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1. Preparation

1.1 Probability Space

Definition 1.1.1 — Probability Space. consists of a triplet (Ω,E ,P) where:

1. Ω is the sample space, the collection of all possible outcomes of a random experiment. e.x.{1,2, ....,6},
{H,T}, {sunny, cloudy, rainy}

2. E is the σ -algebra or σ -field, the collection of all the "events". An event E is a subset of Ω, for
which we can talk about probability. e.x. {1,3,5} ⊆ {1,2, ....,6}

3. P is the probability (measure), a set function (a mapping from events to real numbers). i.e. P : E → R or
E 7−→ P(E). A probability needs to satisfy the probability axioms:

(a) ∀E ∈ E , 0≤ P(E)≤ 1

(b) P(Ω) = 1

(c) For countable, disjoint events E1,E2,......., we have

P

(
∞⋃

i=1

Ei

)
=

∞

∑
i=1

P(Ei)

Definition 1.1.2 — Random Variable.
A random variable X is mapping from Ω to R. i.e. X : Ω→ R or ω 7−→ X(ω)

1.2 Stochastic Processes

Basic understading:

Process: change/evolve over time.

Stochastic: random
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Then we can say it as

1. A sequence/family of random variables (simple, take it as the definition)

2. A random function ((hard to formulate)

Definition 1.2.1 — Stochastic Process.
A stochastic process {Xt}t∈T is a collection of random variables defined on a common probability space
where T is an index set. In most cases, T corresponds to time. There are two common types of T
corresponds to time as below:

Discrete: {0,1,2, .....}
Continuous: [0,∞)

In discrete-time case, we typically write {Xn}n=0,1,2,...

Definition 1.2.2 — States.
The possible values of Xt with t ∈ T are called the sates of the process. Their collection is call the state
space, denoted by S. The state space can be either discrete or continuous. In this course, we will focus on
discrete state space. We can relabel the states in S to get the standardized state space:

S∗ = {0,1,2, .........} (Countable State Space) or S∗ = {0,1,2, .......,n} (Finite State Space)

1.3 Simple Random Walk

� Example 1.1 Let X0,X1, .... be independent and identically distributed random variables following certain
distribution. Then {Xn}n=0,1.... is a stochastic process, and sometimes called "White noise". �

� Example 1.2 — Simple Random Walk.
Let X1,X2, .... be independent and identically distributed with each of them{

P(Xi = 1) = p

P(Xi =−1) = 1− p

for i = 1,2, ..... Define S0 = 0 and S1 = X1, S2 = X1 +X2,....., Sn =
n

∑
i=1

Xi for n ≥ 1. Then {Sn}n=0,1.... is

a stochastic process , with state space S∗ = Z. {Sn}n=0,1... is called a simple random walk. Note that
Sn = Sn−1 +Xn so

Sn =

{
Sn−1 +1 with probability p

Sn−1−1 with probability 1− p

Question: Why do we need the notion of stochastic process? Why don’t we just look at the joint distribution
of (X1, ....,Xn)
Answer: The joint distribution of a large number of random variables is very complicated, because it does
not take advantage of the special structure of T , which is time.

For the simple random walk, the full distribution of (S0,S1, ....,Sn) is complicated for large n. However, as we
have seen, the structure is actually simple if we focus on adjacent terms:

Sn+1 = Sn +Xn+1
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where we note that Sn and Xn+1 are independent. By introducing time into the framework, things can often
be greatly simplified. For the simple random walk, we find that if we know Sn, the distribution of Sn+1 will
not depend on the history Si for i = 0, ...,n−1. This is a very useful properties, and it motivate the notion of
Markov Chain. �



2. Discrete-Time Markov Chain

2.1 Review on Conditional Probability
Definition 2.1.1 — Conditional Probability.
The conditional probability of an event B given an event A with P(A)> 0 is given by

P(B | A) = P(B∩A)
P(A)

=
P(B,A)
P(A)

where P(A,B) denotes probability of A and B

Theorem 2.1.1

Let A1,A2, ... be disjoint events s.t.
∞⋃

i=1

Ai = Ω (we say Ai the partition of Ω)

1. Law of total probability: P(B) =
∞

∑
i=1

P(B | Ai) ·P(Ai)

Proof: Note that B∩Ai are disjoint and
∞⋃

i=1

(B∩Ai) = B, hence

P(B) =
∞

∑
i=1

P(B∩Ai)

=
∞

∑
i=1

P(B | Ai) ·P(Ai)

2. Bayes’ Rule : P(Ai | B) =
P(B | Ai) ·P(Ai)

∞

∑
j=1

P(B | A j) ·P(A j)
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Proof:

P(Ai | B) =
P(Ai∩B)

P(B)
by definition of conditional probability

=
P(B | Ai) ·P(Ai)

∞

∑
j=1

P(B | A j) ·P(A j)

by law of total probability

� Remark 2.1 Recall that two events A and B are called independent, if P(A∩B) = P(A) ·P(B)
We say A and B are independent by A⊥⊥ B. If A⊥⊥ B and P(A)> 0, then we have P(B | A) = P(B)

2.2 Discrete-Time Markov Chains

Definition 2.2.1 — Discrete-Time Markov Chains.
A discrete-time stochastic process {Xn}n=0,1... is called a discrete-time markov chains (DTMC) with
transition matrix P =

{
Pi j
}

i, j∈S∗ (S∗ is state space), if for any n and any i, j, in−1, ..., i0 ∈ S∗

P(Xn+1 = j︸ ︷︷ ︸
future

| Xn = i︸ ︷︷ ︸
current state

, Xn−1 = in−1, . . . , X0 = i0︸ ︷︷ ︸
history/past

) = Pi, j

Intuition: given the present/current state, the history and the future are independent. Equivalently, the
past influences the future only through the current state.

� Remark 2.2 More generally, the Markov property can be defined as

P(Xn+1 = j | Xn = i, Xn−1 = in−1, . . . , X0 = i0) = P(Xn+1 = j | Xn = i)︸ ︷︷ ︸
can depend on n

In addition to this property, the definition we use requires that P(Xn+1 = j | Xn = i) does not depend on n.
This is called time-homogeneity. In this course, we always focus on the time-homogeneity DTMC (default
setting).

2.3 Transition Matrix

P =
{

Pi j
}

i, j∈S∗ =


P00 P01 . . . P0 j . . .
P10 P11 . . . P1 j . . .

...
...

...
Pi0 Pi1 . . . Pi j . . .
...

...
...


where i is row : starting/initial/current state and j is column : ending /target/net state
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Properties of (one-step) transition matrix
1. Pi j ≥ 0 for all i, j ∈ S
2. Row sums of P are always 1, ∑

j∈S
Pi j = 1 for all i ∈ S

Reason : ∑
j∈S

Pi j = ∑
j∈S∗

P(Xn+1 = j | Xn = i) = P(Xn+1 ∈ S | Xn = i) = 1

� Example 2.1 — Simple Random Walk revisited.
For Pi j = P(Sn+1 = j | Sn = i), recall that Sn+1 = Sn +Xn+1︸ ︷︷ ︸

⊥⊥

with

{
P(Xi = 1) = p

P(Xi =−1) = 1− p

Then we have

Pi j = P(Sn +Xn+1 = j | Sn = i)

= P(Xn+1 = j− i | Sn = i)

= P(Xn+1 = j− i) since they are ⊥⊥

=


p if j = i+1

1− p if j = i−1

0 otherwise

That is

P =



. . . . . .

. . . 0 p
1− p 0 p

1− p 0 p

1− p 0
. . .

. . . . . .


Note that we have not shown that the simple random walk is DTMC, this is left as an exercise. �

Exercise 2.3.1 A simple random walk is Discrete-Time Markov Chain. �

� Example 2.2 — Ehrenfest’s Urn.
We have two urn A,B, there are total M balls in urn, Each time, we pick one ball uniformly randomly and put
it into the opposite urn. Let’s define:

1. Xn number of balls in urn A after step n
2. State Space: S = {0, ....,M}
3. Xn = i means i balls in A and M− i balls in B
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4.

Pi j = P(Xn+1 = j | Xn = i)

=


i

M
if j = i+1 (The ball is from A)

M− i
M

if j = i−1 (The ball is from B)

M if j 6= i±1

Then, the transition matrix in R(M+1)×(M+1) is

P =



0 1
1
M 0 M−1

M
2
M 0 M−2

M
3
M 0

. . .
. . . 0 1

M
1 0


�

2.4 Multi-step transition probability

Theorem 2.4.1 — Chapman-Kolmogorov Equation (C-K Equation).
Question: What if we are interested in the behavior of the DTMC in n steps rather that 1 step?

That is
P(n)

i j = P(Xn = j | X0 = i) = P(Xm+n = j | Xm = j) =? for m = 1,2, ...

Note that P(1)
i j = Pi j by definition, start with n = 2:

P(2) = P(X2 = j | X0 = i) = ∑
k∈S

P(X2 = j | X0 = i, Xi = k) ·P(X1 = k | X0 = i)

This is nothing else but the conditional version of the law of total provability.
Details for P(2):

P(X2 = j | X0 = i) = ∑
k∈S

P(X2 = j, Xi = k | X0 = i)

= ∑
k∈S

P(X2 = j, X1 = k, X0 = i)
P(X0 = i)

= ∑
k∈S

P(X2 = j, X1 = k, X0 = i)
P(X1 = k, X0 = i)

· P(X1 = k, X0 = i)
P(X0 = i)

= ∑
k∈S

P(X2 = j | X0 = i, Xi = k) ·P(X1 = k | X0 = i)

= ∑
k∈S

Pik ·Pk j

= (P ·P)i j = (P2)i j
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Thus, if we have P(2) =
{

P(2)
i j

}
i j∈S

where P(2) is 2-step transition matrix. Then P(2) = P2

Now, in general, for n,m = 0,1,2...

P(m+n)
i j = P(Xm+n = j | X0 = i)

= ∑
k∈S

P(Xm+n = j | Xm = k, X0 = i) ·P(Xm+n = j | X0 = i)

= ∑
k∈S

P(Xm+n = j | Xm = k) ·P(Xm = k | X0 = i)

= ∑
k∈S

P(n)
k j ·P

(m)
ik

= ∑
k∈S

P(m)
ik ·P

(n)
k j

= (P(m) ·P(n))i j

This gives us that P(m+n) = P(m) ·P(n), we called C-K Equation

As a result , we have

P(1) = P

P(2) = P(1) ·P(1) = P2

P(3) = P(1) ·P(2) = P ·P2 = P3

...

P(n) = P(1) ·P(n−1) = P ·Pn−1 = P

This gives us that
P(n) = Pn

for all n ∈ N, but we should know the P(n) is n-step transition matrix with P(n) =
{

P(n)
i j

}
i, j∈S

and P(n)
i j =

P(Xn = j | X0 = i). Pn is the n-th power of the one step transition matrix Pn = P ·P · · ·P︸ ︷︷ ︸
n terms

Intuition behind C-K Equation:
Condition at time m (on Xm) and sum up all the probabilities

2.5 Visualization of Discrete Time Markov Chain

DTMC can be presented by weighted directed graph
1. states −→ nodes
2. possible (one-step) transition −→ edges: draw an edge from i to j iff Pi j > 0
3. transition probability −→ weight.
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� Example 2.3 Let S = {0,1,2} with

P =


0 1 2

0 1
2

1
2 0

1 0 0 1
2 2

5
3
5 0


Here is the directed graph:
�

� Example 2.4 — Simple Random Walk Again.

�

2.6 Distribution of Xn

What is the distribution of Xn?
So far, we have seen the transition probability

P(n)
i j = P(Xn = j | X0 = i)
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If the DTMC starts from i for sure (i.e. P(X0 = i) = 1), then the P(n)
i j is also the probability that Xn = j. Hence{

P(n)
i j

}
j∈S

is the distribution of Xn. That is the i-th row of the P(n) is the distribution of Xn if the chain starts

from i

Pn =

−−−i−−−


what if the chain has a random starting state?

Definition 2.6.1 — Initial Distribution. Let µ(i) = P(X0 = i), then the vector µ = (µ(0),µ(1), · · · ,µ(i))
gives the distribution of X0 and this called the initial distribution of this DTMC

� Remark 2.3 This is the initial distribution of the initial state X0.
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Definition 2.6.2 Similarly, we can define µn = (µn(0),µn(1), · · ·) to be the distribution of Xn, where
µn(i) = P(Xn = i). Here we think µn as a row vector representing a distribution. Sometimes, we also
write µn(Xn = i), in this case we think µn as probability.

� Remark 2.4 Note µ0 = µ

� Remark 2.5 — Property of µn.
The row vector µn represent a distribution, hence we have :
1. µn(i)≥ 0 for any i ∈ S
2. ∑i∈S µn(i) = 1 i.e. µn · I= 1 where I= [1,1,1, · · · ]T

Fact 2.6.1 Given µ and P, we have µn = µ ·Pn

Proof: For any j ∈ S:

µn( j) = P(Xn = j) = ∑
all i

P(Xn = j | X0 = i) ·P(X0 = i)

= ∑
all i

µ(i) ·P(n)
i j

= (µ ·P(n)) j

= (µ ·Pn) j

Thus, we have µn = µ ·Pn

� Remark 2.6 We see that the distribution of a DTMC is completely determined by two things:
1. Transition matrix P
2. Initial distribution µ



3. Expectation of DTMC

3.1 Conditional Expectation and E( f (Xn))

Definition 3.1.1 — Conditional Expectation.
Let X ,Y be the discrete random variables. If P(Y = y)> 0, then the conditional distribution of X given
Y = y is defined by

P(X = x | Y = y) =
P(X = x, Y = y)

P(Y = y)

where P(X = x | Y = y) is called the conditional probability mass function (con’d pmf), denoted by

fX |Y=y(x) or fX |Y (x | y)

Proposition 3.1.1 — Conditional pmf is a a legitimate pmf.
For any y s.t. P(Y = y)> 0

∀x, fX |Y=y(x)≥ 0

and
∑
all x

fX |Y=y(x) = 1

The continuous case is similar (with density functions replacing mass functions)

� Remark 3.1 Since hte conditional pmf is a legitimate pmf, the conditional distribution is also a legitimate
probability distribution (just potentially different from the unconditionally distribution). As a result, we can
define expectation under the conditional distribution.

