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20. Definition of a ring

Definition. A ring is an ordered triple (R,+, ·) where

• R is a non-empty set;
• + and · are binary operations on R;

which jointly satisfy the following conditions:

(i) (R,+) is an abelian group;
(ii) · is associative;

(iii) There exists 1 ∈ R such that 1 · a = a · 1 = a for all a ∈ R.
(iv) (Distributive laws): for all a, b, c ∈ R,

(a+ b) · c = (a · c) + (b · c)
a · (b+ c) = (a · b) + (a · c).

Notation/jargon.

• We denote (R,+, ·) by R.
• The identity element of (R,+) is denoted 0.
• The inverse of a in the group (R,+) is denoted −a, and is called the additive

inverse.
• We write a− b for a+ (−b).
• The element 1 is called the multiplicative identity. It is (provably) unique.
• We usually write ab instead of a · b.
• We say that R is commutative if it satisfies ab = ba for all a, b ∈ R, and is

noncommutative otherwise.

Example 20.1.

(1) Z (with usual addition and multiplication) is a commutative ring; it is the
prototypical example of a commutative ring.

(2) Q,R,C are also commutative rings.
(3) For every n ≥ 2, the set Mn(R) of all n × n matrices over R (with matrix

addition and multiplication) is a noncommutative ring. Similarly, Mn(Z),
Mn(Q), Mn(C).

(4) Zn is a (finite) commutative ring for every n ≥ 2.
(5) Let C(R) be the set of all continuous, everywhere-defined functions f : R→ R

(a very big set). Define f + g and f · g pointwise; that is,

(f + g)(x) := f(x) + g(x)

(f · g)(x) := f(x) · g(x).

Then (C(R),+, ·) is a commutative ring. What is its zero element? Its identity
element?

(6) Is (C(R),+, ◦) a ring? (◦ means composition of functions.)
(7) Given any ring R, let F(R) denote the set of all functions f : R → R. We

can turn F(R) into a ring by defining + and · pointwise as in C(R) (using the
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definitions of + and · in R). It can be shown that F(R) with these operations
is a ring. What is its zero element? Its identity element?

Warning: In general, you cannot assume that · satisfies left or right cancellation.
For example in Z we have 0 · x = 0 · y, but that does not imply x = y. In some rings,
even if a 6= 0, one cannot assume that a · b = a · c implies b = c.

Proposition 20.2. Let R be a ring. Then

(1) 0a = a0 = 0 for all a ∈ R.
(2) −a = (−1)a = a(−1) for all a ∈ A.
(3) (−a)b = a(−b) = −(ab) for all a, b ∈ R.
(4) (−a)(−b) = ab.

Proof.

(1) 0+0 = 0, so 0a = (0+0)a = (0a)+(0a). Hence 0a+0 = 0a+0a, so cancelling
(in the group (R,+)) gives 0a = 0. Similar proof works for a0 = 0.

(2) 1 + (−1) = 0. Hence 0 = 0a = (1 + (−1))a = (1a) + (−1)a = a + (−1)a.
Hence a + (−a) = a + (−1)a, so cancelling gives (−1)a = −a. Similar proof
works for a(−1) = −a.

(3) (−a)b = (a(−1))b = a((−1)b) = a(−b) by (2). Also, (−a)b = ((−1)a)b =
(−1)(ab) = −(ab) by (2).

(4) Exercise. �

Definition. Let R be a ring.

(1) An element a ∈ R is a unit if there exists b ∈ R satisfying ab = ba = 1. (We
also say that a is invertible. b is called the inverse of a and is denoted a−1; it
is provably unique.)

(2) R× denotes the set of units in R.

Remark. 2 is a unit in Q but is not a unit in Z. Q× = Q \ {0} while Z× = {1,−1}.
In general, (R×, ·) is a group; called the group of units of R.

Can 0 = 1 in a ring? If 0 = 1, then a = a1 = a0 = 0 for all a ∈ R, i.e., R = {0}.
A 1-element ring is called trivial. Thus a ring is nontrivial iff it satisfies 0 6= 1.

Definition.

(1) A division ring is a ring D satisfying 0 6= 1 and D× = D \ {0} (i.e., every
nonzero element is a unit).

(2) A field is a commutative division ring.

Example 20.3.

(1) Q,R,C,Zp (p prime) are fields.
(2) We will see an example of a noncommutative division ring in the next lecture.
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21. Integral domains, subrings

Notation. Let R be a ring and a ∈ R.

(1) For n > 1 we let na denote (a+ a+ · · ·+ a)︸ ︷︷ ︸
n

.

(2) For n ≥ 1 we let (−n)a denote −(na). (Thus na is defined for all n ∈ Z.)
(3) Za = {na : n ∈ Z}.

Note that Za is the cyclic subgroup of (R,+) generated by a.

Recall:

Definition.

(1) A division ring is a ring D satisfying 0 6= 1 and D× = D \ {0} (i.e., every
nonzero element is a unit).

(2) A field is a commutative division ring.

Is M2(R) a division ring?

Example 21.1. H, the ring of real Hamiltonion quaternions, is the set of all expres-
sions a+ bi+ dj + dk where a, b, c, d ∈ R and i, j, k are primitive symbols.

