definition 1.3.4 — Bayesian Estimator.
The Bayesian Estimator is defined as the choice of function θ̂ = θ̂(y) for which Bayes risk r = EL(θ̂ ,θ)
of PEL(y) is minimized.

Remark: The estimator that minimizes PEL(y) for all y can also minimizes the Bayes risk, that is
because it’s the weighted average of PEL(y)
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■ Example 1.7
Find the Beayesian estimator for quadratic error loss function.

Note that

PEL(y) = E[(θ̂ −θ)2 | y] = θ̂
2−2θ̂E[θ | y]+E[θ 2 | y] =

[
θ̂ −E[θ | y]

]2−E2[θ | y]+E[θ 2 | y]

We can see that θ̂ = E[θ | y] minimzed the PEL(y) for all y, so it’s the Bayes estimator. ■

■ Example 1.8
Find the Beayesian estimator for absolute error loss function

Let t = θ̂ , first we note that

PEL(y) =
∫

∞

−∞

|t−θ | f (θ | y)dθ =
∫ t

−∞

(t−θ) f (θ | y)dθ +
∫

∞

t
(θ − t) f (θ | y)dθ

then by Leibniz’s rule for differentiation:

∂

∂ t
PEL(y) =

∫ t

−∞

f (θ | y)dθ +
∫

∞

t
(−1) f (θ | y)dθ = P(θ < t | y)−P(θ > t | y)

Setting this to zero get when P(θ < t | y) = P(θ > t | y) gives us the t = θ̂ is the posterior median minimized
the PEL(y), so it’s the Bayes estimator. ■

■ Example 1.9
Find the Beayesian estimator for indicator error loss function.

Let t = θ̂ , then

PEL(y) = E[L(t,θ) | y] = E[1− I(t = θ) | y] = 1−E[I(t = θ) | y] = 1−P(t = θ | y) = 1− f (θ = t | y)

we can see PEL(y) is minimized when t = θ̂ maximizes the posterior density f (θ | y), which is posterior
mode Mode(θ | y) if θ is discrete. ■

1.4 Bayesian Inference

■ Remark 1.1 — Inference Given Function of Data.
When we observe a function of data instead the data itself, the function typically degrades the information
available in some way. For example, the censoring and rounding.

■ Example 1.10 — Censoring.
Each bulb of certain type has life is conditionally exponential with mean m = 1

c , where c follow the standard
exponential distribution. We observe n = 5 bulbs for 6 units of time, their life time are

D = {y1,y2,y3,y4,y5}= {2.6,3.2,?,1.2,?}

where ? indicates a censored value, which is larger than 6. Find the posterior distribution and mean of the
average light bulb lifetime m
First the probability of censoring is:

P(y > 6 | c) =
∫

∞

6
ce−cydy = e−6c
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Then the posterior density of c:

f (c | D) ∝ f (c) f (D | c) ∝ f (c) ·
5

∏
i=1

f (yi | c)

= e−c · (ce−cy1)(ce−cy2)(e−6c)(ce−cy4)(e−6c)

= c4−1e−20c

so (c | D)∼ G(4,20), (m | D)∼ IG(4,20), so E(m | D) = 20
3 , which is higher than 1

3 · (2.6+3.2+6+1.2+
6) = 3.8 ■

■ Example 1.11
Given (y | θ)∼U(0,θ) and θ ∼U(0,2) where x = g(y) with rounding function g. Find the posterior density
and mean of θ if x = 1.

Note that

P(x = 1 | θ) = P
(

1
2
< y <

3
2
| θ
)
=

{
θ− 1

2
θ

if 1
2 < θ < 3

2
1
θ

if 3
2 < θ < 2

then

f (θ | x = 1) ∝ f (θ) f (x | θ) ∝ g(θ) =

{
θ− 1

2
θ

if 1
2 < θ < 3

2
1
θ

if 3
2 < θ < 2

Let’s define S =
∫

g(θ)dθ , so we have the density f (θ | x = 1) = g(θ)
S and the expectation E[θ | x = 1] =∫

θ f (θ | x = 1)dθ = 1
S ■

Definition 1.4.1 — Posterior Predictive Distribution.
Given f (y | θ) and f (θ), consider any other quantity x whose distribution is defined by a density of the
form f (x | y,θ). The Posterior Predictive Distribution of x is given by the Posterior Predictive Density
f (x | y). This can typically derived using the following equation:

f (x | y) =
∫

f (x,θ | y)dθ =
∫

f (x | y,θ) f (θ | y)dθ

Moreover, we denote the x̂ = E[x | y] as the predictive mean (posterior mean), and it can be written as

x̂ = E[x | y] =
∫

x f (x | y)dx or x̂ = E[x | y] = E[E[x | y,θ ] | y] =
∫

E[x | y,θ ] f (θ | y)dθ

The predictive variance is defined as

Var[x | y] = E[Var[x | y,θ ] | y]+Var[E[x | y,θ) | y]