Definition 3.1.2 — Conditional Expectation. Let X ,Y be the discrete random variables, and g be a
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function. Then the conditional expectation of g(X) given P(Y = y)> 0 is defined as

E(g(X) | Y = y) = ∑
all x

g(x)P(X = x | Y = y)

� Remark 3.2 Fixed y, the conditional expectation is nothing else but the expectation under the conditional
distribution.

� Remark 3.3 Different ways to understand conditional expectations (very important)

1. Fix y, E(g(x)) | Y = y) is a number.
2. As y changes, h(y) = E(g(x) | Y = y) is a function of y.
3. Since Y is a random variable, we can define E(g(x) |Y ) = h(Y ). Thus E(g(x) |Y ) is a function of Y , hence
also a random variable

E(g(X) | Y )ω = E(g(X) | Y = Y (ω)) ω ∈Ω

That is , the random variable E(g(X) | Y ) takes value E(g(X) | Y = y) when Y = y.

Proposition 3.1.2 — Linearity of Conditional Expectation.

E(aX +b | Y = y) = a ·E(X | Y = y)+b

E(X +Z | Y = y) = E(X | Y = y)+E(Z | Y = y)

Proposition 3.1.3 — Plug in Property.

E(g(X ,Y ) | Y = y) = E(g(X ,y) | Y = y)

Proof (discrete case) :

E(g(X ,Y ) | Y = y) = ∑
xi

∑
y j

g(xi,yi) ·E(X = xi, Y = y j | Y = y)

=⇒

{
0 if y j 6= y
P(X=xi, Y=y j)

P(Y=y) = P(X = xi, Y = y j) if y j = y

=⇒ E(g(X ,Y ) | Y = y)

= ∑
xi

g(xi,y) ·P(X = xi | Y = y)

= E( g(X ,y)︸ ︷︷ ︸
is a function of X

| Y = y)

In particular,
E(g(X)h(Y ) | Y = y) = E(g(X)h(y) | Y = y) = h(y) ·E(g(x) | Y = y)

In the random variable form

E(g(X)h(Y ) | Y = y) = h(Y ) ·E(g(x) | Y = y)
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Proposition 3.1.4 If X ⊥⊥ Y , then E(g(X), | Y ) = E(g(X))
Reason: independent =⇒ conditional distribution is the same as the unconditional distribution.

Proposition 3.1.5 — Law of Iterated Expectation.

E( E(X | Y )︸ ︷︷ ︸
r.v, function of Y

) = E(X)

Proof (discrete case): When Y = y j, then the random variable

E(X | Y ) = E(X | Y = y j) = ∑
xi

P(X = xi | Y = y j)

This happens with P(Y = y j), thus

E(E(X | Y )) = ∑
y j

E(X | Y = y j) ·P(Y = y j)

= ∑
y j

(
∑
x j

xi ·P(X = xi | Y = y j)

)
P(Y = y j)

= ∑
xi

xi ∑
y j

P(X = xi | Y = y j) ·P(Y = y j)

= ∑
xi

xi ·P(X = xi) by law of total probability

= E(X)

� Example 3.1 Let Y be the number of claims received by an insurance company, X be some random
parameter, such that

Y | X ∼ Poi(X), X ∼ Exp(λ )

Find E(Y )
Solution: Note that

E(Y ) = E(E(Y | X))

Since Y | X ∼ Poi(X) for any x, then E(Y | X = x) = x, so we have E(Y | X) = X . Hence, we have

E(Y ) = E(E(Y | X)) = E(X) =
1
λ

as desired. �

3.2 Expectation of f (Xn)

Let f be a function from S to R. Think f (Xn) as a reward/penalty we receive at step n according to the state.
Average reward/penalty at step n is E( f (Xn))

How to find E( f (Xn))?
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Approach 1:
E( f (Xn)) = ∑

i∈S
f (i) ·P(Xn = i)︸ ︷︷ ︸

µn(i)

= ∑
i∈S

f (i)µn(i) = µn · f T

where f = ( f (0), f (1), .....) is the row vector giving all the values of f in different states. Recall that
µn = u ·Pn where µ is row vector represent the initial distribution and P is transition matrix.
Then we get

E( f (Xn)) = µn · f T = µ ·Pn · f T

Question: What happens if we calculate Pn · f T first?
Answer: This correspond to finding E( f (Xn) | X0 = i) where i ∈ S first. Approach 2:

E( f (Xn)) = E(E( f (Xn) | X0))

= ∑
i∈S

E( f (Xn) | X0 = i) ·P(X0 = i)

= ∑
i∈S

E(F(Xn) | X0 = i) ·µ(i)

:= ∑
i∈S

f n(i) · · ·µ(i)

= µ ·
(

f (n)
)T

where (
f (n)
)T

=

E( f (Xn) | X0 = 0)
E( f (Xn) | X0 = 1)

...


How can we find

(
f (n)
)T

?

( f (n))T (i) = E( f (Xn) | X0 = i)

= ∑
j

f ( j) ·P(Xn = j | X0 = i)

= ∑
j

P(n)
i j · f ( j)

=
(
Pn · f T )

i

Thus,
(

f (n)
)T

= Pn · f T . Going back to (∗), we have

E( f (Xn)) = µ ·
(

f (n)
)T

= µ ·Pn · f T

which agrees with what we get from approach 1.
In summary, the E( f (Xn)) = µ · Pn · f T , calculate µPn first: E( f (Xn)) = µn · f T starting at n, find the
distribution of Xn. If calculate Pn · f T first:

E( f (Xn)) = µ ·

E( f (Xn) | X0 = 0)
E( f (Xn) | X0 = 1)

...


starting at 0, find E( f (Xn) | X0 = i) where i ∈ S. In both cases, row vectors are distributions: µ,µ1,µ2... while
column vectors are functions f T ,

(
f (n)
)T
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3.3 Stationary Distribution

Definition 3.3.1
A probability distribution π = (π0,π1, .....) is called a stationary distribution (invariant distribution) of a
DTMC {Xn}n=0,1,2,.. with transition matrix P if:
(1) π = π ·P ←− systems of equations (Stationary Condition)
(2) ∑

i∈S
πi = 1 ←− Normalization Condition, also written as π · I= 1 where I= (1,1,1...,1)T

Why such π is called stationary?
Assume the DTMC starts from the initial distribution µ = π , then the distribution of X1 is µ1 = µ ·P = πP
The distribution of X2: µ2 = µ ·P2 = π ·P ·P = π = µ and so on. Thus µn = µ = π . If the DTMC starts from
a stationary distribution, its distribution will never change. =⇒ "Stationary" ("Invariant")

� Example 3.2 An election has two states: ground state 0 and excited state 1. Let Xn = {0,1} be its state at
time n. At each step, the election changes state with probability α if it’s in state 0, with probability β if it’s in
state 1. Then {Xn} is a DTMC, it’s transition matrix is

P =

( 0 1
0 1−α α

1 β 1−β

)
Goal: Solve for the stationary distribution.
Solution: solve π = π ·P:

(π0 π1)

(
1−α α

β 1−β

)
= (π0 π1)

Then we have {
π0(1−α)+π1β = π0 (1)

π0α +π1(1−β ) = π1 (2)

We have two equations and two unknows; however, note that they are linearly dependent. From (1), we
have απ0 = βπ1 =⇒ π0

π1
= β

α
. However, we don’t get their values by only using (1). This is where we need

π0 +π1 = 1, then

π0 =
β

α +β
and π1 =

α

α +β

Then, there exists one unique stationary distribution

π =

(
β

α +β
,

α

α +β

)
�

� Remark 3.4 The may to solve for the stationary distribution in the example above is typical.
1. Use π = π ·P to get proportion among different component of π .

(−−π−−) ·


...

−−−−P−−−−
...

= (−−π−−)
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Reason: (1) The system of equation is always linearly dependent. (2) This system of equation is homogeneous.
(if π is a solution, then aπ = (aπ0,aπ1, ....) is also a solution)
2. Use π · I= 1 to normalize to get exact values.

� Remark 3.5 We note that π = πP, this implies that π is the transpose of an eigenvector of P with eigenvalue
1.

Question: Existence and uniqueness of π? Converge to π?



4. Properties of DTMC

4.1 Recurrence and Transience

Definition 4.1.1 — First (Re)Visit to y.
Let y ∈ S be a state, define Ty to be

Ty = min{n≥ 1 : Xn = y}

to be the time of the first (re)visit to y, and we define

ρyy = Py( Ty < ∞︸ ︷︷ ︸
the DTMC ever (re)visit y

) = P(Ty < ∞ | X0 = y)

where Py is the conditional probability under the condition X0 = y

Definition 4.1.2 — Recurrent and Transient State.
A state y ∈ S is called recurrent, if the ρyy = 1 (always return to y), a state y ∈ S called transient, if

ρyy < 1︸ ︷︷ ︸
1−ρyy=Py(Ty=∞)>0

(never revisit y again with pass probability)

� Example 4.1 Consider a DTMC with

P =


0 1 2

0 1
2

1
2 0

1 0 1
2

1
2

2 0 0 1


Graphical Representation:
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Assume X0 = 0, two possibilities for X1:

X1 = 0 =⇒ T0 = 1

X1 = 1 =⇒ T0 = ∞ because states 1 and 2 will never go to 0

Then ρ00 = P0(T0 < ∞) = P0(X1 = 0) = 1
2 < 1, so by definition the state 0 is transient. Similarly, the state

1 is also transient. Assume X0 = 2, then P(X1 = 2 | X0 = 2) = 1, so T2 = 1. Then ρ22 = P2(T2 < ∞) = 1, by
definition the state 2 is recurrent. �

� Remark 4.1 This is an example where recurrence and transience can be directly checked by definition.
However, this is very rare, as the distribution of Ti is very hard to deride in general. Thus, we need better
criteria for recurrence/transience.

4.2 Communication

Definition 4.2.1 — x communicates to y.
Let x,y ∈ S (possible the same state). x is said to communicate to y, or "y is accessible from x". Denoted
by x→ y, if starting from x, the probability that the chain eventually (re)visits state y is positive. i.e.

ρxy := Px(Ty < ∞)> 0

Note that this is equivalent to say
∃ n≥ 1 , Pn

xy > 0

or say “x can go to y".

Lemma 4.2.1 — Transitivity of Communication.
If x→ y and y→ z , then x→ z.

Proof: x→ y =⇒ ∃m≥ 1 s.t. Pm
xy > 0 and y→ z =⇒ ∃n≥ 1 s.t. Pn

yz > 0. Then by C-K equation

Pm+n
xz = ∑

k∈S
Pm

xkPn
kz ≥ Pm

xy︸︷︷︸
>0

Pn
yz︸︷︷︸

>0

> 0

Then we have x→ z

Intuition: Pm
xyPn

yz specifies one way to go from x to z in m+ n steps (via y). While the quantity Pm+n
xz
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is the total probability to go from x to z in m+n steps.

Theorem 4.2.2
If ρxy > 0 but ρyx < 1, then x is transient

Proof: Define k = min
{

k : Pk
xy > 0

}
to be the smallest length of a path from x to y. Since Pk

xy > 0,
there exists states y1, .....,yk−1 s.t.

Pxy1Py1y2 . . .Pyk−1y > 0

Moreover, none of y1, ...,yk−1 is x, since otherwise this is not the shortest path. Once we are in state y, with
probability 1−Pyx > 0, we will never go back to x.

P(Tx = ∞)≥ Pxy1Py1y2 . . .Pyk−1y · (1−Pyx)

where Pxy1Py1y2 . . .Pyk−1y is the path going from x to y without returning to x and (1−Pyx) corresponds to the
idea of once in y, it never goes back. This is one way not to visit x again (via y). Then Pxx = Px(Tx < ∞)< 1,
so x is transient.

