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1. (Univariate) Random Variables

1.1 Probability Models and random experiments

Random Experiment:

1. Outcome is random
2. (Theoretically) repeatable

� Example 1.1
1. Connecting raw data (eg. heights of 30 randomly selected students)
2. Summary of raw data (eg. mean of heights of randomly selected students) �

Definition 1.1.1 — Probability Model (describes a random experiment).
1. Sample Space S - Set of all possible experiments
2. Events A - Subset of the sample space
3. Probability function P(A) satisfying:
(a) P(A)≥ 0 ∀A
(b) P(S) = 1
(c) If we have A1,A2,A3, ...., that are mutually exclusive (Ai∩AJ = /0, ∀i 6= j ), then

P

(
∞⋃

i=1

Ai

)
=

∞

∑
i=1

P(Ai)

Proposition 1.1.1 — Properties of Probability Function P.
Let A,B be events in sample space S, then

1. P( /0) = 0
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2. A and B mutually exclusive =⇒ P(A∪B) =P(A)+P(B). Generally, P(A∪B) =P(A)+P(B)−P(A∩B)
3. P(A∩B) = P(A)−P(A∩B)
4. P(A = 1−P(A)
5. A⊆ B =⇒ P(A)≤ P(B)
6. 0≤ P(A)≤ 1

Definition 1.1.2 — Conditional Probability.
Let A,B be events with P(B)> 0, then

P(A | B) = P(A∩B)
P(B)

Definition 1.1.3 — Independence.
Let A,B be events, we say A⊥⊥ B (independent) if

P(A∩B) = P(A)P(B)

and we have P(A | B) = P(A), P(B | A) = P(A)

� Example 1.2 Flip Coin Twice - Random Experiment
Sample Space S = {(H,H),(H,T ),(T,H),(T,T )}. Event: "First coin up heads" = A, "Second coin up Tail"
= A

A = {(H,T ),(H,H)} ⊆ S

Probability function

P(A) =
|A|
|S| =

|A|
4

P(S) =
|S|
|S| = 1

It’s easy to see P(A) = P(B) = 1
2 , and P(A∩B) = 1

4 . Then P(A∩B) = P(A)P(B), so A⊥⊥ B �

Definition 1.1.4 — Random Variable.
X : S→ R satisfying

{X ≤ x}= {A ∈ S : X(A)≤ x}
is a valid event for all x ∈ R

Definition 1.1.5 — Cumulative Distribution Function (CDF).
Let X be a random variable, then the CDF of X is defined as

F(x) = P(X ≤ x) ∀x ∈ R

Proposition 1.1.2 — Properties of CDFs.
1. F is a non-decreasing function: x1 ≤ x2 =⇒ F(x1)≤ F(x2)
2. lim

x→∞
F(x) = 1 and lim

x→−∞
F(x) = 0

3. F(x) is right continuous: ∀a ∈ R, lim
x→a+

F(x) = F(a)

4. ∀a < b, P(a < X ≤ b) = P(X ≤ b)−P(X ≤ a) = F(b)−F(a)
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5. ∀a ∈ R, P(X = a) = lim
x→a+

F(x)− lim
x→a−

F(x) = F(a)− lim
x→a−

F(x)

Definition 1.1.6 — Discrete Variables.
Finite or countable number of values with positive probability. If there exists A ⊆ R that is finite or
countable and P(X ∈ A) = 1, then X is discrete random variable.

probability mass function: f (x) = P(X = x), support A = {x : f (x)> 0}.

Properties of pmf:

1. f (x)≥ 0 for all x ∈ R
2. ∑

x∈A
f (x) = 1

pmf to cdf:

F(x) = ∑
y∈A,y≤x

f (y) = ∑
y∈A,y≤x

P(X = y) = P

(
⋃

y∈A,y≤x

{X = y}
)

= P({X ≤ x}∩{X ∈ A}) = P(X ≤ x)

cdf to pmf:
f (x) = P(X = a) = F(a)− lim

t→a−
F(t)

Definition 1.1.7 — Bernoulli Distribution.
X ∼ Bernoulli(p), X ∈ {0,1}, P(X = 1) = p and P(X = 0) = 1− p, then

f (x) =

{
P(X = x) x ∈ {0,1}
0 otherwise

=

{
px(1− p)1−x x ∈ {0,1}
0 otherwise

Definition 1.1.8 — Binomial Distribution.
1. n experiments
2. each experiment is independent
3. each experiment has 2 outcomes: 0 (prob=1− p) or 1 (prob=p)

Let X be the number of experiments with outcome 1, so X ∼ Bin(n, p), then for Xi ∼ Bernoulli(p),

X =
∞

∑
i=1

Xi and

f (x) ·P(X = x) =
(

n
x

)
px(1− p)n−x

Definition 1.1.9 — Geometric Distribution.
Let X be the number of outcomes before the first 1 outcome in repeated Bernoulli random trials
For example, let X be number of trials before first head, so x = 0,1,2..., then

f (x) ·P(X = x) = (1− p)x p x = 0,1,2.....
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f (x) = 0 otherwise.

Definition 1.1.10 — Negative Binomial Distribution.
Let X be the 0 outcomes before the rth outcome of 1, so X ∼ NegBin(r, p) in repeated Bernoulli(p)
experiments. For x = 0,1,2....,

f (x) = P(X = x) =
(

x+ r−1
x

)
(1− p)x pr

and X =
r

∑
i=1

Xi with Xi ∼ Geo(p)

Definition 1.1.11 — Poisson Distribution.
Let X ∼ Poi(µ), then for x = 0,1,2..... we have

f (x) = P(X = x) =
µx

x!
e−µ

otherwise we have f (x) = 0

Definition 1.1.12 — Continuous Variables.
If X is a random variable with CDF F(x) s.t.

1. F(x) is continuous at x for all x ∈ R
2. F(x) is differentiable everywhere on R except at countably many points

Then X is a continuous random variable

probability density function: f (x) = F ′(x) where F is differentiable, support set A = {x : f (x)> 0}

Properties of pdf:

1. f (x)≥ 0 for all x ∈ R
2.
∫

∞

−∞

f (x)dx = lim
x→∞

F(x)− lim
x→−∞

F(x) = 1−0 = 1

3. f (x) = F ′(x) if the derivative exists
4. F(x) = P(X ≤ x) =

∫ x
−∞

f (t)dt

5. P(a < x≤ b) = F(b)−F(a) =
∫ b

−∞

f (t)dt−
∫ a

−∞

f (t)dt =
∫ b

a
f (t)dt

6. P(X = b) = 0

� Example 1.3

F(x) =





0 x≤ a
x−a
b−a

a < x < b

1 x≥ b

=⇒ f (x) =





1
b−a

a < x < b

0 otherwise

�
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� Example 1.4
Let the pdf be

f (x) =





1
x2 x≥ 1

0 otherwise

1. check if this pdf valid: 1. f (x)≥ 0 for all x and

∫

R
f (t)dt =

∫
∞

1

1
x2 dx =

[
−1

x

]∞

1
= 1

2. Find the cdf:

P(x) = P(X ≤ x) =
∫ x

−∞

f (x)dx = 0 x < 1

and

P(x) = P(X ≤ x) =
∫ x

−∞

f (x)dx =
∫ x

1
f (x)dx = 1− 1

x
x≥ 1

Then we have

F(x) =





1− 1
x

x≥ 1

0 otherwise

3.

P(−2 < X < 3) = F(3)−F(−2) = 1− 1
3
=

2
3
=
∫ 3

−2
f (x)dx =

[
−1

x

]3

−2

�

Definition 1.1.13 — Gamma Function.

Γ(α) =
∫

∞

0
yα−1e−ydy , α > 0

Proposition 1.1.3 — Properties of Gamma Function.

1. Γ(α) = (α−1) ·Γ(α−1) for α > 1
2. Γ(n) = (n−1)! for n ∈ N
3. Γ(1

2) =
√

π
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� Example 1.5 Let X ∼ N(0,1) and define

f (x) =
1√
2π

e−
X2
2

so let Y =−X2

2 , we have

∫
∞

−∞

f (x) =
∫

∞

−∞

1√
2π

e−
X2
2 dX = 2

∫
∞

0

1√
2π

e−
X2
2 dX =

2√
2π

∫
∞

0
e−Y

√
2

2
Y−

1
2 dY

=
1√
π

∫
∞

0
Y

1
2−1e−Y dY

︸ ︷︷ ︸
Γ( 1

2 )

=
1√
π
·
√

π

= 1

�

� Example 1.6 Let X ∼ N(µ,σ2) and define

f (x) =
1√

2πσ2
e−

(X−µ)2

2σ2

so let Z = X−µ

σ
, we have

∫
∞

−∞

f (x) =
∫

∞

−∞

1√
2πσ2

e−
(X−µ)2

2σ2 dX =
∫

∞

−∞

1√
2πσ2

e−
Z2
2
√

σ2dZ =
∫

∞

−∞

1√
2π

e−
Z2
2 dZ = 1

�

1.2 Expectation

Definition 1.2.1 — Expectation.
Let X be a discrete random variable with support A and pmf f (x), then if

∑
x∈A
|x| · f (x) = ∞

we say that E[X ] is DNE, otherwise we have

E[X ] = ∑
x∈A

x · f (x)

Similarly, let X be a continuous random variable with pdf f (x), then if
∫

∞

−∞

|x| · f (x)dx = ∞
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we say that E[X ] is DNE, otherwise we have

E[x] =
∫

∞

−∞

x · f (x)dx

� Example 1.7 Let X be a random variable with pmf

f (x) =

{ 1
x(x+1) if x ∈ N

0 otherwise

Then

∑
x∈A
|x| f (x) =

∞

∑
x=1

x · 1
x(x+1)

=
∞

∑
x=1

1
x+1

= ∞

so E[X ] DNE �

� Example 1.8 Let X be a random variable with pmf

f (x) =

{
θ

xθ+1 if x≥ 1

0 otherwise

for θ > 0. Then we have ∫
∞

−∞

|x| f (x)dx =
∫

∞

1
x · θ

xθ+1 = θ

∫
∞

1

1
xθ

︸ ︷︷ ︸
<∞ iff θ > 0

dx

Then E[X ] exists iff θ > 1.
For θ > 1,

E[X ] =
∫

∞

−∞

|x| f (x)dx =
∫

∞

1
x · θ

xθ+1 = θ ·
∫

∞

1

1
xθ

dx = θ ·
(

1
θ −1

)
=

θ

θ −1

�

Proposition 1.2.1
Let X be a discrete random variable, then

E[g(X)] = ∑
x∈A

g(x) f (x)

provided it exists (i.e. ∑
x∈A
|g(x)| f (x)< ∞)

Similarly, if X is a continuous random variable, then

E[g(X)] =
∫

∞

−∞

g(x) f (x)dx

provided it exists (i.e.
∫

∞

−∞

|g(x)| f (x)dx < ∞)
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Proposition 1.2.2 — Linearity of Expectation.
1. For all a,b ∈ R, E[aX +b] = aE[X ]+b
2. For all a,b ∈ R, E[ag(X)+bh(X)] = aE[g(X)]+bE[h(X)]

Definition 1.2.2 — Variance.
Let X be a random variable, then the variance of X is defined by

Var[X ] = E[(X−E[X ])2]

Definition 1.2.3 — kth moment of X .
Let X be a random variable, then the kth moment of X is defined by

E[(Xµ)
k]

for k ∈ N where µ = E[X ]

Proposition 1.2.3

Var[X ] = E[X2]− (E[X ])2

Proof: Let µ = E[X ], then

Var[X ] = E[(X−µ)2] = E[X2−2µX +µ
2] = E[X2]−2µE[X ]+µ

2 = E[X2]− (E[X ])2

as desired.

� Example 1.9 Let X ∼Uni f (0,1), so pdf

f (x) =

{
1 0 < x < 1

0 otherwise

then we have E[X ] = 1
2 so that E[2X +1] = 2E[X ]+1 = 2. Note that

E[X2] =
∫

∞

−∞

x2 f (x)dx =
∫ 1

0
x2dx =

1
3

this gives us that Var[X ] = E[X2]− (E[X ])2 = 1
12 �

1.3 Moment Generating Functions

Definition 1.3.1
Let X be a random variable, if ∃h > 0 s.t. E[etx] exists for all t ∈ (−h,h), then the moment generating
function of X exists and

M(t) = E[etx] ∀t s.t. E[etx] exists
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� Example 1.10 Let X ∼ Exp(θ), so pdf

f (x) =





1
θ

e−
x
θ if x > 0

0 otherwise

for θ > 0. Then we have

∫
∞

−∞

etx f (x)dx =
∫

∞

0
etx 1

θ
e−

x
θ dx =

1
θ

∫
∞

0
e−x( 1

θ
−t)

︸ ︷︷ ︸
1
θ
−t>0⇐⇒ t< 1

θ

dx

and we see that

t <
1
θ
⇐⇒ integral converge ⇐⇒ E[etx] exists

so h can be h = 1
kθ

for k ∈ N. This gives us that

M(t) =
1
θ

∫
∞

0
e−x( 1

θ
−t)dx ∀ t <

1
θ

=
1
θ

[
− 1

1
θ
− t

e−x( 1
θ
−t)

]∞

0

∀ t <
1
θ

=
1

1− tθ
∀ t <

1
θ

�

Proposition 1.3.1
If the MGF of X exists and its domain is τ , then the MGF of Y = aX +b exists for all a,b ∈ R with a 6= 0
and

MY (t) = ebtMX(at) ∀ t ∈ {t ∈ R : at ∈ τ}

Proposition 1.3.2
If the MGF of X exists, then

MX(0) = 1 and M(k)
X (0) = E[Xk]

for k ∈ N where

M(k)
X (t) =

dk

dtk MX(t)
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� Example 1.11 Let X ∼ Exp(θ), so we have

MX(t) =
1

1− tθ
∀ t <

1
θ

so that
E[X ] = M′X(0) =

−1
(1− tθ)2 · (−θ)

∣∣∣
t=0

=
1
θ

�

Proposition 1.3.3 Let X ,Y be random variables with MX = MY ⇐⇒ X and Y have the same distribution
(i.e. their CDFs are equal)



2. Multivariate Random Variables - I

2.1 Joint and Marginal CDFs

Definition 2.1.1 — Joint CDF.
Suppose X and Y are random variables defined on sample space S. Then the joint CDF of X and Y is
defined by

F(x,y) = P(X ≤ x,Y ≤ y) ∀ (x,y) ∈ R2

Similarly, let X1,X2, ....,Xn be random variables on sample space S, then the joint CDF of these variables
is

F(x1, .....,xn) = P(X1 ≤ x1, .....,Xn ≤ xn) ∀ x ∈ Rn

Proposition 2.1.1 — Properties of Joint CDF F(x,y).
1. F is non-decreasing in x: Fix y, ∀ x1 < x2, we have F(x1,y)≤ F(x2,y)
2. F is non-decreasing in y: Fix x, ∀ y1 < y2, we have F(x,y1)≤ F(x,y2)
3.

lim
x→−∞

F(x,y) = 0 and lim
y→−∞

F(x,y) = 0

4.
lim

(x,y)→(−∞,−∞)
F(x,y) = 0 and lim

(x,y)→(∞,∞)
F(x,y) = 1

Definition 2.1.2 — Marginal CDF of X,Y in F(x,y).
The marginal CDF of X

F1(x)︸ ︷︷ ︸
FX (x)

= lim
y→∞

F(x,y) = P(X ≤ x) ∀ x ∈ R
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and the marginal CDF of Y

F2(y)︸ ︷︷ ︸
FY (y)

= lim
x→∞

F(x,y) = P(Y ≤ y) ∀ y ∈ R

Note Given joint CDFs, we can find marginal CDFs but given marginal CDFs we cannot find joint CDFs.