There is a special case in Bayesian predictive inference, where the quantity of interest x is an independent
future replicate of y. This mean (x | y,θ) has exactly the same distribution as (y | θ), it can write it as
(x | y,θ). Then in this case we can write f (x | y,θ) as f (x | θ), then

f (x | y) =
∫

f (x | θ) f (θ | y)dθ
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Definition 1.4.2 — Posterior predictive p-values.
In a single Bayesian model with data y and parameter θ , the theory of Posterior predictive p-values
involves the followings steps:

1. Define a suitable discrepancy measure (test statistic), denoted as T (y,θ)
2. Define x as independent future replicate of data y
3. Calculate the Posterior predictive p-values (ppp-value):

p = P(T (x,θ)≥ T (y,θ) | y)

■ Example 1.12
Given (y | λ )∼ Poi(λ ) and f (λ ) = e−λ with λ > 0, we observe y = 3.

1. Find a suitable ppp-value for testing:

H0 : λ = 1 vs H1 : λ > 2

2. Find a suitable ppp-value for testing:

H0 : λ ∈ {1,2} vs H1 : λ > 2

1. Define x as independent future replicate of data y to get (x | y,θ)∼ Poi(λ ) and T (y,λ ) = y, Then we have

p = P(x≥ y | y,λ = 1) = 1−FPoi(1)(y−1) = 1−FPoi(1)(2)

2. Note that

f (λ | y,H0) ∝ f (λ | H0) · f (y | H0,λ ) =
e−λ

e−1 + e−2 ·
e−λ λ y

y!

Then we have

p = P(x≥ y | y,H0) = P(x≥ 3 | H0) = P(x≥ 3 | λ = 1)P(λ = 1 | H0)+P(x≥ 3 | λ = 2)P(λ = 2 | H0)

= (1−FPoi(1)(2)) ·P(λ = 1 | H0)+(1−FPoi(2)(2)) ·P(λ = 2 | H0)

as desired. ■

Definition 1.4.3 — Multi-Parameters Bayesian Model.
The Bayesian model with parameter θ = (θ1, ...,θn) called Multi-Parameters Bayesian Model. The joint
prior density f (θ) can be written as unconditional prior multiplied by a conditional prior. For example, let
θ = (θ1,θ2) then

f (θ1,θ2) = f (θ1) · f (θ2 | θ1)

The marginal posterior density can be written as

f (θ1 | y) =
∫

f (θ | y)dθ2 f (θ2 | y) =
∫

f (θ | y)dθ1

Then the marginal posterior mean of θ1 is

θ̂ = E[θ1 | y] =
∫

θ1 f (θ1 | y)dθ1 or θ̂ = E[θ1 | y] = E[E[θ1 | y,θ2] | y] =
∫

E[θ1 | y,θ2] f (θ2 | y)dθ2
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The conditional posterior mean of θ1 is

E[θ1 | y,θ2] =
∫

θ1 f (θ1 | y,θ2)dθ1

and the conditional posterior density f (θ1 | y,θ2) and f (θ1 | y,θ2) ∝ f (θ1,θ2 | y)



2. Bayesian Nonparametric Model - DP Model

2.1 DP Models

Definition 2.1.1 — Dirichlet Distribution.
The Dirichlet Distribution of order K ≥ 2 (number of category) with parameters α1, ...,αK > 0 has a
probability density function with respect to Lebesgue Measure on the Euclidean space RK−1 given by

Dir(α1, ...,αK) : f (x1, ...,xK ;α1, ...,αK) =
1

B(α)

K

∏
i=1

xαi−1
i

where
K

∑
i=1

xi = 1 and xi ∈ [0,1]. The normalizing constant is the multivariate beta function, which can be

express in terms of the gamma function:

B(α) =
∏

K
i=1 Γ(αi)

Γ(α0)
α = (α1, ...αK) α0 =

K

∑
i=1

αi

Mean : E[Xi] =
αi

α0

Variance: Var[Xi] =
α̃i(1− α̃i)

α0 +1
where α̃i =

αi

α0

Covariance: Cov(Xi,X j) =
δi jα̃i− α̃iα̃ j

α0 +1
where δi j = 1 iff i = j

Mode: xi =
αi−1
α0−K

αi > 1
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Definition 2.1.2 — Dirichlet Process (DP).
Let M > 0 and G0 be a probability measure defined on S. A Dirichlet Process (DP) with parameters
(M,G0) is a random probability measure G defined on S which assigns probability G(B) to every mea-
sureable set B such that for each measureable finite partition {B1, ...,Bk} of S, the joint distribution of the
vector

(G(B1), ...,G(Bk))∼ Dir(MG0(B1), ....,MG0(Bk))

where Dir denote the Dirichlet Distribution. The Dirichlet Process (DP) is usually denoted as DP(M,G0).