Corollary 4.2.3
If x is recurrent and ρxy > 0, then ρyx = 1. (the contrapositive of the theorem 2.11.2)

Definition 4.2.2 — Communicating Class.
A set of states C ⊆ S is called a communicating class, if it satisfies the followings:

1. ∀i, j ∈C, i→ j and j→ i
2. ∀i ∈C and j /∈C, i 9 j or j 9 i

"States in the same class communicate with each other states in different classes do not communicate in
both ways"

Communication and Communicating Class in graphs:

i→ j: we can go from i to j by following the arrows (directed edges)

How to find the classes: "find the loops"

� Example 4.2

P =


0 1 2 3

0 1
2

1
2 0 0

1 1
2

1
2 0 0

2 1
4

1
4 0 1

2
3 0 0 0 1


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P01 > 0 , P10 > 0 =⇒ 0 ,1 in a same class
State 2 not in any class, because ∀i ∈ S , Pi2 = 0

State 3 forms its own class, because 3→ 3, but ∀i ∈ S and i 6= 3 , P3i=0

Therefore, there are two classes: {0,1} and {3}, but state 2 which does not belong to any class. �
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� Example 4.3

P01, P12, P20 > 0 =⇒ 0, 1, 2 in the same class
P23 > 0, P32 > 0 =⇒ 2, 3 in the same class

Then, by transitivity we have {0, 1, 2, 3} all in the same class. �

Definition 4.2.3 — Irreducible Markov Chain.
A DTMC is called irreducible, if all states are in the same class. In other words:

∀ i, j ∈ S , i←→ j

A set B is called irreducible, if i←→ j, ∀i, j ∈ B

Theorem 4.2.4
Let i, j ∈C be in a same communicating class C, then j is recurrent/ transient if and only if i is recurrent/
transient ("Recurrent/ Transient are class properties")

Proof: will be given later in the class.

� Remark 4.2 As a result of this theorem, we can call a class recurrent/ transient, if all its states are recurrent/
transient. ⇐⇒ one state in the class is recurrent/ transient.
Hence, in order to check if a class is recurrent/ transient, we just need to check one state in that class.

Definition 4.2.4 — Closed Set.
A set A of states is called closed, if i ∈ A, j /∈ A =⇒ Pi j = 0 ⇐⇒ i ∈ A, j /∈ A =⇒ i 9 j
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4.3 Decomposition of the State Space

Theorem 4.3.1
The state space S can be written as a disjoint union

S = T ∪R1∪R2∪ ......

where T is the set of all transient states. (not necessarily one class), and Ri for i = 1,2... are closed recurrent
classes.

Proof: First, collect all the transient states and put them into T . For each recurrent state, it must be-
long to a recurrent class, since at least if communicates to itself. Take one class containing it. Put these
classes together and remove the identical ones. Denote the left by R1,R2, ....., then we have

S = T ∪R1∪R2∪ ......

What is left to prove: (1) R1,R2, ..... are disjoint and (2) R1,R2, ..... are closed.
For (1) Suppose there are Rm,Rn such that Rm∩Rn 6= /0. Let i ∈ Rm∩Rn, then for any j ∈ Rm and k ∈ Rn

we have i←→ j and i←→ k =⇒︸︷︷︸
transitivity

j,k in the same class. Since this holds for any j ∈ Rm and k ∈ Rn, Rn

and Rm are the same class, contradicting the construction. Then we have R1,R2, .... are disjoint.

For (2) Suppose there exists Rk which is not closed, then exists i ∈ Rk and j /∈ Rk such that Pi j > 0 =⇒
i→ j ⇐⇒ Pi j > 0 Since j /∈ Rk and i j. Hence, ji ⇐⇒ Pji = 0 < 1. Then, the state i is transient.
Contradiction!

4.4 More Recurrence and Transience

Recall Ty = min{n≥ 1 : Xn = y}

Theorem 4.4.1 — Strong Markov Property of (time-homogeneous) DTMC.
The process

{
XTy+k

}
k=0,1,.. behaves like DTMC with initial state y. (Forget the history and restart from y)

Note: XTy+k is a random variable defined as XTy+k(ω) = XTy(ω)+k(ω)

Proof: (Use T for Ty) It’s suffices to show

P(XT+1 = z | XT = y, T = n, Xn−1 = xn−1, ...., X0 = x0) = Pyz
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for all n, xn−1, ....., x1 6= y, x0 ∈ S. Indeed, we have

P(XT+1 = z | XT = y, T = n, Xn−1 = xn−1, ...., X0 = x0)

= P(Xn+1 = z | XT = y, T = n, Xn−1 = xn−1, ...., X0 = x0)

= P(Xn+1 = z | Xn = y, Xn−1 = xn−1, ...., X0 = x0)

= P(Xn+1 = z | Xn = y) by property of DTMC
= Pyz

Definition 4.4.1
Define T 1

y = Ty and for k ≥ 2, define

T k
y = min

{
n≥ T k−1

y : Xn = y
}

to be the time of the k− th (re)visit of state y.

By Strong Markov Property
Py(T k

y < ∞) = (ρyy)
k

where T k
y is (re)visits y for at least k times and (ρyy)

k represents revisits y for the first time
There are two possibilities:

1. y is transient ⇐⇒ ρyy < 1, then ρk
yy→ a as k→ ∞, hence

Py(visits y for infinite number of times) = 0 ⇐⇒ Py(only visits y for finite number of times) = 1

⇐⇒ Py(there exists a last visit to y) = 1

2. y is recurrent ⇐⇒ ρyy = 1, then ρk
yy = 1 for all k.

Py(visits y for infinite number of times) = 1

Indeed, we know more: Let N(y) be the total number of visits to state y, then

Py(N(y)≥ k) = Py(T k
y < ∞) = ρ

k
yy =⇒ Py(N(y)≥ k+1) = ρ

k+1
yy

=⇒ Py(N(y)≤ k) = 1−ρ
k+1
yy

This is the c.d.f of Geo(1−ρyy), hence

N(y) | X0 = y∼Geo(1−ρyy)

"keep trying until leaving y forever"

EyN(y) =
ρyy

1−ρyy

then
ρyy < 1 =⇒ EyN(y)< ∞ ρyy = 1 =⇒ EyN(y) = ∞

Therefore, we have

y is transient ⇐⇒ EyN(y)< ∞ and y is recurrent ⇐⇒ EyN(y) = ∞

More generally, we have
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Lemma 4.4.2

ExN(y) =
ρxy

1−ρyy

Proof:

ExN(y) = Ex(N(y) | Ty < ∞) ·Px(Ty < ∞)+Ex(N(y) | Ty = ∞) ·Px(Ty = ∞)

= Ex(N(y) | Ty < ∞) ·Px(Ty < ∞)

= ρxy · (Ey(N(y))+1)

= ρxy ·
(

ρyy

1−ρyy
+1
)

= ρxy ·
1

1−ρyy

=
ρxy

1−ρyy

4.5 A short Review of Indicator

Let A be an event, then IA is a random variable given by

IA(ω) =

{
1 If ω ∈ A

0 If ω /∈ A

Then E(IA) = 1 ·P(A)+0 ·P(Ac) = P(A)

Lemma 4.5.1

ExN(y) =
∞

∑
n=1

Pn
xy

Proof:

N(y) =
∞

∑
n=1

IXn=y =⇒ ExN(y) = Ex

(
∞

∑
n=1

IXn=y

)
=

∞

∑
n=1

Ex(IXn=y)

=
∞

∑
n=1

Px(Xn = y)

=
∞

∑
n=1

Pn
xy



30 Chapter 4. Properties of DTMC

Combining this with the previous results, we have

y is transient ⇐⇒
∞

∑
n=1

Pn
yy < ∞

y is recurrent ⇐⇒
∞

∑
n=1

Pn
yy = ∞

Theorem 4.5.2 — Transience/Recurrence are Class Properties.

Proof: Assume x,y are in the same class (x←→ y) and x is recurrent. We show y is recurrent. Since x→ y
and y→ x, there are m,n ∈ Z+ such that

P(n)
xy > 0 Pn

yx > 0

Note that

Pn+m+k
yy = P(Xn+m+k = y | X0 = y)

≥ P(Xn+m+k = y, Xn+k = x, Xn = x | X0 = y)

= Pn
yx ·Pk

xx ·Pm
xy

Since x is recurrent, consider k = l−m−n then we have

∞

∑
l=1

Pl
yy ≥

∞

∑
l=m+n+1

Pl
yy =

∞

∑
k=1

Pn+m+k
yy ≥

∞

∑
k=1

Pn
yxPk

xxP = Pn
yx︸︷︷︸
>0

Pm
xy︸︷︷︸
>0

·

(
∞

∑
k=1

Pk
xx

)
︸ ︷︷ ︸

=∞

= ∞

Therefore, y is recurrent, so recurrence is a class property.
As a result, transience is also a class property. (transience ⇐⇒ not recurrence)

Lemma 4.5.3 — A finite closed set has at least one recurrence state.

Proof: Let C be a finite closed set. Suppose all the states in C are transient. Then for any states x,y ∈C we
have

Ex(N(y)) =
ρxy

1−ρyy
< ∞ =⇒ ∑

y∈C
Ex(N(y))< ∞

However,

∑
y∈C

Ex(N(y)) = Ex

(
∑
y∈C

N(y)

)
= Ex

(
∑
y∈C

∞

∑
n=1

IXn=y

)
= Ex

(
∑
n=1

∑
y∈C

IXn=y

)
Since C is closed, starting from x, at any times n, Xn must be in one of the states in C. Hence, one indicator
takes value 1, the rest are 0, so

∑
y∈C

IXn=y = 1
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Thus

Ex

(
∑
y∈C

∞

∑
n=1

IXn=y

)
= Ex

(
∞

∑
n=1

1

)
= ∞

This is a contradiction! Hence, we conclude that there must be at least one recurrent state.

Combine this lemma with the fact that transience/recurrence are class properties, we have:

Theorem 4.5.4 — A Finite Closed Class Must be Recurrent.
In particular, on irreducible DTMC with finite state space is recurrent.

� Example 4.4

�

� Example 4.5

�
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4.6 Existence of Stationary Measure

In this part, we show that on irreducible and recurrent (property of the chain since it is irreducible)
DTMC "almost" has a stationary distribution. If the state space is finite, then it has a stationary
distribution

Definition 4.6.1
A row vector µ∗ = (µ∗(0),µ∗(1), .....) is called a stationary measure/invariant measure, if µ∗(i)≥ 0 for
all i ∈ S and µ∗P = µ∗

� Remark 4.3 As we can see, a stationary measure is a stationary distribution without normalization. If
∞

∑
i=0

µ
∗(i)< ∞, then it can be normalized to get a stationary distribution.

Normalization : µ(i) =
µ∗(i)

∑ j µ∗( j)

Theorem 4.6.1
Let {Xn}n=0,1.... be an irreducible and recurrent DTMC with transition matrix P. Let x ∈ S and Tx =
min{n≥ 1 : Xn = x}, then

µx(y) =
∞

∑
n=0

Px(Xn = y, Tx > n) y ∈ S

defines a stationary measure with 0 < µx(y)< ∞ for all y ∈ S

Proof: Define P̄n
xy = Px(Xn = y, Tx > n), then µx(y) =

∞

∑
n=0

P̄n
xy. Now we have two cases.

Case 1: For z 6= x

(µxP)(z) = ∑
y

µx(y)Pyz =
∞

∑
n=0

∑
y

P̄n
xyPyz

where
∑
y

P̄n
xyPyz = ∑

y
Px(Xn = y, Tx > n, Xn+1 = z) = Px(Tx > n+1, Xn+1 = z) = P̄n+1

zx

Then
∞

∑
n=0

∑
y

P̄n
xyPyz =

∞

∑
n=0

P̄n+1
zx =

∞

∑
n=0

P̄n
zx = µx(z)

Case 2: For z = x, similarly, we have

∞

∑
n=0

∑
y

P̄n
xyPyx = ∑

y
Px(Xn = y, Tx > n, Xn+1 = x) = Px(Tx = n+1)

and

(µxP)(x) =
∞

∑
n=0

∑
y

P̄n
xyPyx =

∞

∑
n=0

Px(Tx = n+1) = 1
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Since x is recurrent, so (µxP)(x) = 1 = µx(x) =
∞

∑
n=0

Px(Xn = x, Tx = n). Combine these two parts, we have

(µxP)(z) = µx(z) for any z ∈ S =⇒ µxP = µx

Next we will show 0 < µx(y)< ∞ for any y ∈ S, first

1 = µx(x) = (µxPn)(x) = ∑
z

µx(z)Pn
zn ≥ µx(y) Pn

yx︸︷︷︸
>0

for any n

Since the chain is irreducible, Pn
yx > 0 for same n, so µx(y)< ∞.

Second, recall that we have proved earlier that if x→ y, then there is a way visit y before returning to x, so

Px(number of visits to y before returning to x≥ 1)> 0

this implies that
Ex︸︷︷︸

µx(y)

(number of visits to y before returning to x≥ 1)> 0

which completes the proof.

� Remark 4.4 Note that

µx(y) =
∞

∑
n=0

Px(Xn = y, Tx > n)

=
∞

∑
n=0

Ex(IXn=y, ITx>n)

= Ex

Tx=1

∑
n=0

IXn=y

= Ex(number of visits to y before returning to x)

Cut the Markov Chain into different "cycles" according to visits to state x.

µx(y) = Ex(number of visits to y before returning to x)

In particular, µx(x) = 1

4.7 Periodicity

Definition 4.7.1 — Periodicity.
The period of state x is defined as

d(x) := gcd{n≥ 1 : Pn
xx > 0}

� Remark 4.5 We are taking the gcd of the number of steps by which the process returns to x with positive
probability (x can go back to x in n steps), not the number of steps this probability is 1 (x must go back to x
in n steps). There is no guarantee that the chain will be in state x at time d(x). Indeed, we don’t even always
have Pd(x)

xx > 0. The d(x) = d means: If n is not a multiple of d, then Pn
xx = 0.
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Definition 4.7.2 — Aperiodic.
If d(x) = 1, we say state x is aperiodic, we call this MC aperiodic

Note: If Pxx > 0, then x is obviously aperiodic. However, note that the converse is not true. x is aperiodic
does not imply Pxx > 0.