It’s possible to have (X1,Y1) and (X2,Y2) s.t.

FX1(x) = FX2(x) and FY1(y) = FY2(y) but FX1,Y1(x,y) 6= FX2,Y2(x,y)

2.2 Bivariate Discrete Distributions

Definition 2.2.1 — Bivariate discrete random variables.
Let X ,Y be random variables on sample space S. IF ∃A ⊆ R2 s.t. A is countable and P((x,y) ∈ A) = 1,
then X ,Y are a pair of bivariate discrete random variables.

The joint probability (mass) function (joint pf/pmf)

f (x,y) = P(X = x,Y = y) ∀ (x,y) ∈ R2

and the joint support of (x,y) is
A =

{
(x,y) ∈ R2 : f (x,y)> 0

}

Proposition 2.2.1 — Properties of f(x,y).
1. f (x,y)≥ 0 ∀(x,y) ∈ R2

2. ∑
(x,y)∈A

f (x,y) = 1

3. For R⊆ R2, P((x,y) ∈ R) = ∑
(x,y)∈R

f (x,y)

� Example 2.1
P(X ≤ Y ) = P((x,y) ∈ R) for R =

{
(x,y) ∈ R2 : x≤ y

}

and
P(X +Y ≤ 1) = P((x,y) ∈ R) for R =

{
(x,y) ∈ R2 : x+ y≤ 1

}

�

Definition 2.2.2 — Joint pmf f (x,y) for (X ,Y ) random variables.
The marginal probability function of X :

f1(x)︸ ︷︷ ︸
fx(x)

= P(X = x) = ∑
all y

f (x,y) ∀ x ∈ R
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and marginal probability function of Y

f2(y)︸ ︷︷ ︸
fy(y)

= P(Y = y) = ∑
all x

f (x,y) ∀ y ∈ R

* want to get the marginal from joint, sum out variable you don’t want

� Example 2.2 Let X ,Y be discrete random variables with joint pmf

f (x,y) =

{
k(1− p)2 px+y if x,y ∈ N∪{0}
0 otherwise

with 0 < p < 1.

1. Find k
2. Find marginal pmfs
3. Find P(X ≤ Y )

Solution:
1. First, we note that f (x,y)≥ 0 =⇒ k ≥ 0 and

∞

∑
x=0

∞

∑
y=0

f (x,y) = 1 =⇒ k
∞

∑
x=0

∞

∑
y=0

(1− p)2 px py = 1

=⇒ k(1− p)2

(
∞

∑
x=0

px

)(
∞

∑
y=0

py

)
= 1

=⇒ k(1− p)2 · 1
1− p

· 1
1− p

= 1

=⇒ k = 1

2.

f1(x) =
∞

∑
y=0

(1− p)2 px+y = (1− p)2 px ·
∞

∑
y=0

py = (1− p)px for x ∈ N∪{0}

Similarly,

f2(y) =
∞

∑
x=0

(1− p)2 px+y = (1− p)2 py ·
∞

∑
x=0

px = (1− p)py for y ∈ N∪{0}

3. Note that

P(X ≤ Y ) =
∞

∑
x=0

∞

∑
y=x

(1− p)2 px+y = (1− p)2
∞

∑
x=0

px
∞

∑
y=x

py

and
∞

∑
y=x

py = px
∞

∑
y=0

py =
px

1− p

Then we have

P(X ≤ Y ) =
(1− p)2

1− p

∞

∑
x=0

p2x = (1− p) · 1
1− p2 =

1
1+ p

�



2.3 Bivariate continuous random variables 17

2.3 Bivariate continuous random variables

Definition 2.3.1 — Bivariate continuous random variables.

If F(x,y) is continuous and
∂ 2

∂x∂y
F(x,y) exists and is continuous except perhaps only finite number of

points. Then we say that X ,Y are bivariate continuous random variables and we define joint pdf (prob
density function) to be

f (x,y) =





∂ 2

∂x∂y
when it exists

0 otherwise

and the joint support is
A =

{
(x,y) ∈ R2 : f (x,y)> 0

}

Proposition 2.3.1 — Properties of joint pdf.
1. f (x,y)≥ 0 ∀ (x,y) ∈ R2

2.
∫

∞

−∞

∫
∞

−∞

f (x,y) = 1

3. P((x,y) ∈ R) =
∫

R
f (x,y)dxdy for R⊆ R2

� Example 2.3

P(X ≤ Y ) =
∫

x≤y
f (x,y)dxdy for R⊆ R2

�

2.4 Appendix 1 (provided by Lucy Gao)

When Can You Take Functions Outside Expectation?



When Can You Take Functions Outside Expectation?

Introduction

Let X be a random variable with E[X] = µ. A useful property of expectation is linearity, in the

sense that if g is a linear function defined by g(x) = ax+ b for some constant real numbers a and

b, then

E[g(X)] = E[ax+ b] = aE[x] + b = g(E[X]).

We will now discuss an important non-property of expectation. A non-property is a statement that

looks true that you may be tempted to use, but actually is not true. The reason that it looks true

is usually due to misapplication of analogy and/or guessing. The non-property is as follows:

E[g(X)] = g(E[X]), for any non-linear function g. (1)

This non-property is not always true. It is not always false. It is sometimes true

and sometimes false.

Examples

We will demonstrate this through a series of examples.

Example 1 Let X ∈ {1, 2} with P (X = 1) = P (X = 2) = 1
2 . Let g(x) = 1

x .

We can find E[X] in at least two ways. The first is by definition:

E[X] =
∑

x∈{1,2}
xP (X = x) = 1 · 1

2
+ 2 · 1

2
=

3

2
.

The second way is to notice that if Y ∼ Bernoulli(1/2), then Y +1 and X have the same distribution.

Therefore,

E[X] = E[Y + 1] = E[Y ] + 1 =
1

2
+ 1 =

3

2
.

It follows that

g(E[X]) =
1
3
2

=
2

3
.

We will now find E[g(X)]. By definition,

E[g(X)] = E[1/X] =
∑

x∈{1,2}

(
1

x

)
P (X = x) = 1 · 1

2
+

1

2
· 1

2
=

3

4
.

1



Thus, we have shown that
3

4
= E[g(X)] 6= g(E[X]) =

2

3
.

Example 2 Let X ∼ Uniform(0, 1). Let g(x) = − log(x). (Unless otherwise stated, when I write

log, I always mean the natural logarithm.)

We will find E[X] by definition:

E[X] =

∫ 1

0
xdx =

[
1

2
x2
]1

0

=
1

2
.

It follows that

g(E[X]) = − log

(
1

2

)
= log(2) ≈ 0.693.

We will now find E[g(X)]. By definition,

E[g(X)] = E[−log(X)] =

∫ 1

0
− log(x)dx = x(1− log(x))

∣∣
x=1
− lim

x→0
x(1− log(x)) = 1.

Thus, we have shown that

1 = E[g(X)] 6= g(E[X]) = 0.693.

Example 3 Let X ∈ {1, 2} with P (X = 1) = P (X = 2) = 1/2 and g(x) =





1
x , x 6= 3

2 ,

3
4 , x = 3

2

.

We already showed in Example 1 that E[X] = 3
2 in two different ways. Let’s try a third. Recall

that X and Y + 1 have the same distribution, where Y ∼ Bernoulli(1/2). The table of commonly

used distributions in the textbook tells you that Y has MGF MY (t) = 1
2e

t + 1
2 . It follows that the

MGF of Y + 1, which is given by:

MY+1(t) = E[e(Y+1)t] = etE[eY t] = et
(

1

2
et +

1

2

)
=

1

2
e2t +

1

2
et.

Since X and Y + 1 have the same distribution, and MGFs uniquely determine the distribution of a

random variable, we can say that the MGF of X is given by

MX(t) =
1

2
e2t +

1

2
et.

Finally,

E[X] = M ′
X(0) =

[
e2t +

1

2
et
]

t=0

= 1 +
1

2
=

3

2
.

So it follows that g(E[X]) = 3
4 . We will now calculate E[g(X)] by definition.

E[g(X)] =
∑

x∈{1,2}
g(x)f(x) = g(1)f(1) + g(2)f(2) = 1 · 1

2
+

1

2
· 1

2
=

1

2
+

1

4
=

3

4
.

2



This means that we have shown that

E[g(X)] = g(E[X]) =
3

4
.

Conclusion

What have we shown? We have shown that non-property (1) does not hold for g and X in Examples

1 and 2, but does hold for g and X in Example 3. So we have shown that when g is a non-linear

function, all bets are off – depending on what choice of g and X we take, we can sometimes take g

outside the expectation, and we can sometimes not take g outside the expectation.

However, note that Example 3 is extremely contrived. So if you really must guess whether

E[g(X)] = g(E[X]) or E[g(X)] 6= g(E[X]) for a random variable X and a non-linear function g, it

is safer to guess the latter than the former.

3



2.4 Appendix 1 (provided by Lucy Gao) 21

� Example 2.4 Let X ,Y be random variables with joint pdf

f (x,y) =

{
x+ y 0≤ x≤ 1, 0≤ y≤ 1

0 otherwise

Question 1: Is this a valid joint pdf?
Note that f (x,y)≥ 0, let’s check the following:

∫ 1

0

∫ 1

0
f (x,y)dxdy =

∫ 1

0

∫ 1

0
f (x,y)dydx =

∫ 1

0

∫ 1

0
(x+ y)dydx

=
∫ 1

0

[
xy+

1
2

y2
]1

0
dx

=
∫ 1

0
x+

1
2

dx

=

[
1
2

x2 +
1
2

x
]1

0

= 1

Therefore, f (x,y) is a valid pdf

Question 2: Find P
(
X ≤ 1

3 ,Y ≤ 1
2

)

P
(

X ≤ 1
3
,Y ≤ 1

2

)
=
∫ 1

3

0

∫ 1
2

0
(x+ y)dydx =

∫ 1
3

0

[
xy+

1
2

y2
] 1

2

0
dx =

∫ 1
3

0

[
1
2

x+
1
8

]
dx =

[
1
4

x2 +
1
8

x
] 1

3

0
=

5
72

Question 3: Find P
(
X +Y ≤ 1

2

)

P
(

X +Y ≤ 1
2

)
=
∫

x+y≤ 1
2

f (x,y)dxdy =
∫ 1

2

0

∫ 1
2−x

0
(x+ y)dydx

=
∫ 1

2

0

[
xy+

1
2

y2
] 1

2−x

0
dx

=
∫ 1

2

0
−1

2
x2 +

1
8

dx

=

[
−1

6
x3 +

1
8

x
] 1

2

0

=
1
24
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Question 4: Find P
(
XY ≤ 1

2

)

Solution 1:

P
(

XY ≤ 1
2

)
=
∫

xy≤ 1
2

f (x,y)dxdy =
∫ 1

2

0

∫ 1

0
(x+ y)dxdy+

∫ 1

1
2

∫ 1
2x

0
(x+ y)dxdy

Note that
∫ 1

2

0

∫ 1

0
(x+ y)dxdy =

3
8

and
∫ 1

1
2

∫ 1
2x

0
(x+ y)dxdy =

∫ 1

1
2

[
xy+

1
2

y2
] 1

2x

0
dx =

∫ 1

1
2

1
2
+

1
8x2 dx =

[
1
2

x− 1
8

x
]1

1
2

=
3
8

Then we have

P
(

XY ≤ 1
2

)
=
∫ 1

2

0

∫ 1

0
(x+ y)dxdy+

∫ 1

1
2

∫ 1
2x

0
(x+ y)dxdy =

3
8
+

3
8
=

3
4

Solution 2:

P
(

XY ≤ 1
2

)
= 1−P

(
XY >

1
2

)
= 1−

∫ 1

1
2

∫ 1

1
2y

(x+ y)dxdy

Note that
∫ 1

1
2

[
1
2

x2 + xy
]1

1
2y

dy =
∫ 1

1
2

y− 1
8y2 dy =

[
1
2

y2 +
1
8y

]1

1
2

=
1
4

Then we have

P
(

XY ≤ 1
2

)
= 1−P

(
XY >

1
2

)
= 1− 1

4
=

3
4

Question 5: Find the marginal pdf of X and Y .

fx(x) =
∫

∞

−∞

f (x,y)dy =
∫ 1

0
(x+ y)dy =

[
xy+

1
2

y2
]1

0
= x+

1
2

Then the marginal pdf of X is :

fx(x) =

{
x+ 1

2 0 < x < 1

0 otherwise

Similarly, the marginal pdf of Y is :

fy(y) =

{
y+ 1

2 0 < y < 1

0 otherwise

�
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� Example 2.5 Let X ,Y be continuous random variables with joint pdf:

f (x,y) =

{
ke−x−y 0 < x < y < ∞

0 otherwise

Question 1: What is k?