M : precision or total mass parameter

G0 : centering measure

α ≡MG0 : base measure of the DP

Remark: G is a discrete measure, which can be written as a weighted sum of point masses

G(·) =
∞

∑
h=1

whδmh(·)

where w1,w2.... are probability weight and δx(·) is the Dirac measure at x, i.e. IA(x). Moreover, the DP
has large weak support, it means under mild conditions, any distribution with the same support as G0 can
be approximated weakly by a DP random probability measure. If M is large, G is highly concentrated
about G0

Definition 2.1.3 — Constructive definition of DP.
For the process

G(·) =
∞

∑
h=1

whδmh(·)

the locations mh are i.i.d draws from the centering measure G0, and each weight wh is defined as a fraction
of (1−∑l<h wl). That is a fraction of what is left after preceding h−1 point masses, what is

wh = vh ·∏
l<h

(1− vl)

with vh ∼ Beta(1,M) i.i.d and mh ∼ G0 i.i.d where vh and mh are independent. Then

G(·) =
∞

∑
h=1

whδmh(·)

defines a DP(M,G0) random probability measure. If G∼ DP(M,G0), m∼ G0 and W ∼ Beta(1,M) are
independent, then Wδm(·)+(1−W )G(·)∼ DP(M,G0)

■ Remark 2.1
If G0(A) > 0, then the restriction of G to A is defined by G |A (B) = G(B | A) = G(A∩B)

G(A) is also a DP with
parameter M and G0 |A and independent of G(A)



16 Chapter 2. Bayesian Nonparametric Model - DP Model

Proposition 2.1.1 — Posterior Updating.
The DP is conjugate with respect to i.i.d sampling. That is under the sampling model with a DP on G, the
posterior distribution for G is again a DP. The base measure of the posterior DP adds a point mass to the
prior base measure at each observed data point yi:

(y1, ...,yn) |G∼G and G∼DP(M,G0) =⇒ G | (y1, ...,yn)∼DP

(
M+n,

M
M+n

G0 +
1

M+n

n

∑
i=1

δyi

)

That is the posterior DP centering measure is weighted average of G0 and empirical distribution

f̂n(·) =
1
n

n

∑
i=1

δyi(·)

and posterior total mass parameter is increased to M+n

Algorithm 1: DP_Posterior_Update(G_DP, y⃗)

1 n,Dirac← Length(⃗y),0
2 for d← 1 to n do
3 Dirac← Dirac+δy[i]

4 G_DP.G0← G_DP.M
G_DP.M+n ·G0 +

1
G_DP.M+n ·Dirac

5 G_DP.M←M+n
6 return

■ Example 2.1 — Marginal Distribution.
Consider random samples yi |G∼G is i.i.d for i = 1, ..,n. The discreteness of G implies a positive probability
of ties among the yi. That is at the heart of the Polya urn representation for marginal distribution

p(y1, ...,yn) =
∫ n

∏
i=1

G(yi)dπ(G)

The Polya urn specifies the marginal distribution as a product of a sequence of increasing conditional

p(y1, ...,yn) = p(y1)
n

∏
i=2

p(yi | y1, ...,yi−1) with p(yi | y1, ...,yi−1) =
1

M+ i−1

i−1

∑
h=1

δyh(yi)+
M

M+ i−1
G0(yi)

for i = 2,3, .. and y1 ∼ G0. Since yi are i.i.d given G the marginal joint distribution of (y1, ...,yn) is ex-
changeable, that is the probabilities remain unchanged under any permutation of the indices. The complete
conditional p(yi | yh,h ̸= i) has the same form as above for yn, an important special case is the posterior
predictive for a future observation yn+1 given y1, ...,yn. It takes the form for i = n+1. ■

2.2 Dirichlet Process Mixture

The DP generates distributions that are discrete with probability one, making it awkward for continuous
density estimation. This limitation can be fixed by convolving its trajectories with some continuous kernel,
or more generally, by using a DP random measure as the mixing measure in a mixture over some simple
parametric forms.
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Definition 2.2.1 — Dirichlet Process Mixture (DPM).
Let Θ be finite-dimensional parameter space, for each θ ∈Θ let fθ be a continuous p.d.f (kernel). Given a
probability distribution G defined in Θ, a mixture of fθ with respect to G has the p.d.f:

fG(y) =
∫

fθ (y)dG(θ)

The such mixtures can form a very rich family. Then, a prior on densities may be induced by putting a DP
prior on the mixing distribution G, which is called Dirichlet Process Mixture Models (DPM)