� Example 4.6

�

� Example 4.7 Simple random walk revisited. Consider a symmetric simple random walk (p = 1
2).

Pn
00 = 0 if n is odd

Pn
00 =

(
n
n
2

)
·
(

1
2

)n

if n is even

Note:
(

n
n
2

)
is the number of ways to get n

2 steps to the left and n
2 steps to the right. We have that

d(0) = gcd{2,4,6, ...}= 2

Then we have d(i) = 2 for all i ∈ Z.

From this graph, it’s easy to see that d(0) = d(i) = 2 also for p 6= 1
2 . i.e. p ∈ (0,1) �



4.8 Convergence Theorem 35

Lemma 4.7.1 — Period is a Class Property.

x←→ y =⇒ d(x) = d(y)

Proof: Since x→ y and y→ x, there exists n,m such that Pm
xy > 0 and Pn

yx > 0. Then we have

Pm+n
xx ≥ Pm

xyPn
yx

Moreover, for any l such that Pl
yy > 0, we have Pm+n+l

xx ≥ Pm
xxPl

yyPn
yx. As a result, d(x) | (m+ n) and

d(x) | (m+n+ l) so by DIC we have d(x) | l. Since this holds for all l such that Pl
yy > 0, d(x) is a common

divisor of
{

l : Pl
yy > 0

}
. Recall that d(y) is the largest common divisor of the same set, d(x) ≤ d(y),

similarly we have d(y)≤ d(x), then d(x) = d(y) as desired.

4.8 Convergence Theorem

Conditions:

I: The DTMC is irreducible
A: The DTMC is aperiodic
R: All the states are recurrent
S: There exists a stationary distribution π

Lemma 4.8.1
If there exists a stationary distribution π such that π(y)> 0, then state y is recurrent.

Proof: Assume {xn}n=0,1,.. is a DTMC starts from the stationary distribution π , then P(Xn = y) = π(y)︸︷︷︸
>0

where n = 0,1, ...., so

∞ =
∞

∑
n=1

P(Xn = y) =
∞

∑
n=1

E(IXn=y) = E

(
∞

∑
n=1

IXn=y

)
= E(N(y))

= ∑
x∈S

Ex(N(y)) ·π(x)

= ∑
x∈S

π(x) ·
ρxy

1−ρxy

≤∑
x∈S

π(x) · 1
1−ρyy

=
1

1−ρyy

Then ρyy = 1, so y is recurrent.
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Corollary 4.8.2
If y is transient, then π(y) = 0 for any stationary distribution π

Proof: Take the contrapositive of the Lemma 2.17.2

Corollary 4.8.3
If a DTMC is irreducible and there exists a stationary distribution π , then all the state are recurrent.

Proof: Since there exists a stationary distribution π , so exists a state y such that π(y) > 0, so y is re-
current. The irreducible implies all the states are recurrent.

Lemma 4.8.4
If y is aperiodic, then there exists n0 such that Pn

yy > 0 for all n≥ n0

Proof: We use a fact from number theory, a corollary of Bezout’s Lemma: If we have a set I of co-
prime numbers, then exist integers i1, ...., im ∈ I and n0 such that for any n≥ n0 n can be written as

n = a1ii + ......+anim

where a1, ...,am are positive integers. Hence, I =
{

n≥ 1 : Pn
yy > 0

}
, by aperiodicity, use the above fact, we

have there exists n0 ∈ Z+ such that for any n≥ n0 there exists a1, ....,am > a and i1, ...., im ∈ I such that

n = a1i1 + ......+amim

Then we have
Pn

yy ≥ Pi1
yyPi1

yy.......P
i1
yy︸ ︷︷ ︸

a1 terms

Pi1
yyPi2

yy.......P
i2
yy︸ ︷︷ ︸

a2 terms

.......Pim
yy Pim

yy .......P
im
yy︸ ︷︷ ︸

am terms

> 0

which completes the proof.

Theorem 4.8.5 — Convergence.
If a DTMC is irreducible, aperiodic and exists a stationary distribution π , then

lim
n→∞

Pn
xy = π(y) ∀x,y ∈ S

Proof: Consider two independent DTMC {Xn} and {Yn} which have the same transition matrix P, and
arbitrary initial distributions. It’s easy to show that Zn = (Xn,Yn) is also a DTMC, with transition matrix
P(x1,y1),(x2,y2) = Px1x2Py1y2 . Next we show that under the conditions that a DTMC is irreducible and aperiodic,
{Zn} is also irreducible. Since {Xn} is irreducible, for any x1,x2 there exists k such that Pk

x1x2
> 0. Similarly,

for any y1,y2 there exists l such that Pl
y1y2

> 0. Since the DTMC is aperiodic, by the Lemma 2.17.5 we
have Pm

x1x2
> 0 and Pm

y1y2
> 0 for all m large enough. That is there exists M such that Pm

x1x2
> 0 and Pm

y1y2
> 0

for all m≥M. Then for n≥M+max{k, l} we have

Pn
x1x2
≥ Pk

x1x2
Pn−k

x1x2
> 0 and Pn

y1y2
≥ Pl

y1y2
Pn−l

y1y2
> 0
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This gives us that
P(x1,y1),(x2,y2) = Px1x2Py1y2 > 0

Since this holds for all (x1,y1) and (x2,y2), so DTMC {Zn} is irreducible. Moreover, {Zn} is recurrent, to
see this we note that π(x,y) = π(x)π(y) is a stationary distribution of {Zn}. Take x such that π(x)> 0, then
π(x,x)> 0. By the Lemma 2.17.2 the state (x,x) is recurrent. Since {Zn} is irreducible, so all the states in
{Zn} are recurrent. Now define T = min{n≥ 0 : Xn = Yn}, the first time that the chain meets. Also define

V (x,x)︸ ︷︷ ︸
≥T

= {n≥ 0 : Xn = Yn = x}= min{n≥ 0 : Zn = (x,x)} ≤min{n≥ 1 : Zn = (x,x)}= T (x,x)

and we see that

P(T (x,x)< ∞) = E(P(T (x,x)< ∞ | (x0,y0))) for any x0,y0

= P(T (x,x)< ∞ | X0 = x0,Y0 = y0)

= ρ(x0,y0),(x,x)

{Zn} irreducible =⇒ (x,x)→ (x0,y0) and ρ(x,x),(x0,y0)> 0. And we see (x,x) is recurrent =⇒ ρ(x0,y0),(x,x)= 1.
Thus P(T (x,x)< ∞) = 1, so

T ≤V (x,x)≤ T (x,x)< ∞

for some state. Therefore, we have proved that the two independent DTMC {Xn} and {Yn} will eventually
meet. (with prob 1)
For any state y ∈ S, by discussing the values of T and XT , we have for any n

P(Xn = y,T ≤ n) =
n

∑
m=0

∑
x∈S

P(T = m,Xm = x,Xn = y)

=
n

∑
m=0

∑
x∈S

P(T = m,Xm = x) ·P(Xn = y | X−m = x)

=
n

∑
m=0

∑
x∈S

P(T = m,Xm = x) ·Pn−m
xy

=
n

∑
m=0

∑
x∈S

P(T = m,Ym = x) ·P(Yn = y | Ym = x)

= P(Yn = y,T ≤ n)

"After meeting, they have the same distribution", then

|P(Xn = y)−P(Yn = y)|= |P(Xn = y,T ≤ n)+P(Xn = y,T > n)−P(Yn = y,T ≤ n)−P(Yn = y,T > n)|
= |P(Xn = y,T > n)−P(Yn = y,T > n)|
≤ P(Xn = y,T > n)+P(Yn = y,T > n)

≤ 2P(T > n)→ 0 as n→ ∞

Recall that this holds for any initial distribution of {Xn} and {Yn}. Take x0 = x, Y0 ∼ π , then by the above
we have ∣∣Pn

xy−π(y)
∣∣= |P(Xn = y)−P(Yn = y)| → 0 as n→ ∞
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that is
lim
n→∞

Pn
xy = π(y) ∀x,y ∈ S

which completes the proof.

� Remark 4.6 Note: π(y) does not depend on the starting state x, the stationary distribution is unique. The
limiting transition probability, hence also the limiting distribution, does not depend on where we start.

lim
n→∞

Pn
xy = π(y) =⇒ lim

n→∞
P(Xn = y) = π(y)

Theorem 4.8.6 — Asymptotic Frequency.
Suppose a DTMC is aperiodic and all states are recurrent. If Nn(y) is the number of visits to y up to time n,
then

lim
n→∞

Nn(y)
n

=
1

Ey(Ty)

where recall that Ty = min{n≥ 1 : Xn = y}.

"Long-run function of time spent in y is
1

Ey(Ty)
" and the

1
Ey(Ty)

is the expected cycle length.

Proof:We chop the time line into different cycles. Let T (1)
y ,T (2)

y , ..... be the times that the chain (re)visits y
after time 0. By the strong Markov property, T (2)

y −T (1)
y ,T (3)

y −T (2)
y , ..... are i.i.d r.v.s We recall the strong

law of large number: X1,X2, ... i.i.d then
∑

n
i=1 Xi

n
→ E[X1]. By SLLN,

T (k)
y −T (1)

y

k−1
=

∑
k−1
i=1 T (i+1)

y −T (i)
y

k−1
→ E

(
T (i+1)

y −T (i)
y

)
= Ey(Ty)

with negligible changes, this implies

T (k)
y

k
→ Ey(Ty) as k→ ∞ (almost surely)

Note that
T (Nn(y)

y

N−n(y)︸ ︷︷ ︸
→Ey(Ty)

≤ n
Nn(y)

<
T (Nn(y)+1

y

Nn(y)+1
· Nn(y)+1

Nn(y)︸ ︷︷ ︸
→Ey(Ty)

Then, we have that
n

Nn(y)
→ Ey(Ty) with prob 1

This gives us that
Nn(y)

n
→ 1

Ey(Ty)
with prob 1

as desired.
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4.9 Cycle Length and the Uniqueness of Stationary Distribution

Theorem 4.9.1
If a DTMC is irreducible and there exists a stationary distribution, then

π(y) =
1

Ey(Ty)

In particular, the stationary distribution is unique.

Proof: Since irreducible and stationary distribution implies all states are recurrent, we can apply the
above theorem and get

Nn(y)
n
→ 1

Ey(Ty)

take the expectation both sides

E
(

Nn(y)
n

)
→ 1

Ey(Ty)
Dominated Convergence Theorem

This gives us that

E(Nn(y)) = E

(
n

∑
m=1

IXn=y

)
=

n

∑
m=1

E(IXn=y) =
n

∑
m=1

P(Xm = y)

This result holds for any initial distribution. Now assume the chain starts from the stationary distribution π .
Then we have

P(Xm = y) = P(X0 = y) = T (y) =⇒ E(Nn(y)) = nT (y)

Thus,

E
(

Nn(y)
n

)
= π(y) =

1
Ey(Ty)

Corollary 4.9.2
If a DTMC is irreducible, aperiodic and has a stationary distribution. Then

π(y) = lim
n→∞

Pn
xy = lim

n→∞

Nn(y)
n

=
1

Ey(Ty)

i.e.

Stationary distribution= limiting transition prob=Long-run fraction of time= 1/expected cycle length

"Everything exists and things are all equal"
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4.10 Long Run Average

Lemma 4.10.1
If a DTMC is irreducible and has a stationary distribution , then π(x)> 0 for all x ∈ S

Proof: Since π is a stationary distribution,

∑
z

π(z) = 1 =⇒ π(y)> 0 for some y ∈ S

Since markov chain is irreducible for any state x ∈ S, y→ x

=⇒ ∃ n ∈ N s.t. Pn
yx > 0

Since π is a stationary distribution, then π = π ·Pn. Hence, we have

π(x) = ∑
z∈S

π(z) ·Pn
zx ≥ π(y)︸︷︷︸

>0

· Pn
yx︸︷︷︸
>0

> 0

Theorem 4.10.2 — Long Run Average.
If a DTMC is irreducible and has a stationary distribution, and a function f satisfies ∑

x
| f (x)|π(x)< ∞,

then

lim
n→∞

1
n

n

∑
m=1

f (xm)︸ ︷︷ ︸
reward from 1 to n︸ ︷︷ ︸

average reward per step︸ ︷︷ ︸
long-run average reward per step

= ∑
x

f (x)π(x) = π · f T = π · [ f (0), f (1), ...]T

Proof: Since irreducible and stationary distribution implies all states are recurrent, from the result for the
existence of stationary measure, we have for y ∈ S

µx(y) =
∞

∑
n=0

Px(Xn = y,Tx > n) = Ex(number of visits to y before returning to x) = ExNTx(y)

Moreover, note that ∑y ExNTx(y) = Ex(Tx) =
1

π(x) and π(x)> 0=⇒ Ex(Tx)<∞. Then we can see {πx(y)}=

{Ex(NTx(y))}y∈S is negligible, and
{

Ex(NTx (y))
Ex(Tx)

}
y∈S

gives a stationary distribution. Moreover, irreducible

and has a stationary distribution implies the stationary distribution is unique. Hence,

Ex(NTx(y))
Ex(Tx)

= π(y)

Recall that Ex(Tx) =
1

π(x) , we have

Ex(NTx(y)) =
π(y)
π(x)
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Again, we use the "cycle trick". The reward collected in k− th cycle (defined by returns to x) is

Yk =
Tk

∑
m=Tk−1+1

f (xm)

and we have

E(Yk) = ∑
y∈S

Ex(NTx(y)) · f (y) Strong Markov Property

=
∑y∈S π(y) f (y)

π(x)

=
π · f T

π(x)

the average reward over time is

∑
Nx(x)
k=2 Yk +negligible term

∑
Nn(x)
k=2 (Tk−Tk−1)+negligible term

where Tk = T (k)
x is the time of the k-th (re)visit to x. The negligible terms come from the first and the last

cycles. Strong law of the large number:

∑
Nx(x)
k=2 Yk +negligible term

∑
Nn(x)
k=2 (Tk−Tk−1)+negligible term

=

1
Nn(x)−1 ∑

Nn(x)
k=2 Yk

1
Nn(x)−1 ∑

Nx(x)
k=2 (Tk−Tk−1)

→ E(Yk)

Ex(Tx)
=

π · f T/π(x)
1/π(x)

= π · f T

4.11 Application of the Main Theorems

� Example 4.8

P =


0 1 2 3

0 0.1 0.2 0.4 0.3
1 0.1 0.2 0.4 0.3
2 0.3 0.4 0.4 0
3 0.1 0.2 0.4 0.3


Irreducible: P03,P32,P21,P10 > 0
Aperiodic: P00 > 0
Recurrent: Irredicible DTMC with finite state space.
Solve for stationary distributions:{

πP = P

πI= 1
=⇒ π =

(
19
110

,
30
110

,
40
110

,
21
110

)
By previous result, we have limiting transition prob

lim
n→∞

Pn
xy = π(y) for example: lim

n→∞
Pn

12 = π(2) =
4
11
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Note again that this limit does not depend on the initial state x

Long-run fraction of time visiting y: lim
n→∞

Nn(y)
n

= π(y). For example, the long-run fraction of time that the

chain visits/spends in state 0 is given by π(0) = 19
110 .