1 =
∫

∞

0

∫ y

0
f (x,y)dxdy =

∫
∞

0

∫ y

0
ke−x−ydxdy = k

∫
∞

0
e−y(1− e−y)dy = k

[
−e−y +

1
2

e−2y
]∞

0
=

k
2

Then we have

1 =
k
2

⇐⇒ k = 2

as desired.

Question 2: Find P
(
X ≤ 1

3 ,Y ≤ 1
2

)

P
(

X ≤ 1
3
,Y ≤ 1

2

)
=
∫ 1

3

0

∫ 1
2

x
2e−x−ydydx =

∫ 1
3

0

[
−2e−x−y] 1

2
x dx

=
∫ 1

3

0

[
−2e−x− 1

2 +2e−2x
]
dx

=
[
e−x− 1

2 − e−2x
] 1

3

0

= 1− e−
2
3 +2

(
e−

5
6 − e−

1
2

)

≈ 0.14

Question 3: Find P(X ≤ Y )

P(X ≤ Y ) =
∫

x≤y
f (x,y)dxdy = 1

Question 4: Find P(X +Y ≥ 1)

P(X +Y ≥ 1) = 1−P(X +Y < 1) = 1−
∫ 1

2

0

∫ 1−x

x
2e−x−ydydx

= 1−
∫ 1

2

0

[
−2e−x−y]1−x

x dx

= 1−
∫ 1

2

0

[
−2e−1 +2e−2x]dx

= 1−
[
−2e−1x− e−2x] 1

2
0

=
2
e
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Question 5: Find the marginal pdfs.

fx(x) =
∫

∞

x
2e−x−ydy = 2e−2x

for 0 < x < ∞. Then we have

fx(x) =

{
2e−2x 0 < x < ∞

0 otherwise

Similarly,

fy(y) =
∫ y

0
2e−x−ydx = 2e−y−2e−2y

for 0 < y < ∞, then we have

fy(y) =

{
2e−y−2e−2y 0 < x < ∞

0 otherwise

�

2.5 Independent Random Variables

Definition 2.5.1 — Independent.
Let X ,Y be two random variables, X is independent of Y if and only if for all A,B ∈ R

P(X ∈ A,Y ∈ B) = P(X ∈ A) ·P(Y ∈ B)

Theorem 2.5.1
Let X ,Y be random variables, if joint CDF F(x,y), marginal CDFs F1(x) and F2(y), then

X and Y are independent ⇐⇒ F(x,y) = F1(x) ·F2(y) ∀ (x,y) ∈ R2

Theorem 2.5.2
Let X ,Y be random variables, if joint pdf/pmf f (x,y), marginal pdfs/pmfs f1(x) and f2(y) with

A1 = {x ∈ R : f1(x)> 0} and A2 = {y ∈ R : f2(y)> 0}

Then
X and Y are independent ⇐⇒ f (x,y) = f1(x) · f2(y) ∀ (x,y) ∈ A1×A2
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� Example 2.6 Let X ,Y be discrete random variables with joint pmf

f (x,y) =

{
(1− p)2 px+y x,y ∈ N
0 otherwise

for 0 < p < 1. It’s easy to get that

f1(x) =

{
(1− p)px x ∈ N
0 otherwise

and f2(x) =

{
(1− p)py y ∈ N
0 otherwise

Are X ,Y independent?
Note that

f (x,y) = f1(x) f2(y)

Then by Theorem 2.5.2 we have X ,Y are independent. �

� Example 2.7 Let X ,Y be continuous random variables with joint pdf

f (x,y) =

{
x+ y 0 < x < 1 and 0 < y < 1

0 otherwise

It’s easy to see that

f1(x) =

{
x+ 1

2 0 < x < 1

0 otherwise
and f2(y) =

{
y+ 1

2 0 < t < 1

0 otherwise

Are X ,Y independent?
Note that

f1(x) f2(y) =
(

x+
1
2

)
·
(

y+
1
2

)
= xy+

x+ y
2

+
1
4
6= x+ y = f (x,y)

Then X ,Y are not independent. �

Theorem 2.5.3 — Factorization Theorem of Independence.
Let X ,Y are random variables with joint pdf/pmf f (x,y) and joint support A with support of x,y: A1,A2
respectively, then

X and Y are independent ⇐⇒ ∃ g(x)≥ 0, ∃ h(y)≥ 0 s.t. f (x,y) = g(x) ·h(y) ∀ (x,y) ∈ A1×A2

Notes for Theorem 2.5.3:
1. If =⇒ holds, then

marginal pdf/pmf of X: f1(x) ∝ g(x) ∀ x ∈ A1

and
marginal pdf/pmf of Y : f2(y) ∝ h(x) ∀ y ∈ A2

2. If A is not rectangular, then X ,Y must be dependent.
Proof: ∃(x,y) ∈ R2 s.t. x ∈ A1 and y ∈ A2 but (x,y) /∈ A, so f1(x), f2(y) > 0 with f (x,y) = 0, this is a
contradiction.
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� Example 2.8

f (x,y) =





θ x+ye−2θ

x!y!
x,y ∈ A = N∪{0}

0 otherwise

Are X ,Y independent?
Note that

f (x,y) =
θ x+ye−2θ

x!y!
=

θ x

x!
e−θ · θ

y

y!
e−θ ∀ (x,y) ∈ A×A

It’s easy to check

f1(x) =
θ x

x!
e−θ and f2(y) =

θ x

x!
e−θ

for x,y ∈ A. Then we have

f (x,y) = f1(x) · f2(y) ⇐⇒ X and Y are independent

�

� Example 2.9 Let X ,Y be continuous random variables with joint pdf

f (x,y) =





3
2

y(1− x2) −1 < x < 1, 0 < y < 1

0 otherwise

Are X and Y independent? By Theorem 2.5.3

f (x,y) =
3
2

y
︸︷︷︸
h(y)

(1− x2)︸ ︷︷ ︸
g(x)

=⇒ X and Y are independent

Note that ∃k1,k2 ∈ R s.t. f1(x) = k1g(x) and f2(y) = k2h(y). This gives us that

1 = k1 ·
∫ 1

−1
(1− x2)dx = k1 ·

4
3

⇐⇒ k1 =
3
4

and

1 = k2 ·
∫ 1

0

3
2

ydy = k2 ·
3
2
· 1

2
⇐⇒ k1 =

4
3

�
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� Example 2.10 Let X ,Y be continuous random variables with joint pdf

f (x,y) =





2
π

0 < x <
√

1− y2, −1 < y < 1

0 otherwise

Are X ,Y independent?
Note that the support

A =
{
(x,y) ∈ R : 0 < x <

√
1− y2,−1 < y < 1

}

is not rectangular, then X ,Y are not independent. �

Lemma 2.5.4
Let g,h be functions, if X ,Y are independent, then g(X) and h(Y ) are independent.

Note: The converse is not true.

Definition 2.5.2 — Joint Expectation.
Let X ,Y be bivariate discrete and let h(x,y) be a real valued function. If

∑
(x,y)∈A

|h(x,y)| f (x,y)< ∞

Then
E[h(X ,Y )] = ∑

(x,y)∈A
h(x,y) f (x,y)

Otherwise, we say that E[h(X ,Y )] DNE.

Let X ,Y be bivariate continuous and let h(x,y) be a real valued function. If
∫

∞

−∞

∫
∞

−∞

|h(x,y)| f (x,y)< ∞

Then
E[h(X ,Y )] =

∫
∞

−∞

∫
∞

−∞

h(x,y) f (x,y)

Otherwise, we say that E[h(X ,Y )] DNE.

� Example 2.11

E[XY ] =





∑
(x,y)∈A

xy f (x,y) if X ,Y are discrete

∫
∞

−∞

∫
∞

−∞

xy f (x,y)dxdy if X ,Y are continuous

provided that E[XY ] exists. �
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� Example 2.12 Let X ,Y be continuous random variables and E[X ] exists, then

E[X ] =
∫

∞

−∞

∫
∞

−∞

x f (x,y)dydx = displaystyle
∫

∞

−∞

()x · [
∫

∞

−∞

f (x,y)dy]dx =
∫

∞

−∞

x · f1(x)dx

�

Proposition 2.5.5 — Linearity.
Let a,b ∈ R and X ,Y be random variables, then

E[ag(X ,Y )+bh(X ,Y )] = aE[g(X ,Y )]+bE[h(X ,Y )]

Let a1, ...,an ∈ R and X1, ....,Xn be random variables, then

E

[
n

∑
i=1

ai ·Xi

]
=

n

∑
i=1

ai ·E[Xi]

Proposition 2.5.6
Let X1, ....,Xn be independent random variables and g1, ...,gn be functions, then

E

[
n

∏
i=1

gi(Xi)

]
=

n

∏
i=1

E[gi(Xi)]

Definition 2.5.3 — Covariance of X and Y .

Cov(X ,Y ) = E[(X−µx)(Y −µy)]

where µx = E[X ] and µy = E[Y ]. If Cov(X ,Y ) = 0, we say X and Y are uncorrelated

Proposition 2.5.7
1. Cov(X ,Y ) = E[XY ]−E[X ] ·E[Y ]
2. X and Y are independent =⇒ Cov(X ,Y ) = 0
3. Cov(X ,X) = Var[X ]
4. Var[aX +bY ] = a2 ·Var[X ]+b2 ·Var[Y ]+2ab ·Cov(X ,Y )
5.

Var

[
n

∑
i=1

aiXi

]
=

n

∑
i=1

a2
i Var[Xi]+∑

i6= j
aia j ·Cov(Xi,X j)

6. If X1, ....,Xn are independent,

Var

[
n

∑
i=1

aiXi

]
=

n

∑
i=1

a2
i Var[Xi]

7. Cov(X +Y,Z) =Cov(X ,Z)+Cov(Y,Z)
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� Example 2.13 Let X ,Y be random variables with joint pdf

f (x,y) =

{
x+ y 0 < x < 1, 0 < y < 1

0 otherwise

Since
Var[X +Y ] = E

[
(X +Y −E[X +Y ])2]

Then by properties of variance we have

Var[X +Y ] = Var[X ]+Var[Y ]+2Cov(X ,Y )

Note that

f1(x) =

{
x+ 1

2 0 < x < 1

0 otherwise
and f2(y) =

{
y+ 1

2 0 < t < 1

0 otherwise

then

E[X ] =
∫ 1

0
x
(

x+
1
2

)
dx =

7
12

= E[Y ] and E[X2] =
∫ 1

0
x2
(

x+
1
2

)
dx =

5
12

= E[Y 2]

so we have
Var[X ] = Var[Y ] = E[X2]− (E[X ])2 =

11
144

Note that

E[XY ] =
∫

∞

−∞

∫
∞

−∞

xy f (x,y)dxdy =
∫ 1

0

∫ 1

0
xy(x+ y)dxdy =

1
3

Then we have
Cov(X ,Y ) = E[XY ]−E[X ]E[Y ] =− 1

144
Hence,

Var[X +Y ] = Var[X ]+Var[Y ]+2Cov(X ,Y ) =
20
144

as desired. �

Definition 2.5.4 — Correlation Coefficient.