■ Remark 2.2
The mixture model together with a DP prior on the mixing measure G can equivalently be written as a
hierarchical model. Suppose yi | G∼ FG is i.i.d, an equivalent hierarchical model is

yi | θi ∼ fθi

θi | G∼ G

and G∼ DP(M,G0). The hierarchical model introduces new latent variables θi specific to each experimental
unit. Just integrate with respect to θi to marginalize the hierarchical model with respect to θi. The result is
exactly DPM. Under this hierarchical model, the posterior distribution on G is a mixture of DP’s. That means
p(G | y1, ..,yn) is a mixture of DP models, mixing with respect to the latent θi

Proposition 2.2.1
If yi | θi ∼ fθi is i.i.d for i = 1, ...,n and θi ∼ G is also i.i.d and G ∼ DP(α) = DP(MG0) = DP(M,G0),
then

G | y∼
∫

DP

(
α +

n

∑
i=1

δθi

)
d p(θ | y)

where θ = (θ1, ...,θn) and y = (y1, ...,yn)

Definition 2.2.2 — Mixture of DPM.
The generalization of DPM model arises when the base measure of the DP prior includes unknow hyper-
parameters η and the model is extended with a hyper-prior for η . Similarly the model could include a
hyper-prior on a unknown total mass parameter M. The complete model is:

yi | θi ∼ fθi

θi | G∼ G i.i.d

G | η ,M ∼ DP(M,Gη)

(n,M)∼ π

For example, Gη = N(m,s) with η = (m,s) and a normal/inverse gamma prior on (m,s). The posterior
characterization remains valid, now conditional on η and M.



18 Chapter 2. Bayesian Nonparametric Model - DP Model

2.3 Clustering Under the DPM

An important implication of is the fact that the DPM model induces a probability model on clusters, in
the following sense. The discrete nature of the DP implies a positive probability for ties among the latent θi.
Let’s θ ⋆

j for j = 1, ...,k where k ≤ n are the unique value from the n samples (the jth unique θi has lowest
index i). Define

S j =
{

i : θi = θ
⋆
j
}

and n j =
∣∣S j
∣∣

Then the multiset ρn = {S1, ...,Sk} forms a partition of the set of experimental units {1, ...,n}. Since θi

is random, the sets S j are random. That means the DPM implies a model on a random partition of the
experimental units. The model p(ρn) is also know as the Polya urn. The posterior model p(ρn | y) reports
posterior inference on clustering of the data.

Proposition 2.3.1 — Posterior simulation for DPM models.
Define si = j if i ∈ S j, then by definition:

s1 = 1

si2 = 2 for the lowest i2 > 1 with θi2 ̸= θ1

si3 = 3 for the lowest i3 > i2 with θi3 /∈ {θ1,θi2}
...

Let ki denote the number of unique θℓ among {θ1, ....,θi} and let ni, j denote the multiplicity of the jth of
these unique values. Since we have

ki

∑
j=1

ni j = i

Then the following equation:

p(yi | y1, ...,yi−1) =
1

M+ i−1

i−1

∑
h=1

δyh(yi)+
M

M+ i−1
G0(yi)

implies the density of p(si | s1, ...,si−1):

p(si = j | s1, ...,si−1) =


ni−1, j

M+ i−1
for j = 1,2, ..,ki−1

M
M+ i−1

j = ki−1 +1

Let s−i = (s1, ...,si−1,si+1, ..,sn) By exchangeability of θi the conditional (prior) probability p(si = j | s−i)
takes the same form as the density of p(si | s1, ...,si−1) from above for i = n. Also we can now read off the
prior p(ρn) as

p(s) =
n

∏
i=2

p(si | s1, ...,si−1) =
Mk−1

∏
k
j=1(n j−1)!

(M+1) . . .(M+n−1)

Let’s say implied conditional distribution for θi that follows the p(si | s1, ...,si−1), we define θ ⋆
i, j denote the

jth unique value among {θ1, , , .,θi}. Noting that si = j implies θi = θ ⋆
i−1, j and si = ki−1 +1 implies that



2.4 Posterior Simulation for DPM Models 19

θi ∼ G0 by the density of p(si | s1, ...,si−1). Then we have

p(θi | θ1, ...,θi−1) ∝

ki−1

∑
j=1

ni−1, jδθ ⋆
i−1, j

(θi)+MG0(θi)

Note that the DPM model is exchangeable in θ1, ...,θn, then

p(θi | θ−i) ∝

k−

∑
j=1

n−j δ
θ
⋆−
j
(θi)+MG0(θi)

where k− is the number of unique values in θ−i and θ
⋆−
j is the jth unique element in it.

Algorithm 2: PosteriorSimulation

1 TBD

2.4 Posterior Simulation for DPM Models

2.5 Generalizations of the Dirichlet Processes
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