Expected time that the chain visit state y again, given if starts from y: Ey(Ty) =
1

π(y) . For example, given the

chain starts from state 3, the expected time that it returns to state 3 is 1
π(3) =

110
21

Long-run average: For example, we are looking at an inventory model, and the holding cost for state x
is 2x, then the average holding cost per unit of time in the long-run is

π · f T =
173
55

� Remark 4.7 Typically, the stationary distribution is easy to find. So the above results are usually used to
find the other related quatities.

�

4.12 Roles of different conditions

Irreduciblity is related to the uniqueness of the stationary distribution.

irreducible =⇒ stationary distribution is unique (if exists)

Example

P =

(
1 0
0 1

)
Both (1,0) and (0,1) are stationary distributions. Then, any convex combination of them:

a(1,0)+(1−a)(0,1) = (a,1−a) a ∈ [0,1]

is a stationary distribution. Therefore, π is not unique. As a result, lim
n→∞

Pn
xy and lim

n→∞
P(Xn = y) will depend on

the initial state/distribution.
lim
n→∞

Pn
01 = 0 lim

n→∞
Pn

11 = 1

Aperiodicity is related to the existence of lim
n→∞

Pn
xy

y aperiodic =⇒ lim
n→∞

Pn
xy exists

� Example 4.9

P =

(
0 1
1 0

)
so we can see d(0) = d(1) = 2. Note that P2 = I =⇒ P2n = I and P2n+1 6= I.
Thus, lim

n→∞
Pn

xy does not exists for x,y ∈ {0,1} �

Recurrence:is related to the existence of a stationary distribution. The MC is (irreducible and) recurrent,
implies a stationary measure exists. "positive recurrence" implies stationary distribution exists
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5.1 Detailed Balance Condition
Definition 5.1.1 — Detailed Balance Condition.
A distribution π = {π(x)}x∈S is said to satisfy the detailed balanced condition if

π(x)Pxy = π(y)Pyx ∀ x,y ∈ S

Proposition 5.1.1 Detailed Balance Condition =⇒ Stationary Distribution

Proof: Note that the (πP) j is defined as (πP) j = ∑
i∈S

π(i)Pi j. Since π satisfies the detailed balance

condition, so we have π(i)Pi j = π( j)Pji for all i, j ∈ S. Then we have that

(πP) j = ∑
i∈S

π(i)Pi j = ∑
i∈S

π( j)Pji = π( j)∑
i∈S

Pji = π( j)∑
i∈S

P(X1 = j | X0 = i) = π( j) ·1 = π( j)

That is π( j) = (πP) j for any j ∈ S, so we have π = πP as desired, which shows that π is a stationary
distribution.

� Remark 5.1 Detailed Balance Condition- Balance between each pair of states: probability flow x→ y
equals the probability flow y→ x

5.2 Time Reversibility

Definition 5.2.1 — Reversed Process.
Let {Xn}n=0,1,2... be DTMC. Fix n, then the process {Ym}m=0,1,2...,n given by Yn = Xn−m, is called the
reversed process of {Xn}

� Remark 5.2 In general, the reversed process of a DTMC is not necessarily a DTMC But it’s still a DTMC
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in the following case.

Theorem 5.2.1
If {Xn}n=0,1,... starts from a stationary distribution π satisfying π(i) > 0 for any i ∈ S, then its reversed
process {Ym} is a DTMC with transition matrix given by

P̂i j = P(Ym+1 = j | Ym = i) =
π( j)Pji

π(i)

Proof: To show that {Ym} is a DTMC, we check the Markov property

P(Ym+1 = im+1 | Ym = im, ....,Y0 = i0) =
P(Ym+1 = im+1,Ym = im, ...,Y0 = i0)

P(Ym = im, ....,Y0 = i0)

=
P(Xn=m+1 = im+1,Xn−m = im, .....,Xn = i0)

P(Xn−m = im, ....,Xn = i0)

=
P(Xn−(m+1)=im+1) ·Pim+1,im ·Pim,im−1 , .....,Pi1,i0

P(Xn−m = im) ·Pim,im−1 ....Pi1,i0

=
P(Xn−(m+1)=im+1) ·Pim+1,im

P(Xn−m = im)

Since {Xn} starts from a stationary distribution π , P(Xn−(m+1)=im+1) = π(im+1) and P(Xn−m = im) = π(im).
Hence, we have

P(Ym+1 = im+1 | Ym = im, .....,Y0 = i0) =
π(im+1)Pim+1,im

π(im)

This shows:
1. The transition prob does not depend on the history im−1, ...., i0 when im is given. Hence, {Ym} is a DTMC

2. The transiton prob is given by P̂i j = P(Ym+1 = j | Ym = j) =
π( j)Pji

π(i)

� Remark 5.3 We can check that P̂ =
{

P̂i j
}

i, j∈S is indeed a valid transition matrix: P̂i j ≥ 0 and ∑ j∈S P̂i j = 1

Definition 5.2.2 — Time-Reversible DTMC.
A DTMC {Xn}n=0,1,.. is called time-reversible if its reversed chain {Ym ::= Xn−m}m=0,...,n has the same
distribution as {Xn}n=0,1,.. for all n.

Note: Same distribution in here means: not only marginal distributions, but also joint distributions.
=⇒ Distributes as two DTMCs (same initial distribution, same transition matrix)

� Remark 5.4 If a DTMC is time-reversible, then its reversed process is clearly a DTMC, but the converse is
FALSE (reversedd process is DTMC does not implies it has the same distribution as the original DTMC -
time-reversibility)
Intuitively, this difference is related to the difference between the detailed balance condition and the stationary
condtion.
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Proposition 5.2.2
A DTMC {Xn}n=0,1,2.. is time-reversible if and only if it satisfies the detailed balance condition

Proof: ⇐= Assume the detailed balance condition, then {Xn} starts from the stationary distribution
and π(i)Pi j = π( j)Pji. Then we have {Ym}m=0,1,..,n is a DTMC and Y0 = Xn ∼ π and transition probability
is given by

P̂i j =
π( j)Pji

π(i)

Therefore, {Xn} and {Ym} are two DTMCs with the same initial distribution and same transition matrix,
hence have the same distribution.

=⇒ Assume {Xn} is time-reversible. Then by definition, X0 and Xn = Y0 have the same distribution.
This holds for all n. Then X0 follows a stationary distribution π . Moreover, by time-reversibility

Pi j = P̂i j =
π( j)Pji

π(i)

so we have π(i)Pi j = π( j)Pji for all i, j ∈ S, which is the detailed balance condition.

5.3 Metropolis-Hastings Algorithm

Goal: Suppose from the distribution π = {π(x)}x∈S when a direct sampling is hard to implement.

An "MCMC" (Markov Chain Monte Carlo) algorithm-Idea: Construct a DTMC which is easy to simu-
late, then modify to get another DTMC, for which π is the stationary distribution. Then wait for long enough
for the distribution of the DTMC to approach the stationary distribution π

Algorithm:

-Start an irreducible DTMC with transition matrix Q = {Qxy}x,y∈S and certain initial distribution. (typi-
cally an initial state)

-In each time,

1. Propose a move from the current state x to state y ∈ S according to Qxy

2. Accept this move with probability {
xy = min

{
π(y)Qyx

π(x)Qxy

}
,1
}

If the move is rejected, stay in x and wait for a longtime, then sample from this MC

Why this algorithm gives a DTMC having π as its stationary distribution?
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Reason: The transition matrix of the modified MC is given by

Pxy = Qxy · rxy with x 6= y and Pxx = 1−∑
y6=x

Pxy

We will check the detailed balance condition for any two states x,y ∈ S, by symmetric, assume π(y)Qyx ≥
π(x)Qxy, then we have rxy = 1 and

ryx =
π(x)Qxy

π(y)Qyx

Hence, we have

Pxy = Qxy, Pyx = Qyx · ryx =
π(x)Qxy

π(y)

Thus, the detailed balance condition holds, π is a stationary distribution.

In order to use the convergence theorem, we still need the conditions: irreducible and aperiodic.
It needs to be guaranteed by construction.

For example, Qxy > 0 whenever Qyx > 0. Aperiodic is almost satisfied, because the rejection rate is typically
positive, then Pxx > 0. Then, by convergence theorem

lim
n→∞

P(Xn = x) = π(x)

5.4 Exit Distribution

Temporary behavior of the DTMC

1. If a DTMC starts from a transient state and will eventualy enter a recurrent class, when will this happen?
(exit time/absorption time)

2. If there are more than one recurrent class, which one will the chain enter? (exit probability/absorption
probability)

Basic Setting (exit probability):
Let A,B⊆ S where S is the state space, C = S\ (A∪B) is finite.

Question: Starting from a state in C, what is the probability that the chain exits C by entering A or B?

Mathematical Formulation:

VA = min{n≥ 0 : Xn ∈ A} and VB = min{n≥ 0 : Xn ∈ B}

Then what is Px(VA <VB)?
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� Example 5.1

P =


1 2 3 4

1 0.25 0.6 0 0.15
2 0 0.2 0.7 0.1
3 0 0 1 0
4 0 0 0 1


A = {3}, B = {4} and C = {1,2}. Note that P33 = P44 = 1 is not important, as we are only interested in the
chain before it hits 3 or 4. Now let

h(1) = P1(V3 <V4) and h(2) = P2(V3 <V4)

Discuss what happens in the first step:

h(1) = P1(V3 <V4) =
4

∑
x=1

P(V3 <V4 | X1 = x,X0 = 1) ·P(X1 = x | X0 = 1) by law of total probability

where

P(V3 <V4 | X1 = x,X0 = 1) =


P1(V3 <V4) = h(1) if x = 1

P2(V3 <V4) = h(2) if x = 2

1 if x = 3

0 if x = 4

Then
h(1) = 0.25 ·h(1)+0.6 ·h(2)

Similarly, we have
h(2) = 0.2 ·h(2)+0.7

Solving the system of equation we get

h(1) = 0.7 and h(2) =
7
8

The idea used to solve the example is called "First-step analysis" �

Theorem 5.4.1
Let S = A∪B∪C, where A,B,C are disjoint sets, and C is finite. If Px(VA ∧VB < ∞) > 0 (∧ means
min{VA,VB}) for all x ∈C, then

h(x) := Px(VA <VB), x ∈C

is the unique solution of the system of equations

h(x) = ∑
y∈S

Pxyh(y) x ∈C

with boundary conditions
h(a) = 1 a ∈ A and h(b) = 0 b ∈ B
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Proof: By first-step analysis, we have

h(x) = P(VA <VB | X0 = x)

= ∑
y∈S

P(VA <VB | X1 = y, X0 = x) ·P(X1 = y | X0 = x)

= ∑
y∈S

Pxy ·h(y)

We see that the boundary conditions hold trivially. Hence, we need to check the uniqueness. Note that the
system of equations can be written as

hT = Q ·hT +RT
A

where
h = (h(x1),h(x2), ......) for x1,x2,...∈C Q = {Pxy}x,y∈C

and

R′A =

∑y∈A Px1y

∑y∈A Px2y
...