ρ(X ,Y ) =
Cov(X ,Y )√

Var[X ]
√

Var[Y ]

* The measure of linear association between X and Y

Theorem 2.5.8

−1≤ ρ(X ,Y )≤ 1

Note:
1. If ρ(X ,Y ) = 1, then Y = aX +b for some a > 0 and b ∈ R
2. If ρ(X ,Y ) =−1, then Y = aX +b for some a < 0 and b ∈ R
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� Example 2.14 Let Z ∼ N(0,1), X = Z and Y = Z2, then ρ(X ,Y ) = 0 because there is no linear relation-
ship between X and Y . �

� Example 2.15 Let X ,Y be random variables with joint pdf

f (x,y) =

{
x+ y 0 < x < 1, 0 < y < 1

0 otherwise

Since
Var[X ] = Var[Y ] =

11
144

and Cov(X ,Y ) =− 1
144

Then we have

ρ(X ,Y ) =
Cov(X ,Y )√

Var[X ]
√

Var[Y ]
=− 1

11

as desired. �

2.6 Conditional Distributions

Definition 2.6.1 — Discrete Conditional Distributions.
Let X ,Y be bivariate discrete random variables with joint pdf f (x,y), then

1. The conditional pdf of X given Y = y is

f1(x | y) =
f (x,y)
f2(y)

= P(X = x | Y = y) where f2(y) is the pmf of y with f2(y)> 0

2. Conditional pdf of Y given X = x is

f2(y | x) =
f (x,y)
f1(x)

= P(Y = y | X = x) where f1(x) is the pmf of x with f1(x)> 0

Proposition 2.6.1

f1(x | y)≥ 0 , ∑
x

f1(x | y) = 1 and f2(y | x)≥ , ∑
y

f2(y | x) = 1

Definition 2.6.2 — Continuous Conditional Distributions.
Let X ,Y be bivariate continuous random variables with joint pdf f (x,y), then

1. The conditional pdf of X given Y = y is

f1(x | y) =
f (x,y)
f2(y)

where f2(y) is the pmf of y with f2(y)> 0
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2. Conditional pdf of Y given X = x is

f2(y | x) =
f (x,y)
f1(x)

where f1(x) is the pmf of x with f1(x)> 0

Note:

P(Y ≤ y | X = x) =
∫ y

−∞

f2(t | x)dt

P(X ≤ x | Y = y) =
∫ y

−∞

f1(t | y)dt

Proposition 2.6.2

f1(x | y)≥ 0 ,
∫

∞

−∞

f1(x | y)dx = 1 and f2(y | x)≥ 0 ,
∫

∞

−∞

f2(y | x)dy = 1

� Example 2.16

f (x,y) =

{
8xy 0 < y < x < 1

0 otherwise

Find f1(x | y) and f2(y | x)
Note that

f1(x) =
∫ x

0
8xy dy = 4x3 with 0 < x < 1 and f2(y) =

∫ 1

y
8xy dx = 4y−4y3 with 0 < y < 1

Then we have

f1(x | y) =
f (x,y)
f2(y)

=
8xy

4y−4y3 =
8x

4− y3 with 0 < y < x < 1

f2(y | x) =
f (x,y)
f1(x)

=
8xy
4x3 =

2y
x2 with 0 < y < x < 1

�

� Example 2.17

f (x,y) =

{
(1− p)2 px+y x,y ∈ A = N∪{0}
0 otherwise

Is X and Y independent?
Note that

f1(x) = (1− p)px with x ∈ A and f2(y) = (1− p)py with y ∈ A

and we also have

f1(x | y) =
f (x,y)
f2(y)

= (1− p)px with x ∈ A and f2(y | x) =
f (x,y)
f1(x)

= (1− p)py with y ∈ A

Then we have

f1(x | y) · f2(y | x)= (1− p)2 px+y = f (x,y)=
f (x,y)
f1(x)

· f (x,y)
f2(y)

=⇒ f1(x) · f2(y)= f (x,y) ∀ (x,y)∈A×A

Hence, X and Y are independent. �
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Theorem 2.6.3
Let X and Y are random variables with marginal pdfs/pmfs f1(x), f2(y), marginal support A1 and A2,
conditional pmfs/pdfs f1(x | y) and f2(y | x). Then

X and Y are independent ⇐⇒ f1(x | y) = f1(x) and f2(y | x) = f2(y) ∀ x ∈ A1 , y ∈ A2

Proposition 2.6.4 — Product Rule.

f (x,y) = f1(x | y) · f2(y) = f2(y | x) · f1(x)

� Example 2.18 Let Y ∼ Poi(λ ) and X | Y = y∼ Bin(y, p), what’s the distribution of X?

Let A = N∪{0}, note that

f2(y) =
λ ye−λ

y!
with y ∈ A and f1(x | y) =

(
y
x

)
px(1− p)y−x with x = 0,1, ...,y

Then we have

f (x,y) = f1(x | y) · f2(y) =
(1− p)y−xλ y

(y− x)!
with y ∈ A and x = 0,1., , , ,y

This gives us that

f1(x) = ∑
y

f (x,y) =
∞

∑
y=x

pxe−λ

x!
· (1− p)y−xλ y

(y− x)!
=

pxe−λ

x!
·

∞

∑
y=x

(1− p)y−xλ y

(y− x)!

=
pxe−λ λ x

x!
·

∞

∑
y=x

(1− p)y−xλ y−x

(y− x)!

=
pxe−λ λ x

x!
· eλ (1−p)

=
(pλ )xe−pλ

x!

Therefore, we have X ∼ Poi(pλ ) �
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� Example 2.19 Let Y ∼ Gamma(α,1), f2(y) =
yα−1

Γ(α)e
−y with y > 0 and f1(x | y) = ye−xy with x,y > 0.

Find f1(x)

Note that

f (x,y) = f1(x | y) = f2(y) =
yα

Γ(α)
e−(x+1)y

Since

Γ(α) =
∫

∞

0
xα−1e−xdx and Γ(α +1) = αΓ(α)

then we have

f1(x) =
∫

∞

0

yα

Γ(α)
e−(x+1)ydy =

∫
∞

0

(
t

x+1

)α

· 1
Γ(α)

e−t · 1
x+1

dt

=
1

(x+1)α+1Γ(α)

∫
∞

0
tαe−tdt

︸ ︷︷ ︸
=Γ(α+1)

=
α

(x+1)α+1

for x > 0 as desired. �

2.7 Appendix 2 (provided by Lucy Gao)

Relationship Between Covariance and Independence



Relationship Between Uncorrelated and Independence

We saw in Lecture 7 that if X and Y are independent, then Cov(X,Y ) = 0, i.e. X and Y are

uncorrelated. This is true because:

Cov(X,Y ) = E[XY ]− E[X]E[Y ],

and when X and Y are independent, E[XY ] = E[X]E[Y ]. This may lead you to wonder about

the converse – are uncorrelated random variables independent? Unfortunately, this is another

non-property – not all uncorrelated random variables are independent, as the following example

demonstrates.

A Cautionary Example – Uncorrelated May Not Mean Independent

Let X be a non-constant continuous random variable with a symmetric probability density function

(pdf), i.e. f(x) = f(−x) for all x ∈ R. For example, you could imagine that X ∼ N(0, 1) or

X ∼ Uniform(−1, 1). Let Y = X2.

First, we will show that X and Y = X2 are uncorrelated. We write:

Cov(X,Y ) = E[XY ]− E[X]E[Y ] = E[X3]− E[X]E[X2]. (1)

Since X has a symmetric pdf, for p odd, we have

E[Xp] =

∫ ∞

−∞
xpf(x)dx

=

∫ 0

−∞
xpf(x)dx +

∫ ∞

0
xpf(x)dx

=

∫ 0

−∞
xpf(−x)dx +

∫ ∞

0
xpf(x)dx

= −
∫

0∞
xpf(x)dx +

∫ ∞

0
xpf(x)dx

= 0.

Thus, E[X3] = 0 and E[X] = 0 in (1), which means that Cov(X,Y ) = 0.

However, X and Y are not independent – they are dependent! One way to see this is to observe

that their joint support is {(x, x2) : x ∈ A}, where A is the support of X, which is not a rectangle

parallel to the x and y axes when A 6= ∅.

1



Correctly Characterizing Independence With Expectations

We have demonstrated that Cov(X,Y ) = 0 does not imply that X and Y are independent. That

is, E[XY ] = E[X]E[Y ] does not imply that X and Y are independent. You might now ask – is

there a correct way to chacterize independence between two random variables with expectations?

As it turns out, there is.

Theorem. X and Y are independent if and only if E[g(X)h(Y )] = E[g(X)]E[h(Y )] for all func-

tions g(·) and h(·).

The (⇒) direction follows from the fact that X and Y are independent if and only if their

joint pdf factorizes into the product of their marginal pdfs. We can prove the (⇐) direction by

contradiction. Suppose that

E[g(X)h(Y )] = E[g(X)]E[h(Y )] for all functions g(·) and h(·), (2)

but X and Y are dependent. Then, there exists some set A in the support of X and some set B in

the support of Y such that

P (X ∈ A, Y ∈ B) 6= P (X ∈ A)P (Y ∈ B). (3)

But if we consider g(x) =





1, x ∈ A,

0, x 6∈ A
and h(y) =





1, y ∈ B,

0, y 6∈ B
, then we have by (2) that

P (X ∈ A, Y ∈ A) = P (X ∈ A)P (Y ∈ A).

(If this is surprising to you, please see the first recap session on Friday.) This contradicts (3), so X

and Y are independent.

Conclusion

The key takeaway here is that uncorrelated random variables may not be independent. This is be-

cause whether two random variables are uncorrelated relies solely on whether E[XY ] = E[X]E[Y ].

This is not enough to ensure independence – we would need E[g(X)h(Y )] = E[g(X)]E[h(Y )] for

all functions g(·) and h(·) in order to guarantee independence, which is a much stronger condition.

2



36 Chapter 2. Multivariate Random Variables - I

2.8 Conditional Expectation

Definition 2.8.1
For a function g, the conditional expectation of g(Y ) given X = x is

E[g(Y ) | X = x] =





∑
all y

g(y) · f2(y | x) if Y is discrete random variable

∫
∞

−∞
g(y) · f2(y | x) if Y continuous random variable

unless ∑
all y

g(y) · f2(y | x) does not converge in which case E[g(Y ) | X = x] is DNE
(∫

∞

−∞

)
. The E[g(X) |

Y = y] is similarly.

Note:
1. g(y) = y, E[Y | X = x] is called conditional mean
2. g(y) = (y−E[Y | X = x])2 implies

Var[Y | X = x] = E
[
(y−E[Y | X = x])2 | X = x

]
= E[Y 2 | X = x]− [E[Y | X = x]]2

is called conditional variance.

� Example 2.20

f (x,y) =

{
8xy 0 < y < x < 1

0 otherwise

and we have

f1(x | y) =
f (x,y)
f2(y)

=
8xy

4y−4y3 =
8x

4− y3 with 0 < y < x < 1

f2(y | x) =
f (x,y)
f1(x)

=
8xy
4x3 =

2y
x2 with 0 < y < x < 1

Find E[X | Y = y] and Var[X | Y = y]

E[X | Y = y] =
∫

∞

−∞

x · f1(x | y)dx =
∫ 1

y

8x2

4−4y2 dx =
2
3
· 1− y3

1− y2 for 0 < y < 1

E[X2 | Y = y] =
∫

∞

−∞

x2 · f1(x | y)dx =
∫ 1

y

2x2

1− y2 dx =
1
2
(
1+ y2)

Therefore, we have

Var[X | Y = y] = E[X2 | Y = y]− (E[X | Y = y])2 =
1
2
(
1+ y2)− 4

9

(
1− y3

1− y2

)2

for 0 < y < 1

as desired. �
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Proposition 2.8.1
If X ,Y are independent, then for all functions g,h:

E[g(X) | Y = y] = E[g(X)] and E[h(Y ) | X = x] = E[h(Y )]

Proposition 2.8.2 — Substitution Rule.

E[h(X ,Y ) | X = x] = E[h(x,Y ) | X = x]

For example:
E[X +Y | X = x] = E[x+Y | X = x] = x+E[Y | X = x]

E[XY | X = x] = E[xY | X = x] = xE[Y | X = x]

Theorem 2.8.3 — Double-Expectation Formula.
Let g be a function and X ,Y be random variables, then

E[E[g(X) | Y ]] = E[g(X)]

Proof (continuous case):

E[E[g(X) | Y ]] = E
[∫

∞

−∞

g(x) f1(x | y)dx
]
=
∫

∞

−∞

[∫
∞

−∞

g(x) f1(x | y)dx
]

f2(y)dy

=
∫

∞

−∞

∫
∞

−∞

g(x) f1(x | y) f2(y)dxdy

=
∫

∞

−∞

∫
∞

−∞

g(x) f (x,y)dxdy

=
∫

∞

−∞

∫
∞

−∞

g(x) f (x,y)dydx

=
∫

∞

−∞

g(x)
[∫

∞

−∞

f (x,y)dy
]

dx

=
∫

∞

−∞

g(x) f1(x)dx

= E[g(X)]

� Example 2.21 Let Y ∼ Poi(λ ) and X | Y = y∼ Bin(y, p). Then

E[X | Y = y] = yp =⇒ E[X | Y ] = pY

By Double-Expectation Formula

E[E[X | Y ]] = E[pY ] = pE[Y ] = pλ = E[X ]

Then we have X ∼ Poi(pλ ) �
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Proposition 2.8.4

Var[Y ] = E[Var[Y | X ]]+Var[E[Y | X ]]

� Example 2.22 Let Y ∼ X = x∼ Bin(x, p) and X ∼ Poi(λ ). Then

Var[Y | X = x] = xp(1− p) =⇒ Var[Y | X ] =X p(1− p) =⇒ E[Var[Y | X ]] =E[X p(1− p)]= p(1− p)λ

and

E[Y | X = x] = xp =⇒ E[Y | X ] = X p =⇒ Var[E[Y | X ]] = Var[X p] = p2Var[X ] = p2
λ

Therefore, we have

Var[Y ] = E[Var[Y | X ]]+Var[E[Y | X ]] = p(1− p)λ + p2
λ = λ p

�

2.9 Joint MGFs

Definition 2.9.1
Let X1....Xn be random variables, if E

[
e∑

n
i=1 tiXi

]
exists ∀ti ∈ (−hi,hi) with some hi > 0. Then

M(t1, ...., tn) = E
[
e∑

n
i=1 tiXi

]
∀ t1, .... tn s.t. E

[
e∑

n
i=1 tiXi

]
exists

is called the joint MGF

Proposition 2.9.1
Given M(t1, t2), then

MX(t1) = M(t1,0) = E[et1X+0·Y ] = E[et1X ]

and
MY (t2) = M(0, t2) = E[e0·X+t2Y ] = E[et2Y ]

Proposition 2.9.2
Let X1, .....,Xn be random variables with joint MGF M(t1, t2), then

X1, .....,Xn are independent ⇐⇒ M(t1, ....., tn) =
n

∏
i=1

MXi(ti)
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� Example 2.23 Let X ,Y be continuous random variables with joint pdf:

f (x,y) =

{
e−x−y x > 0, y > 0

0 otherwise

Then
E[et1X+t2Y ] =

∫
∞

−∞

∫
∞

−∞

et1x+t2y f (x,y)dxdy =
∫

∞

−∞

ey(t2−1)dy
︸ ︷︷ ︸
<∞ when t2 < 1

∫
∞

−∞

ex(t1−1)dx
︸ ︷︷ ︸
<∞ when t1 < 1

Then, E[et1X+t2Y ] exists, so

M(t1, t2) = E[et1X+t2Y ] =

[∫
∞

−∞

ey(t2−1)dy
][∫

∞

−∞

ex(t1−1)dx
]
=

1
(1− t1)(1− t2)

for all t1, t2 < 1. Then we have

MX(t1) = M(t1,0) =
1

1− t1
∀ t1 < 1

and
MY (t2) = M(0, t2) =

1
1− t2

∀ t2 < 1

This gives us that

M(t1, t2) = MX(t1)MY (t2) =⇒ X and Y are independent

�

� Example 2.24 Let X ∼ Poi(λ1) and Y ∼ Poi(λ2) and X ,Y are independent. Show what X +Y ∼ Poi(λ1 +
λ2)
Note that

M(t1, t2) = MX(t1)MY (t2) = eλ1(et1−1)eλ2(et2−1) = eλ1(et1−1)+λ2(et2−1)

Also we have
M(t, t) = E[etX+tY ] = E[et(X+Y )] = eλ1(et−1)+λ2(et−1) = e(λ1+λ2)(et−1)

which is the MGF of Poi(λ1 +λ2). Since MGF are uniquem then X +Y ∼ Poi(λ1 +λ2) �
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3.1 Multinomial Distribution

Definition 3.1.1 — Multinomial Distribution.
Let (X1, ....,Xk) be discrete random variables with joint pmf

f (x1, ....,xk) =





n!
x1!x2!...xl!

px1
1 ....pxk

k where
k

∑
i=1

xi = n

0 otherwise

for 0 < pi < 1 with
k

∑
i=1

pi = 1. We say (X1, ....,Xk)∼Mult(n, p1, ..., pk)

Proposition 3.1.1
Let (X1, ...,Xk)∼Mult(n, p1, ..., pk)
1. Joint MGF:

M(t1, ..., tk) = E
[
et1X1+...+tkXk

]
=
(

p1et1 + ....+ pketk
)n ∀ (t1, ..., tk) ∈ Rk

To prove: (x1 + ...+ xm)
n = ∑

k1+...+km=n

n!
k1!...km!

xk1
1 ....xkm

m

2. Xi ∼ Bin(n, pi) for i = 1, ...,k
Proof:

MXi(ti) = M(0,0, ..., ti, ..,0,0) =

(
pieti +∑

j 6=i
p j

)n

= (pieti +1− pi)
n
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which is the MGF of Bin(n, pi)

3. T = Xi +X j with i 6= j, then T ∼ Bin(n, pi + p j).
Reason:

MT (t) = E
[
et(Xi+X j)

]
= M(0, ...., ti, ..., t j, ...,0)

is the MGF of Xi +X j.

4. E[Xi] = npi and Var[Xi]npi(1− pi), Cov(Xi,X j) =−npi p j.
Proof for Cov(Xi,X j): Note that Xi +X j ∼ Bin(n, pi + p j) with i 6= j and

Var[Xi +X j] = n(pi p j)(1− p j− pi)

. Then

n(pi p j)(1− p j− pi) = Var[Xi +X j] =Cov(Xi +X j,Xi +X j)

=Cov(Xi,X j)+Cov(X j,Xi)+Cov(Xi,Xi)+Cov(X j,X j)

= 2Cov(X j +Xi)+Var[Xi]+Var[X j]

= 2Cov(X j +Xi)+npi(1− pi)+np j(1− p j)

so we rearrange it to get Cov(Xi,X j) =−npi p j

5. Xi | X j = x j ∼ Bin(n− x j,
pi

1−p j
)

6. Xi | X j +Xi = t ∼ Bin(t, pi
pi+p j

)

3.2 Bivariate Normal Distribution

Definition 3.2.1 — Bivariate Normal Distribution.
The Bivariate Normal Distribution is defined as~x∼ BV N

(
~µ,∑

)
where

~x =
[

x1
x2

]
~µ =

[
µ1
µ2

]
∑ =

[
σ2

1 ρσ1σ2
ρσ1σ2 σ2

2

]

where µi ∈ R, σi > 0 for i = 1,2 and −1 < ρ < 1

f (~x) = f (x1,x2) =
1

2π(|∑|) 1
2

e−
1
2 (~x−~µ)T

∑
−1(~x−~µ)T

=
1

2πσ1σ2
√

1−ρ2
e
− 1

2(1−ρ2)

[
(x1−µ1)

2

σ2
1

+
(x2−µ2)

2

σ2
2
− 2ρ(x1−µ1)(x2−µ2)

σ1σ2

]

∀~x ∈ R2

Proposition 3.2.1
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1. X1 and X2 have joint MGF:

M(t1, t2) = E[et1x1+t2x2 ] = e
~tT~µ +

1
2
~tT

∑~t
∀ t = [t1, t2]T ∈ R2

2. X1 ∼ N(µ1,σ
2
1 ) and X2 ∼ N(µ2,σ

2
2 )

3.
X2 | X1 = x1 ∼ N(µ2 +ρσ2σ

−1
1 (x1−µ1),σ

2
2 (1−ρ

2))

X1 | X2 = x2 ∼ N(µ1 +ρσ2σ
−1
2 (x2−µ2),σ

2
1 (1−ρ

2))

4.
∀ 0 6=~c ∈ R2 ~cT~X = c1X1 + c2X2 ∼ N

(
~cT~µ,~cT

∑~c
)

∀ A ∈ R2×2 with |A| 6= 0, ∀~b ∈ R2 A~X +~b∼ BV N
(

A~µ +~b,A∑AT
)

5. E[Xi] = µi, Var[Xi] = σ2
i for i = 1,2. Cov(X1,X2) = ρσ1σ2, Corr(X1,X2) = ρ .

Proof for Cov(X1,X2): Note that

E[X1X2 | X1 = x1] = E[x1X2 | X1 = x1] = x1E[X2 | X1 = x1] = x1(µ2 +ρσ2σ
−1
1 (x1−µ1))

Then we have E[X1X2 | X1] = X1(µ2 +ρσ2σ
−1
1 (X1−µ1)), so that

E[X1X2] = E[E[X1X2 | X1]] = E[X1(µ2 +ρσ2σ
−1
1 (X1−µ1))]

= µ2E[X1]+ρσ2σ
−1
1 E[X2

1 ]−ρσ2σ
−1
1 E[X1]µ1

= µ1µ2 +ρσ1σ2

Therefore, we have

Cov(X1,X2) = E[X1X2]−E[X1]E[X2] = µ1µ2 +ρσ1σ2−µ1µ2 = ρσ1σ2

as desired.

6. Cov(X1,X2) = 0 ⇐⇒ ρ = 0 ⇐⇒ X1 and X2 are independent. (in BVN only)

Proposition 3.2.2
Let X1 ∼ N(µ1,σ

2
1 ) and X2 ∼ N(µ2,σ

2
2 ), if X1 and X2 are independent, then

[
x1
x2

]
∼ BV N

([
µ1
µ2

]
,

[
σ2

1 0
0 σ2

2

])

Proof:

f (x1,x2) = f1(x1) f2(x2) =
1

2π

√
σ2

1 σ2
2

e−
1

2σ1
(x1−µ1)

2− 1
2σ2

(x2−µ2)
2
=

1

2π

√
σ2

1 σ2
2

e−
1
2 (~x−~µ)T

∑
−1(~x−~µ)

3.3 Appendix 3 (provided by Lucy Gao)



Is Marginally Normally Distributed Enough to Conclude That
Uncorrelated = Independent?

Recall from the week 4 reading that in general, if all you know is that two random variables are

uncorrelated, you cannot safely conclude that they are independent. However, we saw in Lecture

11 that the bivariate normal distribution has a very special property: if the joint distribution of

X1 and X2 is bivariate normal, and Cov(X1, X2) = 0, then X1 and X2 are independent.

If all you remember is that “in the special case of normality, uncorrelated and independent are

the same”, then it is unfortunately easy to fall into the trap of a non-property:

Non-Property. Suppose that X1 ∼ N(µ1, σ
2
1) and X2 ∼ N(µ2, σ

2
2). Then, Cov(X1, X2) = 0

implies that X1 and X2 are independent.

We will proceed to debunk this non-property through a cautionary example.

A Cautionary Example

Suppose that X1 ∼ N(0, 1). Define P (W = 1) = 1/2 and P (W = −1 = 1/2). (This is called the

Rademacher distribution.) Suppose that W and X1 are independent, and let X2 = X1W .

We will first show that X2 ∼ N(0, 1). Observe that for any t ∈ R,

P (X2 ≤ t) = P (X1W ≤ t)
= P (X1 ≤ t,W = 1) + P (X1 ≥ −t,W = −1)

= P (X1 ≤ t)P (W = 1) + P (X1 ≥ −t)P (W = −1)

= (P (X1 ≤ t) + P (X1 ≥ −t))/2
= 2P (X1 ≤ t)/2 = P (X1 ≤ t),

where the third equality follows from independence of W and X1, and the last equality follows from

the symmetry of the normal pdf. Thus, the CDF of X2 is the CDF of a N(0, 1) distribution, and

so X2 ∼ N(0, 1).

We will now show that Cov(X1, X2) = 0. Observe that

Cov(X1, X2) = E[X1X2]− E[X1]E[X2] = E[X2
1W ]− 0 = E[X2

1 ]E[W ] = E[X2
1 ]0 = 0,

where the third equality follows from independence of W and X1.

Finally, we will show that X1 and X2 are dependent. Recalling the definition of independence

1



as P (X1 ∈ A,X2 ∈ B) = P (X1 ∈ A)P (X2 ∈ B) for any set A,B ⊆ R, it suffices to show that

P (X1 ≤ t,X2 ≤ t) 6= P (X1 ≤ t)P (X2 ≤ t)

for any t > 0. We now do so. Let t > 0. Then,

P (X1 ≤ t,X2 ≤ t)
= P (X1 ≤ t,X1W ≤ t)
= P (−t ≤ X1 ≤ t,W = −1) + P (X1 ≤ t,W = 1)

= P (W = −1)P (−t ≤ X1 ≤ t) + P (W = 1)P (X1 ≤ t)

=
1

2
(P (−t ≤ X1 ≤ t) + P (X1 ≤ t))

=
1

2
(2P (X1 ≤ t)− P (X1 ≤ −t))

= P (X1 ≤ t)−
1

2
P (X1 ≤ −t)

= P (X1 ≤ t)−
1

2
(1− P (X1 ≤ t)) (by symmetry of normal pdf)

=
3

2
P (X1 ≤ t)−

1

2
.

However,

P (X1 ≤ t)P (X2 ≤ t) =
3

2
P (X1 ≤ t)−

1

2
.

Since we showed that X1, X2 ∼ N(0, 1), P (X1 ≤ t) = P (X2 ≤ t) and so we have

P (X1 ≤ t)2 −
3

2
P (X1 ≤ t) +

1

2
= 0.

This is a quadratic equation in P (X1 ≤ t) which has two roots: one at P (X1 ≤ t) = 1/2, and

one at P (X1 ≤ t) = 1. The latter cannot be satisfied for any t < ∞, so this is only satisfied for

P (X1 ≤ t) = 1/2, which cannot be the case for our choice of t, since we assumed that t > 0. Thus,

we have shown that X1 and X2 are dependent!

Conclusion

The key takeaway here is that you really need bivariate normality in order to conclude that

uncorrelated implies independent – marginal normality is not enough.

2
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3.4 Finding Distribution of Multivariate Random Variables

Three Methods to Find the Distribution of Y = h(X1, ....,Xn) where X1, ...,Xn are Random Variables:

1. CDF technique
2. One to one Transformation Theorem (continuous only)
3. MGF technique

Method 1 - CDF Techniques Goal: Find CDF and/or pdf/pmf of Y = h(X1, ....,Xn)

Discrete Case:
For all y ∈ R,

fY (y) = P(Y = y) = P(h(X1, ...,Xn) = y)

= P((x1, ...,xn) ∈ {(x1, ....,xn) : h(x1, ...,xn) = y})
= ∑

(x1,....,xn):h(x1,...,xn)=y
P(X1 = x1, ....,Xn = xn)

so for all y ∈ R,

FY (y) = P(Y ≤ y) = ∑
t:t≤y

fY (y)

� Example 3.1 Let Y = X2

fX(x) =





1
4 if |x|= 1
1
2 if x = 0

0 otherwise

then we have

P(Y = y) = P(X2 = y) =





P(X =
√

y)+P(X =−√y) if y > 0

P(X = 0) if y = 0

0 if y < 0

=





1
2 if y = 1
1
2 if y = 0

0 otherwise

Therefore, Y ∼ Bernouli(1
2) �
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Continuous Case:
1. ∀ y ∈ R, find Ry = {(x1, ...,xn) : h(x1, ...,xn)≤ y}
2. Find CDF pf Y : ∀ y ∈ R,

FY (y) = P(Y ≤ y) = P(h(X1, ...,Xn)≤ y) = P((X1, ...,Xn) ∈ Ry) =
∫

Ry

f (x1, ....,xn)

3. Find the pdf of Y : fY (y) = F ′Y (y)

� Example 3.2 Let X ∼ Exp(θ) and

Y = F(X) =

{
0 if x≤ 0

1− e−
X
θ if x > 0

1. ∀ y ∈ R, find Ry = {x : F(x)≤ y}:

Ry =





/0 if y≤ 0

{x : x≤ 0} if y = 0

R if y≥ 1

{x : x≤ 0}∪{x > 0 : x≤−θ log(1− y)} if 0 < y < 1

Then we have

Fy(y) =





0 if y≤ 0

0 if y = 0

1 if y≥ 1

P(X ≤−θ log(1− y)) if 0 < y < 1

=





0 if y≤ 0

y if 0 < y < 1

1 if y≥ 1

so we see that Y ∼Uni f (0,1), the pdf is trivial. �

� Example 3.3 Let X ∼ N(0,1) and Y = X2

1. ∀ y ∈ R

Ry =
{

x : x2 ≤ y
}
=

{
/0 if y < 0[
−√y,

√
y
]

if y≥ 0

2.