The reason is that

h(x) = ∑
y∈S

Pxy ·h(y) = ∑
y∈C

Pxy ·h(y)︸ ︷︷ ︸
(Q·h′)(x)

+ ∑
y∈A

Pxy︸ ︷︷ ︸
R′A(x)

This gives us that

I ·hT = Q ·hT +RT
A =⇒ (I−Q)hT = RT

A =⇒ hT = (I−Q)−1RT
A

is unique as long as I−Q is intertible. Now note that we can modify the transition matrix. (see the picture
below) Since we are only interested in observing the chain before it hits A or B, changing the transition
probabilities going out of states in A or B will not change the result of this problem. After this change, A
and B are absorbing and all the states in C be cause transient. (because Px(VA∧VB < ∞)> 0). As a result,

0 = lim
n→∞

Px(XT
n ∈C) = lim

n→∞
∑
y∈C

((PT )n)xy = lim
n→∞

∑
y∈C

(Qn)xy︸ ︷︷ ︸
X ′0,X

′
1,...X

′
n∈C

Since this is true for any x ∈C, we have lim
n→∞

Qn = 0. Then all the eigenvalues of Q have norm smaller than

1. Hence, there does not exists a non-zero column vector f T s.t.

f T = Q f T ⇐⇒ (I−Q) f T = 0

so I−Q is invertible.

� Remark 5.5 We see that the function h in the above theorem satisfies

h(x) = ∑
y

Pxy ·h(y) = Ex(h(x1)) = h(1)(x) x ∈C
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Definition 5.4.1 — Harmonic Function.
A function h is called harmonic at state x if

h(x) = Ex(h(x1)) = h(1)(x)

and h is called harmonic in A⊆ S if

h(x) = h(1)(x) for any x ∈ A

Definition 5.4.2 — Matrix Formula.
In the proof we have seen that hT = (I−Q)−1RT

A . This is the matrix formula to calculate

Px(VA <VB) = h(x)

5.5 Exit Time

Basic Setting:
Let S = A∪C where A,C are disjoint and C is finite. Define

VA = min{n≥ 0 : Xn ∈ A}

VA is called exit time (from C) absorption time/hitting time (for A). We want to know Ex(VA) = E(VA | X0 = x)
for x ∈C.

� Example 5.2

P =


1 2 3 4

1 0.25 0.6 0 0.15
2 0 0.2 0.7 0.1
3 0 0 1 0
4 0 0 0 1


Let C = {1,2} and A = {3,4}. We want to know

g(1) := E(VA | X0 = 1) and g(2) := E(VA | X0 = 2)

Note that g(3) = g(4) = 0. Some as for the exit probability. the idea is the first step analysis.

g(1) = E(VA | X0 = 1) =
4

∑
x=1

E(VA | X1 = x,X0 = 1) ·P(X1 = x | X0 = 1)

where

E(VA | X1 = x,X0 = 1) =


g(1)+1 if x = 1

g(2)+1 if x = 2

1 if x = 3

1 if x = 4

Note that the "1" corresponds to the time already passed from time 0 to time 1. Then

g(1) = 0.25(g(1)+1)+0.6(g(2)+1)+0.15 ·1 = 1+0.25 ·g(1)+0.6 ·g(2)
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Similarly, we have

g(2) = 1+0.2 ·g(2)

Solving for g(1) and g(2), we get (g(1),g(2)) = (7
3 ,

5
4). Then, starting from state 1, the expected time until

the chain visits 3 or 4 is 7
3 . If start at 2, the expected time until the chain visits 3 or 4 is 5

4 �

Theorem 5.5.1
Let S = A∪C where A,C are disjoint, and let C is finite. If Px(VA <∞)> 0 for any x∈C, then g(x) = Ex(VA)
for x ∈C is the unique solution of the system of equations

g(x) = 1+ ∑
y∈S

Pxy ·g(y) x ∈C

with boundary conditions g(a) = 0 for all a ∈ A

Proof: By first step analysis, we have

g(x) = ∑
y∈C

Pxy(g(y)+1)+ ∑
y∈A

Pxy ·1 = 1+ ∑
y∈C

Pxyg(y) = 1+ ∑
y∈S

Pxyg(y) by boundary condition

Uniqueness: Rewrite the system of equations in vector-matrix form:

g(x) = 1+ ∑
y∈S

Pxyg(y) x ∈C

Then we have gT = IT +QgT , so

IgT = IT +Qg =⇒ (I−Q)gt = IT =⇒ gT = (I−Q)−1IT

we are looking at the exactly the same matrix I−Q as in the exit probability part. By the previous theorem,
we know I−Q is invertible. As a result, gT is the unique solution.

5.6 Positive Recurrence and Null Recurrence

Infinite State Space
All the results covered in the previous parts hold for both finite and infinite state space. (unless otherwise
specified). There is one pair of notions which only works sense for infinite state spaces.

Definition 5.6.1 — Positive Recurrence.
A state x is called positive recurrent if Ex(Tx)< ∞.

Definition 5.6.2 — Null Recurrence.
A recurrent state x is called null recurrent if Ex(Tx) = ∞

How is it possible that an (almost surely finite) random variable has an infinite mean?
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� Example 5.3 Let X be a random variable s.t. X = 2n with probability 2−n for n= 1,2, ..... Since
∞

∑
n=1

2−n = 1,

so P(X < ∞) = 1. However

E(X) = 2 · 1
2
+4 · 1

4
+ .....= 1+1+ ....+∞

�

5.7 Positive Recurrence = Existence of Stationary Distribution

Theorem 5.7.1
For an irreducible DTMC, the followings are equivalent.

1. Some state is positive recurrent.

2. There exists a stationary distribution π

3. All the states are positive recurrent.

Proof:
(3) =⇒ (1): Trivial
(1) =⇒ (2): Let x be positive recurrent. Recall that x is recurrent and the chain is irreducible, it gives us a
stationary measure.

µx(y) =
∞

∑
n=0

Px(Xn = y,Tx > n) = E(the number of visits to y)

before returning to x, given X0 = x, for y ∈ S. Moreover, this stationary measure can be normalized to a
stationary distribution if and only if ∑

y
µx(y)< ∞. Recall that

∑
y∈S

µx(y) = ∑
y∈S

∞

∑
n=0

Px(Xn = y,Tx > n) = ∑
y∈S

∞

∑
n=0

Ex(IXn=yITx>n)

= Ex

 ∞

∑
n=0

ITx>n ·∑
y∈S

IXn=y︸ ︷︷ ︸
=1


= Ex

(
∞

∑
n=0

ITx>n

)
= Ex(Tx)< ∞

Since x is positive recurrent, so π(y) =
µx(y)
Ex(Tx)

gives a stationary distribution.
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(2) =⇒ (3): Recall that we have irreducible and stationary distribution implies

π(x) =
1

Ex(Tx)
> 0

for any x ∈ S. As a result, Ex(Tx)< ∞ for all x ∈ S.

Corollary 5.7.2
Positive recurrence and null recurrence are class property.

Proof: Let C be a class and x ∈ C is positive recurrent. Since C is recurrent, so it’s closed. Since
for any y ∈C, the chain starting from y will only move in C, we can focus on C and consider the chain
restricted on C with transition matrix P |C= {Pxy}x,y∈C, that is

P =

( C Cc

C P |C 0
Cc . . . . . .

)
The restricted chain is irreducible, and has a positive recurrent state x. (Note that Ex(Tx) |P= Ex(Tx) |P|C ).
By the previous theorem, all its states are positive recurrent, then the states in C is positive recurrent. Since
both positive recurrence and recurrence are class properties, so null recurrence is also class properties.

Corollary 5.7.3
A state x is positive recurrent if and only if there exists a stationary distribution π such that π(x)> 0.

Proof: Note that for both directions, we have x is recurrent. Hence, it suffices to show that the re-
sult for the case where the chain is irreducible (Otherwise, we can consider the chain restricted on the
closed class containing x).
=⇒ By previous theorem, since x is positive recurrent, there exists a stationary distribution π . Recall that
we also has irreduciblestationary distribution implies π(x)> 0 for all x, hence we have π(x)> 0.

⇐= Already given by the previous theorem

Corollary 5.7.4
A DTMC with finite state space must have at least one positive recurrent state.

Proof: Again, we can assune the DTMC is irreducible. We already know it must be recurrent. Take
a state x, then

µx(y) =
∞

∑
n=0

Px(Xn = y,Tx > n)

gives a stationary measure. Moreover, since there are only finitely many terms, the summation ∑
y∈S

µx(y) is
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trivially finite. This gives us that {µx(y)}y∈S is normaligable, and{
π(y) :=

µx(y)
∑y∈S µx(y)

}
y∈S

is a stationary distribution. Then x must be positive recurrent.

Corollary 5.7.5
A DTMC with finite state space does not have null recurrent state.

Proof: Suppose there is a null recurrent state, hence there exists null recurrent class. Since it is re-
current, it is closed. Consider the chain restricted to the class, the restricted chain is irreducible and null
recurrent. However, since it only has a finite a number of states, it must has a positive recurrent state. This
is a contradiction, so there is no null recurrent state.

"A null recurrent class must have an infinite number of states."

Intuition:
1

Ex(Tx)
= lim

n→∞

Nn(x)
n

long-run faction spent on x

and
Ex(Tx) = ∞ long-run faction is 0

This can happen only if there are infinitely many such states.

5.8 Simple Random Walk Examples

� Example 5.4 Let S =Z, Px,x+1 = p and Px,x−1 = 1− p = q where p∈ (0,1). Then this DTMC is irreducible
with period 2.

Claim: The simple random walk is transient for p 6= 1
2 , it’s null recurrent for p = 1

2 .
Proof:
When p 6= 1

2 , by symmetry, assume p > 1
2 , note that

Xn = Y1 + ....+Yn

where Y1,Y2, ... are i.i.d and

Yn

{
1 prob=p

−1 prob=1− p
and E(Y1) = 1 · p+(−1)(1− p) = 2p−1 > 0

By strong law of large number, we have

Xn

n
=

1
n

n

∑
m=1

Ym −→︸︷︷︸
almost surely

E(Y1) = 2p−1 > 0

as n→ ∞. Then we have Xn→ ∞ as n→ ∞ almost surely. Therefore, for any state x≥ 0 (in particular, for
state ), there is a lat visit to x, so 0 is transient. Hence, {Xn} is transient.
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When p = 1
2 , recall that a state x is recurrent if and only if ∑

∞
n=0 P(n)

xx = ∞. For x = 0, we have

P(2n)
00 =

(
2n
n

)(
1
2

)n(1
2

)n

=

(
2n
n

)(
1
4

)n

Then P2n+1
00 = 0 since it has period 2. This is hard to compute, but we have a good way to approximate. By

Stirling’s formula we have
n!∼

√
2πe−nnn+ 1

2 as n→ ∞

Hence, we have (
2n
n

)
=

(2n)!
n!n!

∼
√

2πe−2n(2n)2n+ 1
2

(
√

2πe−nnn+ 1
2 )2

=
1√
2π

22n+ 1
2

1√
n

This gives us that (
2n
n

)(
1
4

)n

∼ 1√
πn

>
1
n

for n≥ 4

Then we have
∞

∑
n=1

(
2n
n

)(
1
4

)n

= ∞

State 0 is recurrent. Next, we show that 0 is not positive recurrent by showing that there does not exists a
stationary distribution. Consider the system of equations πP = π . That is

π(x) =
1
2

π(x−1)+
1
2

π(x+1) =⇒ π(x+1)−π(x) = π(x)−π(x−1)

Since this holds for all x ∈ Z, π(x) is an arithmetic series. The general form is π(x) = π(0)+ ax where
a = π(1)−π(0). Also, we know π(x) ∈ [0,1] for all x ∈ Z, this forces a = 0. This implies π(x) = π(0) for
x∈Z. If π(0) = 0, π = (0,0, ....). If π(0)> 0, ∑π(x) = ∞ 6= 1. Then, the normalization condition ∑π(x) = 1
can never hold. Then a stationary distribution does not exists, so chain is not positive recurrent. Since it’s
recurrent, so it must be null recurrent. �

� Example 5.5 Sample random walk with a reflecting barrier

Reflecting barrier at 0: S = Z+ = {0,1,2....}, Px,x+1 = p, Px,x−1 = 1− p for x≥ 1 and P0,1 = 1.

Claim: If p < 1
2 , then this chain is positive recurrent. (An example of positive recurrent class having

infinitely many states.)
Proof: We solve for the stationary distribution. Since only Px,x+1 and Px,x−1 are non-zero, we can see the
detailed balance condition, then we have

π(0) ·1 = π(1) · (1− p) =⇒ π(1) =
1

1− p
π(0)

and we also note that

π(x) · p = π(x+1) · (1− p) x = 1,2,3... =⇒ π(x+1) =
p

1− p
π(x)
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Hence, we have

π(x) =
(

p
1− p

)x−1

· 1
1− p

π(0)

This is a geometric series, so
∑π(x)< ∞

and a stationary distribution exists, if and only if p
1−p < 1 ⇐⇒ p < 1

2 �

� Remark 5.6 The reflected sample random walk is positive recurrent if p < 1
2 , it’s null recurrent if p = 1

2 ,
it’s transient if p > 1

2



6. Branching Process

6.1 Branching Process (Galton Watson Process)

Basic Setup: Consider a population. Start from one common ancestor X0 = 1. Each individual, at the
end of its life, produces a random number Y of offspring. The distribution of Y is given by P(Y = k) = pk
for k = 0,1, .... with pk ≥ 0 and ∑

∞
k=1 pk = 1. The number of offspring of different individuals are independent.

Let the Xn be the number of individuals in the n-th generation. Then

Xn+1 = Y (n)
1 +Y (n)

2 + .....+Y (n)
n

where Y (n)
1 , ....,Y (n)

n are independent copies of Y , Y (n)
i is the number of offspring of the i-th individual in the

n-th generation.