FY (y) = P(X ∈ Ry) =

{
0 if y < 0

P
(
X ∈

[
−√y,

√
y
])

if y≥ 0
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3.

fY (y) = F ′Y (y) = F ′X(
√

y)
1

2
√

y
−F ′X(−

√
y)
(
− 1

2
√

y

)

=
1

2
√

y
( fX(
√

y)+ fX(−
√

y))

=
1

2
√

y
2√
2π

e−
y
2

=
1√
2π

y−
1
2 e−

y
2

︸ ︷︷ ︸
pdf of χ2

1

for y > 0

so we have y∼ χ2
1 �

� Example 3.4 Let X1,X2 ∼Uni f (0,1) and i.i.d, so

f (x1,x2) =

{
1 if 0 < x1 < 1, 0 < x2 < 1

0 otherwise

Now we let Y = X1 +X2 and A = (0,1)× (0,1)

Then, we can immediately get that

FY (y) =





0 if y≤ 0
y2

2 if 0 < y≤ 1

1− (2−y)2

2 if 1≤ y < 2

1 if y≥ 2

and fY (y) =





y if 0 < y≤ 1

2− y if 1≤ y < 2

0 otherwise

�

� Example 3.5 Let Xi ∼ Uni f (0,θ) be i.i.d for 1 ≤ i ≤ n. Find the distribution of X(n) = max
1≤i≤n

Xi and

X(1) = min
1≤i≤n

Xi

FX(n) = P(X(n) ≤ y) = P(Xi ≤ y , ∀ 1≤ i 6= n) =
n

∏
i=1

P(Xi ≤ y) = [F(y)]n =





0 if y≤ 0
( y

θ

)n if 0 < y≤ θ

1 if y > θ

and

fX(n)(y) =

{
n

θ n yn−1 if 0 < y < θ

0 otherwise
Note that

P(X(1) ≤ y) = 1−P(X(1) > y) = 1−P(Xi > y ∀ 1≤ i≤ n) = 1−
n

∏
i=1

P(Xi > y) = 1−
n

∏
i=1

(1−P(Xi ≤ y))

so similarly, we have

FX(1) =





0 if y≤ 0

1−
(
1− y

θ

)n if 0 < y≤ θ

1 if y > θ

and fX(1)(y) =

{
n
θ

(
1− y

θ

)n−1 if 0 < y < θ

0 otherwise

�
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3.5 One to One Transformation

Special Case:
1. n = 1, X is continuous with support A
2. h is 1−1 on A, that is for all x1,x2 ∈ A,h(x1) = h(x2) =⇒ x1 = x2

Theorem 3.5.1 — (Univariate) One to One Transformation Theorem.
If X is continuous with support A and h(x) is a one-to-one function on A, then the pdf of Y = h(X) is

fY (y) =





fX(h−1(y)) ·
∣∣∣ d

dy h−1(y)
∣∣∣ if y ∈ {h(x) : x ∈ A}

0 otherwise

where h−1 satisfies h−1(h(x)) = x for all x ∈ A

Proof: Apply CDF technique

� Example 3.6 Let X be a random variable with

fX(x) =

{
θ

xθ+1 if x > 1

0 otherwise

and A = (1,∞), h(x) = log(x), Y = log(X)
It’s obviously that h is one-to-one. By the Theorem above, we have

fY (y) =

{
θe−θy if y > 0

0 otherwise

�

3.6 Appendix 4 (provided by Lucy Gao)



Convolution of Probability Distributions

You may have come across convolutions of two functions in electrical engineering, physics, or

other fields. A convolution is a mathematical operation on two functions f and g defined as follows:

f ∗ g(t) =

∫ ∞

−∞
f(τ)g(t− τ)dτ.

This operation appears in applications across many fields, including signal/image processing, physics,

and statistics. In this reading, we will show that the probability density function (pdf) of the sum

of two independent continuous random variables X and Y is given by the convolution of the pdf of

X and the pdf of Y .

Derivation of the Convolution Formula

Suppose that X and Y are two independent continuous random variables. Let fX(t) denote the

pdf of X and fY (t) denote the pdf of Y . We will show that the pdf of X + Y is given by:

fX+Y (t) = fX ∗ fY (t) =

∫ ∞

−∞
fX(x)fY (t− x)dx.

We will use the CDF technique. Observe that

FX+Y (t) = P (X + Y ≤ t) =

∫ ∞

−∞

∫ t−x

−∞
fX(x)fY (y)dydx

=

∫ ∞

−∞

∫ t

−∞
fX(x)fY (u− x)du dx

=

∫ t

−∞

[∫ ∞

−∞
fX(x)fY (u− x)dx

]
du,

where in the first line, we have applied the independence of X and Y to factorize their joint pdf, in

the second line, we have applied the change of variables u = x+ y to the inner integral, and in the

last line, we have used the fact that the integral bounds do not depend on x or u to interchange

the order of integration.

We can now differentiate the CDF to get the pdf of X +Y . Applying the fundamental theorem

of calculus yields

fX+Y (t) =
d

dt
FX+Y (t) =

∫ ∞

−∞
fX(x)fY (t− x)dx.

Note that applying the convolution formula with the roles of X and Y swapped says that the pdf

of Y +X = X + Y is given by:

fY+X(t) = fY ∗ fX(t) −
∫ ∞

−∞
fY (y)fX(t− y)dy.

1



Thus, to find the pdf of X+Y , you can either do the convolution fX ∗fY or the convolution fY ∗fX .

Either works.

Application of the Convolution Formula

In Lecture 14, we show that if X and Y are independent Exponential(1) random variables, then

X + Y ∼ Gamma(2, 1) via the bivariate one-to-one transformation theorem. This fact can also be

shown using the convolution theorem. We have:

fX+Y (t) =

∫ ∞

−∞
fX(x)fY (t− x)dx, (1)

where

fY (u) = fX(u) =




e−u, u > 0,

0, otherwise.

Observe that for any t > 0, we have fX(x)fY (t− x) > 0 if and only if x > 0 and t− x > 0, which

in turn is the case if and only if 0 < x < t. So when t > 0, we can simplify (1) as:

fX+Y (t) =

∫ t

0
e−xex−tdx =

∫ t

0
e−tdx = te−t.

For any t ≤ 0, we have fX(x)fY (t − x) = 0 when x ≤ 0 (because fX(x) = 0 for x ≤ 0) and

fX(x)fY (t− x) = 0 for x > 0 (because then t− x < 0 and so fY (t− x) = 0). Thus, when t ≤ 0, we

can simplify (1) as:

fX+Y (t) =

∫ ∞

−∞
0dx = 0.

Putting the pieces together, we get

fX+Y (t) =




te−t, t > 0,

0, otherwise,

which is indeed the pdf of the Gamma(2, 1) distribution.

Conclusion

The convolution formula is a useful tool for calculating the pdf of sums of independent and con-

tinuous random variables, although you do have to be careful when working with piecewise defined

pdfs. The ideas behind the convolution formula can also be extended to derive similar formulas for

the difference, product, and quotient of X and Y for independent and continuous X and Y .

2
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Theorem 3.6.1 — Bivariate One to One Transformation Theorem.
If U = h1(X ,Y ) and V = h2(X ,Y ) defined a one-to-one transform on the joint support.
Let A =

{
(x,y) ∈ R2 : f (x,y)> 0

}
, then the joint pdf of U and V is

g(u,v) =





f (w1(u,v),w2(u,v)) ·
∣∣∣ ∂ (w1,w2)

∂ (u,v)

∣∣∣ if (u,v) ∈ {(h1(x,y),h2(x,y)) : (x,y) ∈ A}
0 otherwise

where
∂ (w1,w2)

∂ (u,v)
=

∣∣∣∣∣
∂w1
∂u

∂w1
∂v

∂w2
∂u

∂w2
∂v

∣∣∣∣∣=
∂w1

∂u
· ∂w2

∂v
− ∂w1

∂v
· ∂w2

∂u

� Example 3.7 Let U = X +Y , V = X−Y and
[

X
Y

]
∼ BV N

([
0
0

]
,

[
1 0
0 1

])
f (x,y) =

1
2π

e−
1
2 (x

2+y2) A ∈ R2

Then we have X = 1
2(U +V ) = w1(U,V ) and Y = 1

2(U−V ) = w2(U,V ), so by the Theorem above we have

g(u,v) =
1

4π
e−

1
4 (u

2+v2) ∀ (u,v) ∈ R2

�

� Example 3.8 Let X ,Y be independent and X ,Y ∼ Exp(1) with

f (x,y) =

{
e−xe−y if 0 < x < ∞, 0 < y < ∞

0 otherwise

We will show X +Y ∼ Gamma(2,1). Let U = X +Y and V = X , so X =V = w1(U,V ) and Y = w2(U,V ) =
U−V , then by the Theorem above we have

g(u,v) =

{
e−u if 0 < v < u < ∞

0 otherwise

so that

g1(u) =

{∫ u
0 e−udv if 0 < u < ∞

0 otherwise
=

{
ue−u if 0 < u < ∞

0 otherwise

which is a pdf of Gamma(2,1), so X +Y ∼ Gamma(2,1) �

� Example 3.9 Let the support of X ,Y to be
{
(x,y) ∈ R2 : x > 0, y > 0

}
, then the support of

U = X +Y and V =
X

X +Y

will be {
(u,v) ∈ R2 : 0 < v < 1, u > 0

}

�
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3.7 MGF Technique and Distributions defined by Transformations

Proposition 3.7.1
Let X1, ....,Xn be i.i.d and each Xi ∼ N(µ,σ2), then

n

∑
i=1

Xi

n
∼ N

(
n

∑
i=1

µ

n
,

n

∑
i=1

σ2

n2

)
= N

(
µ,

σ2

n

)

Definition 3.7.1 — Distributions defined by Transformations.

1. If ∃Z1, ....,ZK ∼ N(0,1) are i.i.d such that X =
n

∑
i=1

Z2
i , then

X ∼ χ
2
(k) Chi-Squared Distribution

2. If ∃Z ∼ N(0,1), Y ∼ χ2
(n) and they are independent such that X =

Z√
Y
n

, then

X ∼ t(n) t Distribution

3. If ∃Y1 ∼ χ2
(n1)

and Y2 ∼ χ2
(n2)

and they are independent such that X =

Y1
n1
Y2
n2

, then

X ∼ F(n1,n2)

Proposition 3.7.2
1. X ∼ χ2

(k) has MGF:

M(t) =
1

(1−2t)
k
2

∀ t <
1
2

2. Let X1, ...,Xn be independent and each Xi ∼ χ2
(ki)

, then

n

∑
i=1

Xi ∼ χ
2
(∑n

i=1 ki)

Proof for 2: Apply Proposition 2.9.2

Theorem 3.7.3

If X1, ...,Xn ∼ N(µ,σ2) are i.i.d, let X =
1
n

n

∑
i=1

Xi then

(n−1)s2

σ2 ∼ χ
2
(n−1) where s2 =

1
n−1

n

∑
i=1

(Xi−X)2

Proof: See Cochran’s theorem and Lemma 3.7.4

https://en.wikipedia.org/wiki/Cochran%27s_theorem#Sample_mean_and_sample_variance
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Lemma 3.7.4
If X1, ....,Xn ∼ N(µ,σ2) are i.i.d, then X and s2 are independent.

Theorem 3.7.5
If X1, ....,Xn ∼ N(µ,σ2) are i.i.d, then

X−µ

s√
n
∼ t(n−1)

Theorem 3.7.6
If X1, ....,Xn ∼ N(µ1,σ

2
1 ) are i.i.d and Y1, ....,Yn ∼ N(µ2,σ

2
2 ) are also i.i.d where each Xi,Yj are independent

for all i, j, then
s2

1/σ2
1

s2
2/σ2

2
∼ F(n1−1,n2−1)



4. Limiting/ Asymptotic Distributions

4.1 Convergence in Distributions

Definition 4.1.1 — Convergence in Distributions - CDF Converges Pointwise.
Let X1,X2, ... be a sequence of random variables where Xn have CDF Fn(x) for all n ∈ N and X has a CDF
F(x), we say

Xn
d−→ X (Xn converges in distributions to X)

If
lim
n→∞

Fn(x) = F(x) ∀ x where F is continuous at x

We call F is the limiting/asymptotic distribution of Xn

� Example 4.1 Let W ∼ Bernoulli(1
2) where Xn =W for all n ∈ N and X = 1−W . Hence we have

Xn
d−→ X

but is lim
n→∞

Xn = X? Nope, because |Xn−X |= 1 for all n ∈ N �

� Example 4.2 Let Xn ∼Uni f (0, 1
n) and X = 0, show Xn

d−→ X
Note that

Fn(x) =





0 if x≤ 0

nx if 0 < x < 1
n

1 if x≥ 1
n

=⇒ lim
n→∞

Fn(x) = 0 ∀ x≤ 0 and lim
n→∞

Fn(x) = 1 ∀ x > 0

Then let F be the cdf of X , we have

lim
n→∞

Fn(x) = F(x) =

{
0 if x < 0

1 if x≥ 0
=⇒ Xn

d−→ X

�
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Proposition 4.1.1
Let b,c ∈ R and ϕ(n) s.t. lim

n→∞
ϕ(n) = 0, then

lim
n→∞

[
1+

b
n
+

ϕ(n)
n

]cn

= ebc

idea: consider the case ϕ(n) = 0 for all n ∈ N, then applying the limit:

lim
n→∞

[
1+

b
n

]cn

= ebc

� Example 4.3 Let X1, ...,Xn ∼Uni f (0,1) are i.i.d, X(1) = min{X1, ...,Xn} and X(n) = max{X1, ...,Xn}

1. Find the asymptotic distribution of nX(1)

Fn(x) = P(nX(1) ≤ x) = P
(

X(1) ≤
x
n

)
=





0 if x
n ≤ 0

1−
(
1− x

n

)n if 0 < x
n ≤ 1

1 if x
n > 1

=





0 if x≤ 0

1−
(
1− x

n

)n if 0 < x≤ n

1 if x > n

n→∞−−−→
{

0 if x≤ 0

1− e−x if x > 0

That is nX(1)
d−→ Exp(1)

2. Find asymptotic of n(1−X(n))

Fn(x) = P(n(1−X(n))≤ x) = P
(

X(n) ≥ 1− x
n

)
= 1−P

(
X(n) ≤ 1− x

n

)

= 1−FX(n)(x)
(

1− x
n

)

=





1 if 1− x
n ≤ 0

1− (1− x
n)

n if 0 < 1− x
n ≤ 1

0 if 1− x
n > 1

=





0 if x≤ 0

1− (1− x
n)

n if 0 < x≤ n

1 if x > n

n→∞−−−→
{

0 if x≤ 0

1− e−x if x > 0

That is n(1−X(n))
d−→ Exp(1) �
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4.2 Convergence in Probability

Definition 4.2.1 — Convergence in Probability - Converge in Probability Measure.
Let X1,X2, ... be a sequence of random variables and X be a random variable. We say that Xn

p−→ X (Xn

converges to X in prob) if
∀ ε > 0 lim

n→∞
P(|Xn−X | ≥ ε) = 0

or equivalently
∀ ε > 0 lim

n→∞
P(|Xn−X |< ε) = 1

� Example 4.4 Let W ∼Uni f (0,1), X = 0 and

Xn =

{
1 if 0 < w < 1

n

0 otherwise

Then for all ε > 0:

P(|Xn−X | ≥ ε) = P(Xn ≥ ε) = P(Xn = 1) = P
(

0 <W <
1
n

)
= lim

n→∞

∫ 1
n

0
1dx = lim

n→∞

1
n
= 0

That is Xn
p−→ X as desired. �

� Example 4.5 Let Xn ∼ Bernouli(1− 1
n) and X = 1, then for ε > 0:

P(|Xn−X | ≥ ε) =

{
1
n if 0 < ε ≤ 1

0 if ε > 1
=⇒ lim

n→∞
P(|Xn−X | ≥ ε) = 0

or

P(|Xn−X | ∈ {0,1}) = P(|Xn−X |= 1)+P(|Xn−X |= 0) = P(Xn = 1)+P(Xn = 0) = 1− 1
n
+

1
n
= 1

Therefore, we have lim
n→∞

P(|Xn−X | ≥ ε) = 0, that is Xn
p−→ X = 1 �

4.3 Probability Limits Theorems

Theorem 4.3.1
If Xn

p−→ X , then Xn
d−→ X . (Converse is not always true, but if X is constant random variable, this will be

true)
Proof: Proofs of Convergence of Random Variables

� Example 4.6 Let W ∼ Bernoulli(1
2) and Xn =W for all n ∈ N. Let X = 1−W , so X ∼ Bernoulli(1

2) and

Xn
d−→ X but P(|Xn−X | ≥ 1) = P(|Xn−X |= 1) = 1, so lim

n→∞
P(|Xn−X | ≥ 1) = 1 6= 0, so Xn 6

p−→ X �

https://en.wikipedia.org/wiki/Proofs_of_convergence_of_random_variables
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Theorem 4.3.2
Let c ∈ R, if Xn

d−→ c, then Xn
p−→ c

Proof: Since Xn
d−→ c, that is for any ε > 0, we have P(|Xn−X | ≥ ε)≥ 0 and

P(|Xn− c| ≥ ε) = P(Xn ≥ c+ ε)+P(Xn ≤ c− ε)

= 1−P(Xn < c+ ε)+Fn(c− ε)

≤ 1−P
(

Xn ≤ c+
ε

2

)
+Fn(c− ε)

= 1−Fn

(
c+

ε

2

)
+Fn(c− ε)

Note that the CDF for c:

F(x) =

{
0 if x < c

1 x≥ c

and Xn
d−→ c implies lim

n→∞
Fn(x) = F(x) for all x 6= c, then

0≤ lim
n→∞

P(|Xn− c| ≥ ε)≤ lim
n→∞

1−Fn

(
c+

ε

2

)
+Fn(c− ε) = 1−1+0 = 0

By Squeeze theorem, we have lim
n→∞

P(|Xn− c| ≥ ε) = 0, that is Xn
p−→ c as desired.

Proposition 4.3.3 — Markov Inequality.
Let X be a random variable, then for all k > 0, c > 0:

P(|X | ≥ c)≤ E[|X |k]
ck

(we usually take k = 2)

Proposition 4.3.4 — Chebyshev’s Inequality.
Let X be a random variable, the for all k > 0:

P(|X−E[X ]|> k
√

Var[X ])≤ 1
k2

� Example 4.7 Let Y ∼Uni f (0,1) and Xn = Y n, show Xn
p−→ X for X = 0.

Note that

E[Xn] = E[Y n] =
∫ 1

0
yndy =

1
n+1

Let ε > 0, then

P(|Xn−X | ≥ ε)≤ E[|Xn−X |]
ε

=
E[Xn]

ε
=

1
(n+1)ε

→ 0

By Squeeze Theorem, we have lim
n→∞

P(|Xn−X | ≥ ε) = 0, that is Xn
p−→ X as desired. �
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Proposition 4.3.5
Let X1,X2, .. be a sequence of random variables with E[Xn] = µ , Var[Xn] = σ2

n > 0 and lim
n→∞

σ
2
n = 0, then

Xn
p−→ µ

Proof: Let ε > 0, then

0≤ P(|Xn−µ| ≥ ε)≤ E[(Xn−µ)2]

ε2 =
Var[Xn]

ε2 =
σ2

n

ε2 → 0

Then by Squeeze theorem, we have lim
n→∞

P(|Xn−µ| ≥ ε) = 0, that is Xn
p−→ µ as desired.

Proposition 4.3.6 — Weak Law of Large Numbers (WLLN).
Let Xn be a sequence of i.i.d random variables with E[Xi] = µ and Var[Xi] = σ2 < ∞, then

X =
1
n

n

∑
i=1

Xi
p−→ µ

Proof: Note that

E[Xn] =
1
n
·

n

∑
i=1

E[Xi] =
1
n
·

n

∑
i=1

µ = µ

and

Var
[
Xn
]
=

1
n2 ·

n

∑
i=1

Var[Xi] =
1
n2 ·

n

∑
i=1

σ
2 =

σ2

n
→ 0

Then we have

0≤ P(
∣∣Xn−E[Xn]

∣∣≥ ε)≤ E[(Xn−E[Xn])
2]

ε2 =
Var[Xn]

ε2 → 0

That is Xn
p−→ µ , which completes the proof.

� Example 4.8 Let Xn be a sequence of i.i.d random variables such that Xi ∼ Bernouli(p), so we have
E[Xi] = p and Var[Xi] = p(1− p)< ∞, then by WLLN: Xn

p−→ p �

� Example 4.9 Let Xn be a sequence of i.i.d random variables such that Xi ∼ Bernouli(p). We define

Wn =
1
n

n

∑
i=1

2Xi

Find Wn
p−→?:

First we define Yi = 2Xi , so Yi are also i.i.d. Then we have

E[Yi] = 20(1− p)+21 p = 1+ p and E[Y 2
i ] = 22·0(1− p)+22·1 p = 1+3p

This gives us that Var
[
Y 2

i
]
= E[Y 2

i ]− (E[Yi])
2 < ∞, then by WLLN Wn

p−→ 1+ p. �
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Lemma 4.3.7
Let Xn be a sequence of random variables with MGFs Mn(t) and X is a random variable with MGF M(t). If

∃h > 0 s.t. lim
n→∞

Mb(t) = M(t) for all |t|< h, then Xn
d−→ X

Proof: omitted, too much math for this class.

Theorem 4.3.8 — Central Limit Theorem (CLT).
Let X1, .....Xn be i.i.d random variables with E[Xi] = µ , Var[Xi] = σ2 < ∞, then

√
n(Xn−µ)

σ

d−→ N(0,1)

where

Xn =
1
n

n

∑
i=1

Xi

Proof:
Let Mn(t) be the MGF of

√
n(Xn−µ)

σ
, so we have

Mn(t) = E
[

exp
{

t ·
√

n(Xn−µ)

σ

}]
= E

[
exp

{
t√
n

n

∑
i=1

Yi

}]
Let Yi =

Xi−µ

σ

=
n

∏
i=1

E
[

exp
{

tYi√
n

}]
since Yi are i.i.d

=

[
MY

(
t√
n

)]n

and MGF of N(0,1) is M(t) = exp
{

t2

2

}
for all t ∈ R

Now we will show that lim
n→∞

Mn(
t√
n
) = M(t). By Taylor series:

MY

(
t√
n

)
= MY (0)+M′Y (0) ·

(
t√
n

)
+

1
2

MY (0)′′ ·
(

t√
n

)2

+O

((
t√
n

)2
)

= 1+
t2

2n
+O

((
t√
n

)2
)

then we have

lim
n→∞

[
MY

(
t√
n

)]
= lim

n→∞

[
1+

t2

2n
+O

((
t√
n

)2
)]n

= exp
{

t2

2

}

Then by Lemma 4.3.7 we have Xn
d−→ X as desired.

� Example 4.10 Let X1, ...,Xn ∼ Poi(λ ) be i.i.d , then
√

n(Xn−λ )√
λ

d−→ N(0,1) By CLT

�
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� Example 4.11 Let Xn ∼ χ2
(n), then E[χ2

(n)] = 1 and Var
[
χ2
(1)

]
= 2, then by CLT

√
n
(

∑
n
i=1 χ2

(1)
n −1

)

√
2

d−→ N(0,1)

Then we have
Xn−n√

2n
d−→ N(0,1)

�

� Example 4.12 Let X1,X2, ....∼Uni f (0,1) are i.i.d, then

√
n
(
∑

n
i=1

Xi
n − 1

2

)
√

1
12

d−→ N(0,1)

Let Yi = X3
i so Yi are i.i.d so that

E[Yi] =
∫ 1

0
x3dx =

1
4

and E[Y 2
i ] =

∫ 1

0
x6dx =

1
7

=⇒ Var[Yi] =
1
7
−
(

1
4

)2

< ∞

Then by CLT:
√

n
(

∑
n
i=1

X3
i

n − 1
4

)

√
Var[Y1]

=

√
n
(
Y n−E[Y1]

)
√

Var[Y1]

d−→ N(0,1)

�

Theorem 4.3.9 — Continuous Mapping Theorem.
Let g be a continuous function, Xn be a sequence of random variables and X be a random variable

1. If Xn
p−→ c, then g(Xn)

p−→ c

2. If Xn
d−→ X , then g(Xn)

d−→ g(X)

Theorem 4.3.10 — Slutsky’s Theorem.

If Xn
d−→ X and Yn

p−→ c, then

1. Xn +Yn
d−→ X + c and Xn +Yn

p−→ X + c

2. XnYn
d−→ cX and XnYn

p−→ cX

3. Xn
Yn

d−→ X
c and Xn

Yn

p−→ X
c (when c 6= 0)

Note: If Xn
d−→ X and Yn

d−→ Y , does not always implies that Xn +Yn
d−→ X +Y
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� Example 4.13 If Xn ≥ 0 and c≥ 0, then by Continuous Mapping Theorem:

Xn
p−→ c =⇒

√
Xn

p−→√c and X2
n

p−→ c2

If Xn
d−→ X ∼ N(0,1), then by Continuous Mapping Theorem:

2Xn +1 d−→ 2X +1∼ N(1,4) and X2
n

d−→ X2 ∼ χ
2
(1)

If Xn
d−→ X ∼ N(0,1) and Yn

p−→ c with c 6= 0, then

Xn +Yn
d−→ X + c∼ N(c,1) XnYn

d−→CX ∼ N(0,c2)
Xn

Yn

d−→ X
c
∼ N(0,

1
c2 )

�

� Example 4.14 Let Xn ∼ Poi(λ ) be a sequence of i.i.d random variables, define Un =
√

n(Xn−λ ) and
Zn =

Un√
Xn

. By CLT:
√

n(Xn−λ )√
λ

d−→ N(0,1)

Let g(t) =
√

λ t and we see that

Un =
√

n(Xn−λ ) ·
√

λ√
λ

= g
(√

n(Xn−λ ) · 1√
λ

)

By Comtinuous Mapping Theorem we have

g
(√

n(Xn−λ )√
λ

)
d−→ g(N(0,1)) = λ ·N(0,1) = N(0,λ )

By WLLN Xn
p−→ λ and define h(x) =

√
x, then g(Xn)

p−→ g(λ ) =
√

λ

Since
√

Xn
p−→
√

λ and Un
d−→ N(0,λ ), then we have

Zn =
Un√

Xn

d−→ N(0,1)

�

� Example 4.15 Let Xn ∼Uni f (0,1) be i.i.d and Un = max
1≤i≤n

Xi and Vn = e−n(1−Un). Then it’s easy to see that

n(1−Un)
d−→ Exp(1). Now we let T = e−y so and Y ∼ Exp(1)

FT (t) = P(e−y ≤ t) =

{
0 if t ≤ 0

P(Y ≥− log(t)) if t > 0
=





0 if t ≤ 0

t if 0 < t < 1

1 if t ≥ 1

Then we have
Vn = e−n(1−Un) d−→Uni f (0,1)

Now define Wn =
n(1−Un)

X2
n

, we see that Xn
p−→E[Xi] =

1
2 by WLLN and Var[Xi] =

1
12 <∞, so we have continuous

g(t) = t2 s.t.