Expectation: Expected population size in the n-th generation E(Xn). By A1 we have E(Xn) = E(X0)

6.2 Extinction Probability and Generating Function

Extinction (population eventually dies out) Probability: {Xn} is a DTMC. State 0 is absorbing, all the
other states are transient (as long as p0 > 0). However, it does not mean that the population size goes to
infinity with positive probability, then the probability of extinction is smaller than 1. To find the probability of
extinction, we introduce a mathematical tool: generating function.

Definition 6.2.1 — Generating Function.
Let {p0, p1, .....} be a distribution on {0,1, ....}. Let η be a random variable following {p0, p1, ....}. That
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is P(y = i) = pi. The generating function of η or of {p0, p1, ...}, is defined by

ϕ(s) = E(sη) =
∞

∑
k=0

pksk 0≤ s≤ 1

Proposition 6.2.1 — Properties of Generating Function.
1. ϕ(0) = p0,ϕ(1) = 1
2. Generating function determines the distribution

pk =
1
k!

dkϕ(s)
dsk

∣∣∣∣
s=0

Reason: Taylor’s expansion:

ϕ(s) = p0 + p1s+ p2s2 + .....+ pk−1sk−1 + pksk + pk+1sk+1 + .....

and
dkϕ(s)

dsk = k!pk + (...)︸︷︷︸
≥0

·s+ (...)︸︷︷︸
≥0

· · ·2 + .... (∗)

Then
dkϕ(s)

dsη

∣∣∣∣
s=0

= k!pk =⇒ pk =
1
k!

dkϕ(s)
dsk

∣∣∣∣
s=0

Also, from (∗) we have
dkϕ(s)

dsk ≥ 0 for any k and s ∈ [0,1]

In particular, ϕ(s) is non-decreasing and convex

3. Let η1, ....,ηn be independent random variables with generating function ϕ1, ....,ϕn, then for x =
η1 + ....+ηn has generating function ϕx(s) = ϕ1(s).....ϕn(s)

Proof:
ϕx(s) = E(sx) = E(sη1 .....sηn) = E(sη1).......E(sηn) = ϕ1(s).....ϕn(s)

4. Moments

dkϕ(s)
dsk

∣∣∣∣
s=1

=
dkE(sη)

dsk

∣∣∣∣
s=1

= E
(

dksη

dsk

∣∣∣∣
s=0

)
= E(η(η−1)....(η−k+1)sη−k

∣∣∣∣
s=1

) = E(η ...(η−k+1))

In particular, E(η) = ϕ ′(1) and

Var(η) = E(η(η−1))+E(η)− (E(η))′ = ϕ
′′(1)+ϕ

′(1)− (ϕ(1))2
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The graph of a generating function:

6.3 Extinction Probability - Dynamics

Back to extinction probability. Define

N = min{n : Xn = 0} extinction time

so µn = P(N ≤ n) = P(Xn = 0) (extinction before time n). Note that µn is non-decreasing and bounded from
above, hence

µ := lim
n→∞

µn = P(N < ∞) = P(population eventually dies out) = extinction probability

is well defined.
Our goal is fine µ . The key step is to note that we have the following relation between µn and µn−1:

µn =
∞

∑
k=0

pkµ
k
n−1 = ϕ(µn−1)

where ϕ is generating function of {p0, p1, ...} or equivalently, the generating function of Y .

Reason: Note that each sub-population has the same distribution as whole population. The whole pop-
ulation dies out in n steps if and only if each sub-population initiated by an individual in generation i dies out
in n−1 steps.

µn = P(N ≤ n) = ∑
k

P(N ≤ n | X1 = k) ·P(X1 = k)

= ∑
k

P(N1 ≤ n−1, .....,Nk ≤ n−1 | X1 = k)
pk

= ∑
k

pkµ
k
n−1

= ϕ(µk−1)

where Nm is the number of steps for the sub-population m to dies out.

The problem becomes: with initial value µ0 = 0 (since X0−1) and relation µn = ϕ(µn−1), what is

lim
n→∞

µn = µ
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6.4 Extinction Probability - Result

Theorem 6.4.1
The extinction probability µ is the smallest intersection of ϕ(s) and f (s) = s or equivalently, it’s the
smallest solution of ϕ(s) = s between 0 and 1

� Remark 6.1 For the above theorem we have 2 cases, µ < 1 and µ = 1.
Question: How to tell whether we are in case 1 or in case 2?
Answer: Check the derivative of ϕ at s = 1 (if ϕ ′(1)> f ′(1) = 1: µ < 1, otherwise µ = 1)

Moreover, recall that we know ϕ ′(1) = E(Y ), then we conclude that E(Y ) > 1 implies extinction hap-
pens with certain probability smaller than 1.

Intuitively, on average, more than 1 offspring for each individual implies the population can explode with
positive probability. That means E(Y ≤ 1) implies extinction happens for sure on average, less than or equal
to 1 offspring.
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7.1 Exponential Distribution

If T ∼ Exp(λ ), then the C.D.F

F(t) =

{
0 t < 0

1− e−λ t t ≥ 0

also the P.D.F f (t) = λe−λ t · It≥0, also E(T ) = 1
λ

and Var(T ) = 1
λ 2

Then if S∼ Exp(1), then s
λ
∼ Exp(λ )

Proposition 7.1.1 — Memory-less Property.
If T ∼ Exp(λ ), then

P(T > t + s | T > t) = P(T > s)

"How much time we still need to wait does not depend on how long we have been waiting"

Proof:

P(T > t + s | T > t) =
P(T > t + s)

P(T > t)
=

1− (1− e−λ (t+s))

1− (1− e−λ t)
= e−λ s = P(T > s)

Proposition 7.1.2 — Minimum of independent exponential random variables.
If S∼ Exp(λ ), T ∼ Exp(µ) and S⊥⊥ T , then Z := min{S,T}︸ ︷︷ ︸

S∧T

∼ Exp(λ +µ).

Moreover, P(S = Z) = P(S≤ T ) = λ

λ+µ

Proof:
P(Z > t) = P(S > t,T > t) = P(S > t) ·P(T > t) = e−λ t · e−µt = e−(λ+µ)t
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for t ≥ 0, so we have Z ∼ Exp(λ +µ)

Note that

P(s≤ T ) = E(P(s≤ T | s)) =
∫

e−µs ·λe−λ sds =
λ

λ +µ

Corollary 7.1.3
If T1, .....,Tn are independent random variables with Ti ∼ Exp(λi), then Z := min{T1, ......,Tn} ∼ Exp(λ1 +
λ2 + ...λn) and

P(Z = Ti) = P(Ti ≤ T1, ....,Ti ≤ Tn) =
λi

λ1 + ......+λn

Proof: Similar as above.

"Competition" among independent exponential random variables will result in an exponential random
variable with the parameter being the sum of the parameters. The probability that the i− th exponent wins
is λi

λ1+......+λn

7.2 Poisson Distribution

For X ∼ Poi(λ ), the P.D.F

P(X = n) =
e−λ λ n

n!

for n = 0,1, .... It has E(X) = λ and Var(X) = λ .

Theorem 7.2.1
If X1, .....,Xn are independent, Xi ∼ Poi(λi), then X1 + .......+Xn ∼ Poi(λ1 + .....+λn)

Proof: Consider the generating function ϕXi of Xi, so

ϕxi(s) =
∞

∑
k=0

P(Xi = k)sk =
∞

∑
k=0

e−λiλ k
i

k!
sk =

∞

∑
k=0

e−λi(λis)k

k!
= e−λieλis

∞

∑
k=0

e−λis(λis)k

k!︸ ︷︷ ︸
=1

= e−λi(1−s)

By independence, the generating function of X = X1 + .....+Xn ϕ(s) is

ϕ(s) = ϕx1(s).....ϕxn(s) = e−λ1(1−s)......e−λn(1−s) = e−(λ1+λ2+.....+λn)(1−s)

This is the generating function of Poi(λ1 +λ2 + .....+λn). Since the generating function determines the
distribution, we conclude that X1 + .......+Xn ∼ Poi(λ1 + .....+λn)



62 Chapter 7. Basic Distributions

7.3 Counting Process

DTMC is a discrete-time process: {0,1,2......}
WE also want to consider the case where time is continuous: T = [0,∞), we use {Xt}t≥0 or {X(t)}t≥0. The
simplest continuous-time process is counting process, which count the number of occurrence of certain events
up to time t

Definition 7.3.1
Let 0≤ S1 ≤ S2 ≤ ..... be the time of occurrence of some events. Then the process {N(t)}t≥0 given by

N(t) = {n : Sn ≤ t}=
∞

∑
n=1

ISn≤t

is called the counting process (of events Sn with n = 1,2....)
Equivalently, N(t) = n if and only if Sn ≤ t < Sn+1

� Example 7.1 Calls arrive at a calling center. Let Sn be the arrive time of the n-th call and N(t) be the
number of calls received before time t

Other examples: Cars passing a speed reader, atoms having radioaction decay. �

Properties of a counting process:

1. N(t)≥ 0 for any t ≥ 0
2. N(t) takes integer values
3. N(t) is non-decreasing: N(t1)≤ N(t2) if t1 ≤ t2
4. N(t) is right-continuous: N(t) = lim

s→t+
N(s)

5. We also assume N(0) = 0 (no event happens at time 0) and N(t) only has jumps with size 1 (no two events
happen at exactly the same time)

7.4 Poisson Process

Definition 7.4.1 — Interarrival Time.
Let W1 = S1, Wn = Sn−Sn−1: the time between the n−1th event and the n-th event. The W1,W2, ...... are
called interarrival times. The picture is shown below

The graph of a generating function:
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Definition 7.4.2 — Renewal Process.
A renewal process is a counting process for which the interarrival times. W1,W2, .... i.i.d All the three
examples above of counting process can be reasonably modeled as renewal process.

Definition 7.4.3 — Homogeneous Poisson Process.
The Poisson Process {N(t)}t≥0 is the renewal process for which the interarrival times are exponentially
distributed. Thta is Wn ∼ Exp(λ ) i.i.d. The parameter λ is called the intensity/rate of {N(t)}t≥0.

Notation:
{N(t)}t≥0︸ ︷︷ ︸

process

∼ Poi(λ t) and N(t)︸︷︷︸
r.v

∼ Poi(λ t)

7.5 Basic Properties of Poisson Processes

1. Continuous-Time Markov Property:

P(N(tm) = j | N(tm−1) = i,N(tm−2) = im−2, ....,N(t1) = i1) = P(N(tm) = j | N(tm−1) = i)

for any m, t1 < t2 < ..... < tm, i1, i2, ...., im−2, i, j ∈ S

Fact: The Poisson Process is the only renewal process having the markov property.

Reason: N(tm−1) = i only tells i events happened before tm−1, it does not tell when the last event oc-
curred. The "history", N(tm−2),..... tells more about when the last event occurred.

Hence, we have Markov Property =⇒ Given how many events occurred before, when the last event
occurred has no influence on when the next event will occur. i.e. How long we have waited for the next
event has no influence on how long we still need to wait.

⇐= Memory-less Property. Since the exponential distribution is the clearly (continuous-time) dis-
tribution which is memory-less, the Poisson process is the only renewal process which has the Markov
property.

2. Independent Increments:
If t1 < t2 ≤ t3 < t4, then N(t2)−N(t1)⊥⊥ N(t4)−N(t3)
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7.6 Poisson Increments

Proposition 7.6.1

N(t2)−N(t1)∼ Poi(λ (t2− t1))

In particular,
N(t) = N(t)−N(0)∼ Poi(λ t)

Reason: By the memory-less property of exponential r.v.s it suffices to show

N := N(t2− t1)∼ Poi(λ (t2− t1))

Proof: Note that

N = n ⇐⇒ Sn ≤ t2− t1 < Sn+1

⇐⇒ W1 + ......+Wn ≤ t2− t1 and W1 + ....+Wn +Wn+1 > t2− t1

Fact: W1, ....,Wn i.i.d r.v.s following Exp(λ ), then

W1 + .....+Wn ∼ Erlang(n,λ ) (Erlang Distribution - special type of Gamma distribution)

The c.d.f of Erlang(n,λ ) is

F(x) = 1−
n−1

∑
k=1

1
k!

e−λx(λx)k

Hence here, we have

P(W1 + ....+Wn ≤ t2− t1) = 1−
n−1

∑
k=1

1
k!

e−λ (t2−t1)(λ (t2− t1))k

Similarly, we have

P(W1 + ....+Wn +Wn+1︸ ︷︷ ︸
Erlang(n+1,λ )

≤ t2− t1) = 1−
n

∑
k=1

1
k!

e−λ (t2−t1)(λ (t2− t1))k

and

P(N = n) = P(W1 + ....+Wn ≤ t2− t1)−P(W1 + ....+Wn +Wn+1 ≤ t2− t1) =
1
n!

e−λ (t2−t1)(λ (t2− t1))n︸ ︷︷ ︸
p.m.f of Poi(λ (t2− t1)) at n

Therefore, we have N ∼ Poi(λ (t2− t−1))

� Remark 7.1
1. As a result of the Poisson increment property, N(1) = Poi(λ ), E(N(1)) = λ . This is why λ is called the
"intensity/rate" of the process: it is the expected number of arrivals/occurrence in one unit of time.
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2. Note that hte distribution of the increments, together with the independence of the increments, uniquely,
determines the distribution of the process:

(N(t1),N(t2), .....,N(tk)) ⇐⇒ (N(t1)−N(t0),N(t2)−N(t1), .....,N(tk)−N(tk−1))

and each N(ti)−N(ti−1) is independent. That means Poi(λ t1)⊥⊥ Poi(λ (t2− t1))⊥⊥ .....⊥⊥ Poi(λ (tk− tk−1))
Then, we can equivalently define the Poisson process as follows

Definition 7.6.1 — Alternative Definition of Poisson Process.
{N(t)}t≥0 is a Poisson process if

(1) N(0) = 0
(2) N(t)−N(s)∼ Poi(λ (t− s)) for 0≤ s≤ t
(3) t0 < t1 < .... < tn, then

N(t1)−N(t0),N(t2)−N(t1), .....,N(tk)−N(tk−1)

are independent.

In this case, our original definition becomes a property of Poisson Process: Poisson process are counting
processes at events with i.i.d exponential interarrival times.

7.7 Combining Poisson Processes

Theorem 7.7.1
Let {N1(t)}t≥0 and {N2(t)}t≥0 be two independent Poisson processes, with intensities λ1,λ2 respectively.
Then

N(t) = N1(t)+N2(t)

is also Poisson process, with intensity λ = λ1 +λ2

Proof: Check the alternative definition.

(1) N(0) = N1(0)+N2(0) = 0
(2) For 0≤ s < t

N(t)−N(s) = N1(t)−N1(s)+N2(t)−N2(s)

By the property of Poisson r.v.s N(t)−N(s)∼ Poi((λ1 +λ2)(t− s))
(3) For t0 < t1 < .... < tn

(N(t1)−N(t0), .....,N(tn)−N(tn−1)

= (N1(t1)−N1(t0)+N2(t1)−N2(t0), .....,N1(tn)−N1(tn−1)+N2(tn)−N2(tn−1))

The operators are jointly independent since Ni(t1)−Ni(t0), .....,Ni(tn)−Ni(tn−1) are jointly independent
for i = 1,2, and terms of N1 and terms of N2 are also independent. Then, we have {N(t)}t≥0 is a Poisson
process with intensity λ1 +λ2, completes the proof.
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In general, let {N1(t)}t≥0, .....{Nk(t)}t≥0 be independent Poisson processes with intensities λ1, ....,λn,
then

N(t) =
k

∑
i=1

Ni(t)

is a Poisson process with intensity
k

∑
i=1

λi

7.8 Splitting Poisson Processes

Consider a Poisson process with intensity λ as the counting process of the events with i.i.d exponential
interarrival times. For each events, makr it with "1" with prob p, with "2" with prob 1− p. The marking of
different events are independent.

Let N1 and N2 be the counting process of the event with marks "1" and "2", respectively.

Theorem 7.8.1
The {N1(t)}t≥0 and {N2(t)}t≥0 are independent Poisson processes with intensities pλ and (1− p)λ re-
spectively. (Intuition: This is the inverse procedure of combining two independent Poisson processes into
one Poisson process)

Proof: Again we check the alternative definition.

(1) N1(0) = 0, N2(0) = 0
(2) Since N(t)−N(s) = N(t− s)∼ Poi(λ (t− s)) are the splitting rule does not change ever time, it suffices
to consider the case where s = 0. Consider the joint distribution:

P(N1(t) = m,N2(t) = n) = P(N1(t) = m,N2(t) = n | N(t) = m+n) ·P(N(t) = m+n)

=

(
m+n

m

)
pm(1− p)n · e−λ t (λ t)m+n

(m+n)!

= e−pλ t (pλ t)m

m!︸ ︷︷ ︸
p.m.f of Poi(pλ t) at m

·e−(1−p)λ t ((1− p)λ t)n

n!︸ ︷︷ ︸
p.m.f of Poi((1− p)λ t) at n

This means
1. N1 ⊥⊥ N2(t)
2. N1(t)∼ Poi(pλ t) and N2(t)∼ Poi((1− p)λ t)

Therefore, we have the Poisson increments property that we want.

(3) Since N(t) has independent increments, and the marking is also independent, N1(t) and N2(t) also have
independent increments. Then {N1(t)} and {N2(t)} are Poisson process with intensities pλ and (1− p)λ
respectively. Note that N1(t) ⊥⊥ N2(t), t ≥ 0 is not yet enough for N1 and N2 to be independent as two
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processes. We need
(N1(t0), ......,N1(tn))⊥⊥ (N2(t0), ......,N2(tn))

for all n and t0 < t1 < ..... < tn. This follows from the independent increment property. For example,
N1(t0)⊥⊥ N2(t0), N1(t0)⊥⊥ (N2(t1)−N2(t0))

� Remark 7.2 When we are only interested in N1, "splitting" is also called "thinning"

7.9 Order Statistics

Definition 7.9.1 — Order Statistics.
Let X1,X2, .....,Xn be (typically i.i.d) r.v.s, the order statistics of X1,X2, ....,Xn are r.v.s defined as follows:

X(1) = min{X1, .....,Xn}

X(2) be the 2nd smallest of {X1, .....,Xn} ,......., X(n) = max{X1, .....,Xn}. Note that

(X(1),X(2), ......,X(n))

is (X1,X2, .....,Xn) rearranged in non-decreasing order.

Conditional on N(t) = n, the occurrence/arrival times before t are distributed as the order statistics of n i.i.d
uniform [0, t] random variables.

Theorem 7.9.1
Let {N(t)}t≥0 be a Poisson process with intensity λ . Condition on N(t) = n, the occurrence times of the
events in [0, t] are distributed as the order statistics of n i.i.d uniformly distributed r.v.s on [0, t]. That is

(S1, ......,Sn | N(t) = u) = (U(1), ...........,U(n))

where Si is the time of the i-th event, the Ui is i.i.d Uni f [0, t], and U(1), ......,U(n) are the order statistics of
U1, ....,Un
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Proof: Let a1 < b1 < a2 < b2 < ...... < an < bn < t, then

P(Si ∈ (ai,bi], i = 1, .....,n | N(t) = n)

=
P(Si ∈ (ai,bi], i = 1, .....,n, N(t) = n)

P(N(t) = 0)

=
P(N(a1) = 0,N(b1)−N(a1) = 1,N(a2)−N(b1) = 0,N(b2)−N(a1) = 1, ....,N(t)−N(bn) = 0)

P(N(t) = 0)

Note that the numerator is equal to

= e−λa1 ·λ (b1−a1) · e−λ (b1−a1) · e−λ (t−bn) = e−λ (a1+(b1−a1)+(a2−b1)+....+(t−bn))︸ ︷︷ ︸
=e−λ t

·λ n
n

∏
i=1

(bi−ai)

This gives us that

P(Si ∈ (ai,bi], i = 1, .....,n | N(t) = n) =
e−λ tλ n

∏
n
i=1(bi−ai)

e−λ t (λ t)n

n!

=
n!
tn

n

∏
i=1

(bi−ai)

divide both sides by
n

∏
i=1

(bi−ai) and take limits bi→ ai, we have the conditional p.d.f

fS1,..,Sn|N(t)=n(a1, ....,an) =
n!
tn Ia1<a2<....<an

this is the p.d.f of (U(1), ....,U(n))

How to simulate the () events of a Poisson process until the time t:

Method 1: Simulate i.i.d Exp(λ ), until their sum exceeds t

Method 2: Simulate a Poi(λ t), denote it as N. Then simulate N i.i.d Uni f [0, t] rearrange them by in-
creasing order.

Corollary 7.9.2

N(s) | N(t) = n∼ Bin
(

n,
s
t

)
for s≤ t.
Proof:

P(N(s) = k | N(t) = n) = P(s1,s2, ....,sk ≤ s,Sk+1, ....,Sn > s | N(t) = n)

= P(U(1),U(1), ...,U(k) ≤ s,U(k+1), ...,U(n) > S)

= P(k out of n i.i.d unif[0,t], r.v.s are ≤ S)

=

(
n
k

)(s
t

)k(
1− s

t

)n−k

Hence, we have N(s) | N(t) = n∼ Bin
(
n, s

t

)
for s≤ t.
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7.10 Nonhomogeneous Poisson Process and Compound Poisson Process

Definition 7.10.1 The {N(t)}t≥0 is a (nonhomogeneous) Poisson process with rate λ (r), if

(1) N(0) = 0
(2) N(t)−N(s)∼ Poi

(∫ t
s λ (r)dr

)
(3) N(t) has independent increment i.e. N(t1)−N(t0), .....,N(tn)−N(tn−1) are independent for t0 < t1 <
.... < tn

� Remark 7.3 We see that this definition is basically the same as the alternative definition of (homogeneous)
Poisson process with (2) replacing the original condition N(t)−N(s)∼Poi(λ (t−s)). Indeed, since λ (t−s)=∫ t

s
λdr, the regarded as a special case of the nonhomogeneous Poisson process where the rate function

λ (r) = λ with r ≥ 0. In order to betten understand the nonhomogeneous Poisson process, consider

P(there exists at one point in a small interval (t, t +At]) = P(N(t +∆t)−N(t)≥ 1)

= 1−P(N(t +∆t)−N(t) = 0)

= 1− e
∫ t+∆λ (r)dr

t

when At is small (At→ 0), we have
∫ t+At

t λ (r)dr→ 0. Then

e
∫ t+∆t

t λ (r)dr = 1−
∫ t+∆t

t
λ (r)dr+0

(∫ t+∆t

t
λ (r)dr

)
so we have

P(N(t +∆t)−N(t)≥ 1) =
∫ t+∆t

t
λ (r)dr+0

(∫ t+∆t

t
λ (r)dr

)
≈ λ (t)∆t

when ∆t is small and λ (t) is continuous. "attractioness" of location t

Homogeneous Poisson Process: All the locations are equally attractive.
Non-Homogeneous Poisson Process: Some locations are more attractive than some other locations.

� Example 7.2 If we want to modeled the calls received by a call center in a relatively long time period, then
a non-homogeneous Poisson process is more suitable. People are more likely to call in some hours (9am) than
in some other hours (3am). What are still true and what are no longer true for non-homogeneous Poisson
processes:

Still True: Counting process, Markov property, Independent increments, Poisson increments, Combin-
ing and splitting, Order Statistics Property

Not True: Exponential interarrivial time, Renewal process

However, the order statistics property is no longer uniform r.v.s, but i.i.d r.v.s with density f (s) =
λ (s)∫ t

0 λ (s)ds
for s ∈ [0, t] �
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7.11 Compound Poisson Process

Each arrival/occurrence is associated with a quantity. Quantities associated with different arrivals /occurrence
are i.i.d. We are interested in the total quantity up to time t.

S(t) = Y1 + .......+YN(t)

and each Yi is i.i.d

� Example 7.3 Claims arrive at an insurance company. The number of claims can be modelled by a Poisson
process. The total amount of claims can be models by a compound Poisson process. The mean and variance
of S(t) can be calculated by the following result: �

Proposition 7.11.1
Let X ,Y be two r.v.s, then Var(X) = E(Var(X | Y ))+Var(E(X | Y )) where Var(X | Y ) = E((X −E(X |
Y ))2 | Y )

Proof:

Var(X) = E((X−E(X))2)

= E
[
((X−E(X | Y )+(E(X | Y )−E(X))2))

]
= E[(X−E(X | Y ))2]+E[(E(X | Y )−E(X))2]+2E[(X−E(X | Y )) · (E(X | Y )−E(X))]

Note that

E[(X−E(X | Y )) · (E(X | Y )−E(X))] = E[E[(X−E(X | Y )) · (E(X | Y )−E(X)) | Y ]]
= E[(E(X | Y )−E(X)) ·E(X−E(X | Y ) | Y )︸ ︷︷ ︸

=E(X |Y )−E(E(X |Y )|Y )

]

= E[(E(X | Y )−E(X)) ·0]
= 0

also we have
E((X−E(X | Y ))2) = E[E[(X−E(X | Y )2) | Y ]] = E(Var(X | Y ))

Combining all the results above, finishes the proof.

Theorem 7.11.2
Let Y1,Y2, ..... be i.i.d, r.v.s and N is a non-negative integer valued r.v., independent of {Yi}, let S =
Y1 + .....+YN , then

(1) If E(Y1) = µ , E(N)< ∞, then E(S) = µ ·E(N)
(2) If Var(Y1) = σ2, Var(N)< ∞, then Var(S) = σE(N)+µ2Var(N)

In particular, if N ∼ Poi(λ ), then Var(S) = λE(Y 2
1 ) where E(Y 2

1 ) = (E(Y1))
2 +Var(Y1)
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Proof: For (1), this is simply the basic identity. For (2), we note that Var(S) =Var(∑N
i=1Yi) and

E

(
N

∑
i=1

Yi | N

)
= N ·E(Y1) = µN

Var

(
N

∑
i=1

Yi | N

)
= N ·Var(Y1) = σ

2N

Then

Var

(
N

∑
i=1

Yi | N = n

)
=Var

(
n

∑
i=1

Yi | N = n

)
=Var

(
n

∑
i=1

Yi

)
= N ·Var(Y1)

so we have

var(S) =Var

(
E(

N

∑
i=1

Yi | N)

)
+E

(
Var

(
N

∑
i=1

Yi | N

))
=Var(µN)+E(σ2N) = µ

2Var(N)+σ
2E(N)

when N ∼ Poi(λ ), then

Var(S) = µ
2
λ +σ

2
λ = λ

(
E(Y1)

2 +Var(Y1)
)
= λE(Y 2

1 )

Corollary 7.11.3
For a Poisson process with rate λ , S(t) has mean λ tµ , variance is λ tE(Y 2

1 ), which is σ2λ t

7.12 Epilogue

What’s next?
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