X2
n = g

(
Xn
) p−→

(
1
2

)2

=
1
4
6= 0

Then by Slutsky’s Theorem we have Wn =
n(1−Un)

X2
n

d−→ Y
1
4
= 4 ·Y = Exp(4) where Y ∼ Exp(1), �
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Theorem 4.3.11 — Delta Method.
Let Xn be a sequence of random variables such that an(Xn−θ)

d−→ N(0,σ2) with lim
n→∞

an = ∞ and g(x) is

differentiable at x = θ and g′(θ) 6= 0, then

an(g(xn)−g(θ)) d−→ N
(

0,
[
g′(θ)

]2
σ

2
)

Intuition:

g(Xn)≈ g(θ)+g′(θ)(Xn−θ) =⇒ an(g(Xn)−g(θ))≈ ang′(θ)(Xn−θ)

Since for large n we have an(Xn−θ)≈ N(0,σ2), which implies

an(g(xn)−g(θ))≈ N(0,σ2) ·g′(θ) = N(0,σ2[g′(θ)
]2
)

� Example 4.16 Let Xn ∼ Poi(λ ) be a sequence of random variables, find the limiting distribution of
Zn =

√
n(
√

Xn−
√

λ )

By previous result we have
√

n(Xn−λ )
d−→ N(λ ), Let Zn =

√
n(g(Xn)−g(λ )) for g(t) =

√
t. Since λ > 0,

so g′(λ ) exists and g′(λ ) = 1
2
√

λ
6= 0. Now by Delta Method:

Zn
d−→ N(0,λ

[
g′(λ )

]2
) = N

(
0,

1
4

)

�

� Example 4.17 Let Xn ∼ Exp(θ) be a sequence of random variables and Zn =
√

n(log
(
Xn
)
− log(θ))

By CLT: √
n(Xn−θ)

θ

d−→ N(0,1) =⇒ √
n(Xn−θ)

d−→ N(0,θ 2)

Let g(t) = log(t), so by Delta method:

Zn
d−→ N

(
0,θ 2[g′(θ)

]2)
= N

(
0,

1
θ 2 ·θ

2
)
= N(0,1)

�

Let Xn be a sequence of random variables with E[Xi] = 0 and Var[Xi] = σ2 < ∞ for all i. Find the approximate
distribution of X2

n
By CLT: √

n(Xn−0)
σ

d−→ N(0,1) =⇒ √
nX d−→ N(0,σ2)

Let g(t) = t2 and Z = N(0,1), by continuous mapping:

nX2
n

σ2
d−→ Z2 = χ

2
(1) =⇒ X2

n
d−→ σ2

n
χ

2
(1)



5. Point Estimation

5.1 Introduction

We define the statistics T (~X) of ~X only, does not contain ~θ .

� Example 5.1

T (~X) =
X1 + .....+Xn

n
= Xn is a statistic Xn−µ is not

S2
n =

1
n−1

n

∑
i=1

(
Xi−X

)2 is a statistic
Xn−µ√

S2
n

is not

�

Want to estimate ~θ or g(~θ) for some function g, we call a statistic T (~X) an estimator of ~θ if we use it to
estimate ~θ . We call T (~x) an estimate of ~θ .

� Example 5.2 Xn is an estimator for µ and xn is an estimate �

We will often use θ̂(x1,xn) to indicate estimator of θ , but we often omit (...). That is we use θ̂ to denote
estimator of θ .
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5.2 Method of Moments

Definition 5.2.1
Let X1, ....,Xn be i.i.d with pdf/pmf f (x;~θ) where ~θ is a p-dimension parameter. such that

µ1 = E[Xi] = g1(~θ) µ2 = E[X2
i ] = g2(~θ) ....... µp = E[X p

i ] = gp(~θ)

Idea: Substitute µ1,µ2, ... with µ̂1, µ̂2, ... where

µ̂1 =
n

∑
i=1

Xi

n
µ̂2 =

n

∑
i=1

X2
i

n
....... µ̂p =

n

∑
i=1

X p
i

n

We define the Method of Moments (MME) of θ to be the solution to

µ̂1 = g1(~θ) µ̂2 = g2(~θ) ....... µ̂p = gp(~θ) p unknowns and p equations

� Example 5.3 Let X1, ...,Xn ∼ Poi(λ ) be i.i.d, we see that µ1 = E[Xi] = λ so that

µ̂1 =
1
n

n

∑
i=1

Xi = λ

so λ̂ = µ̂1 is the MME of λ .

Is E[λ̂ ] = λ (λ̂ unbiased??)

E[λ̂ ] = E

[
1
n

n

∑
i=1

Xi

]
=

1
n

n

∑
i=1

E[Xi] =
1
n
·nλ = λ =⇒ λ̂ is unbiased

Is λ̂
p−→ λ? (λ̂ consistent ??)

By WLLN: λ̂ = Xn
p−→ λ , so λ̂ is consistent �

� Example 5.4 Let X1, ....,Xn ∼ Uni f (0,θ) be i.i.d, so µ1 = E[Xi] =
θ

2 , so MME θ̂ solves µ̂1 = θ

2 , so
θ̂ = 2µ̂1 = 2Xn

Then
E[θ̂ ] = E[2Xn] = 2E[Xn] = 2 · θ

2
= θ

and θ̂ = 2Xn
p−→ θ because by WLLN Xn

p−→ θ

2 , then θ̂ is unbiased and consistent. �

� Example 5.5 Let X1, ...,Xn ∼ N(µ,σ2) be i.i.d, so µ1 = E[Xi] = µ , µ2 = E[X2
i ] = Var[Xi] +E[Xi]

2 =
σ2 +µ2, then MMEs µ̂, σ̂2 solve:

{
µ̂1 = µ

µ̂2 = σ2 +µ2 ⇐⇒
{

µ = µ̂1

σ2 = µ̂2− µ̂2
1

Then µ̂ = Xn and σ̂2 =
1
n

n

∑
i=1

X2
i −X2

n, so µ̂ is unbiased and consistent. Also we see that

E[σ̂2] = E[X2
i ]− (Var

[
Xn
]
+E[Xn]

2) = σ
2 +µ

2−
(

σ2

n
+µ

2
)
=

n−1
n

σ
2
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1
n

n

∑
i=1

X2
i

p−→σ
2+µ

2 and Xn
p−→ µ =⇒ σ̂

2 p−→σ
2 by slutsky’s theotem and continuous mapping

so σ̂2 is biased but consistent �

� Example 5.6 Let X1, ...,Xn ∼Uni f (−θ ,θ) be i.i.d with θ > 0. Then we have µ1 = E[Xi] =
−θ+θ

2 = 0, so
we should use higher order moments. We see that

µ2 = E[X2
i ] = Var[Xi]+E[Xi]

2 =
(θ − (−θ))2

12
+02 =

θ 2

3
so MME solve

θ̂ 2

3
= µ̂2 =⇒ θ̂ =

√√√√√3
n

∑
i=1

X2
i

n
�

5.3 Maximum Likelihood

Let X1, ...,Xn be i.i.d with pdf/pmf f (x;~θ) and ~θ ∈Ω (parameter space), we observe (x1, ....,xn) from random
variables (X1, ....,Xn)

Definition 5.3.1 — Likelihood Function.

L(~θ ;~x) =
n

∏
i=1

f (xi ;~θ)

where f (xi ;~θ) is joint pdf/pmf of Xi’s and L : Ω→ [0,∞). The joint pdf is function of data~x by parameter
~θ , likelihood is function of parameter ~θ indexed by data~x.

Note: It’s not true that
∫

L(θ ;~x)dθ = 1 or ∑
θ

L(θ ; ~x) = 1 n general

Likelihood idea: pick ~θ such that it maximizes L(~θ), we call θ̂ = argmax
θ∈Ω

L(θ ;~x) the maximum likelihood

estimate (MLE) of θ . Max likelihood estimator replaces~x with ~X .

Review: How to maximize function L(θ) over Ω?

Maximizer solve: d
dθ

L(θ) or look at the boundary of Ω.

Note:
argmax

θ∈Ω

L(θ ;~x) = argmax
θ∈Ω

log(L(θ ;~x))

The log likelihood function:

`(θ ;~x) = log(L(θ ;~x)) = log

(
n

∏
i=1

f (xi;~θ)

)
=

n

∑
i=1

log
(

f (xi;~θ)
)

this is other easier to work with because ` is easier to diiferentiable.
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� Example 5.7 Let X1, ...,Xn ∼ Exp(θ) be i.i.d, find the MLE of θ . Since f (x;θ) = 1
θ

e−x/θ , then

L(θ ;~x) =
n

∏
i=1

f (xi;θ) = θ
−ne
−∑

n
i=1 xi

θ =⇒ `(θ ;~x) =−n logθ − 1
θ

n

∑
i=1

xi

Then we see that
d`
dθ

=− n
θ
+

1
θ 2

n

∑
i=1

xi

MLE θ̂ solve d`
dθ

= 0, we get

θ̂ =
1
n

n

∑
i=1

xi = Xn

�

� Example 5.8 Let X1, ...,Xn ∼ Poi(λ ) be i.i.d, find the MLE of λ . Since f (x;θ) = λ xe−λ

x! , then

L(λ ;~x) =
n

∏
i=1

f (xi;λ ) =
λ ∑xie−nλ

∏xi!
=∝ λ ∑xie−nλ

so that

`(λ ;~x) =

(
n

∑
i=1

xi

)
logλ −nλ −

n

∑
i=1

log(xi!) ∝

(
n

∑
i=1

xi

)
logλ −nλ − c for some c ∈ R

Then we have
d`
dθ

=
1
λ

n

∑
i=1

xi−n

so MLE λ̂ solves d`
dθ

= 0 we get

1

λ̂

n

∑
i=1

xi−n = 0 =⇒ λ̂ =
1
n

n

∑
i=1

= xn

which is the same as MME �

� Example 5.9 Let X1, ...,Xn ∼Uni f (0,θ) be i.i.d and it has the pdf

f (x;θ) =

{
1
θ

if 0 < x≤ θ

0 otherwise

Then we have

L(θ ;~x) =
n

∏
i=1

f (xi;θ) =





θ−n if θ ≥ max
1≤i≤n

xi

0 otherwise

Then we have θ̂ = max
1≤i≤n

Xi is the MLE, which is different from the MME θ̂ = 2Xn �
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� Example 5.10 Let X1, ...,Xn ∼ N(µ,σ2) be i.i.d, then

`(µ,σ2) =− 1
2σ2

n

∑
i=1

(xi−µ)2− n
2

log
(
2πσ

2)

This gives us that

d`
dµ

=
1

σ2

(
n

∑
i=1

xi−nµ

)
and

d`
σ2 =

1
2σ4

n

∑
i=1

(xi−µ)2− n
2σ2

solve it to get the MLEs

{ d`
dµ

= 0
d`
σ2 = 0

=⇒





µ̂ =
1
n

n

∑
i=1

xi

σ̂
2 =

1
n

n

∑
i=1

(xi− xn)
2

�

5.4 Properties of MLEs

Theorem 5.4.1 — Invariances of MLEs.
If θ̂ is the MLE of θ , then for any function g, g(θ̂) is the MLE of g(θ)

� Example 5.11 Let X1, ...,Xn ∼ Poi(λ ), by previous we have λ̂MLE = Xn and MLE of E[X2
i ] = λ (λ +1)

What’s the MLE of P(Xi = 0) = e−λ ? It’s e−Xn by invariance.
What’s the MLE of

Iλ≤10 =

{
1 λ ≤ 10

0 λ > 10

By Invariances, the MLE is

IXn≤10 =

{
1 Xn ≤ 10

0 Xn > 10

�

From now on: θ is a scalar

Definition 5.4.1
Score Function:

S(θ ;~x) =
d

dθ
`(θ ;~x)

Information Function:
I(θ ;~x) =− d

dθ 2 `(θ ;~x)
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Expected Information Function:

J(θ) = E[I(θ ;~x)] = E
[
− d

dθ 2 `(θ ;~x)
]
= E

[
− d

dθ 2

n

∑
i=1

log f (xi;θ)

]

Theorem 5.4.2 — Asymptotic Normality and Consistency of MLE.
Under some regularity conditions (e.g support not depending on θ ),

(θ̂ −θ) · [J(θ)] 1
2

d−→ N(0,1) and θ̂
p−→ θ

Proof: Taylor’s theorem to score function

� Example 5.12 Let X1, ....,Xn ∼ Poi(λ ) be i.i.d, then we have

`(λ ;~x) =

(
n

∑
i=1

xi

)
log(λ )−nλ0

n

∑
i=1

log(xi!)

and

S(λ ;~x) =
d

dλ
`(λ ;~x) =

(
1
λ

n

∑
i=1

xi

)
−n and I(λ ;~x) =− d

dθ 2 `(λ ;~x) =
1

λ 2

n

∑
i=1

xi

Then we have

J(λ ) = E[I(λ ;~x)] = E

[
1

λ 2

n

∑
i=1

xi

]
=

n
λ

this gives us that

(λ̂ −λ )[J(λ )]
1
2 = (Xn−λ ) ·

√
n
λ

and (λ̂ −λ )[J(λ )]
1
2

d−→ N(0,1) and λ̂ = Xn
p−→ λ

P(X1 = 0) = e−λ , by invariance it has MLE: e−Xn , by continuous mapping
√

n(Xn−λ )
d−→ N(0,λ ).

Use delta method we het √
n(e−Xn− e−λ )

d−→ N(0,λe−2λ )

so the large n estimate of P(X1 = 0):

e−Xn d−→ N

(
e−λ ,

λe−2λ

n

)

�
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