(1) Addition is defined obviously:

(a+ bi+ cj + dk) + (a′ + b′i+ c′j + d′k) = (a+ a′) + (b+ b′)i+ (c+ c′)j + (d+ d′)k

(2) Multiplication is first defined on the primitive symbols:

i2 = j2 = k2 = −1, ij = k, jk = i, ki = j, ji = −k, kj = −i, ik = −j.

(3) Then multiplication is extended to expressions by assuming ai = ia, aj = ja,
ak = ka for all a ∈ R, and assuming distributivity.

It can be shown that H is a ring. If a+ bi+ cj + dk 6= 0 then

(a+ bi+ cj + dk)−1 =
a

e
− b

e
i− c

e
j − d

e
k

where e = a2 + b2 + c2 + d2, so H is a division ring. H is not a field (as ij 6= ji).

Definition. Let R be a ring. A zero divisor is an element a ∈ R such that

(1) a 6= 0, and
(2) There exists b ∈ R with b 6= 0 such that ab = 0 or ba = 0 (or both).

Example 21.2.

(1) Z has no zero divisors (since a, b 6= 0 imply ab = ba 6= 0).
(2) 2, 3, 4 are zero divisors in Z6, since 2 · 3 = 4 · 3 = 0.

(3)

[
1 0
0 0

]
is a zero divisor in M2(R), since

[
1 0
0 0

] [
0 0
0 1

]
=

[
0 0
0 0

]
.
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Proposition 21.3. Suppose R is a ring and a ∈ R with a 6= 0. If a is not a zero
divisor, then we can “multiplicatively cancel by a.” That is, for all b, c ∈ R,

ab = ac =⇒ b = c

ba = ca =⇒ b = c.

Proof. Assume ab = ac. Then a(b− c) = a(b+ (−c)) = ab+ a(−c) = (ab) +−(ac) =
ab − ac = ab − ab = 0. Since a 6= 0 and a is not a zero divisor, it must be that
b− c = 0, i.e., b = c. The other implication is proved similarly. �

Lemma 21.4. If R is a ring and a ∈ R×, then a is not a zero divisor. Hence we can
always “multiplicatively cancel by units.”

Proof. Argue by contradiction. Assume a ∈ R× and a is a zero divisor. Thus a−1

exists in R, and there exists b ∈ R with b 6= 0 such that either ab = 0 or ba = 0.
Suppose ba = 0; then b = b1 = b(aa−1) = (ba)a−1 = 0a−1 = 0, contradiction. The
equation ab = 0 also leads to a contradiction. �

Definition. A ring R is called an integral domain (or domain) if it is commutative,
satisfies 0 6= 1, and has no zero divisors.

For example, Z is an integral domain.

Corollary 21.5. Every field is an integral domain.

Proof. Follows from the previous lemma. �

Definition. Suppose R is a ring. A subring of R is a subset S ⊆ R such that

(1) S is a subgroup of (R,+).
(2) S is closed under multiplication (i.e., a, b ∈ S implies ab ∈ S).
(3) 1 ∈ S.

Write S ≤ R to denote that S is a subring of R.

As was the case for groups, every subring of a ring is itself a ring (with operations
inherited from the larger ring).

Example 21.6.

(1) Z ≤ Q. R ≤ C.
(2) Zn � Z.
(3) Is M2(R) a subring of M3(R)? (No.)
(4) Is M2(Z) a subring of M2(R)? (Yes.)
(5) Recall C(R) from Example 20.1, the ring of all continuous functions R→ R,

and F(R), the ring of all functions R→ R.
(a) C(R) ≤ F(R).
(b) Define P (R) to be the set of all polynomial functions in C(R). Then

P (R) ≤ C(R).
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22. Polynomial rings

Let R be a ring. Let x be a formal variable.

• A polynomial in x over R is an expression

anx
n + an−1x

n−1 + · · ·+ a1x+ a0

where n ≥ 0, a0, . . . , an ∈ R, and if n > 0 then an 6= 0.
• We also denote this by

∑n
i=0aix

i.
• Note that if n = 0 then the expression is just a0. When n = 0 and a0 = 0 the

expression is just 0. (This is the zero polynomial.)
• An expression aix

i is called a term of the polynomial.
• The elements a0, a1, . . . , an of R are called the coefficients of the polynomial.
• The degree of the polynomial is n, except for the zero polynomial which has

no degree.
• If the polynomial is not 0, then the leading term is anx

n, and the leading
coefficient is an.
• By definition, two polynomials are equal iff they have the same degree and

the same coefficients.

Definition. R[x] denotes the set of all polynomials in x over R.

Key fact: every p(x) ∈ R[x] can be viewed as a formula which defines a function
p : R→ R. However, the polynomial is not the same thing as the function it defines.

• For example, let R = Z2. Put p(x) = x2 + x and q(x) = x3 + x. (More
precisely, p(x) = 1x2 +1x+0 and q(x) = 1x3 +0x2 +1x+0.) As polynomials,
p(x) and q(x) are not equal. As functions Z2 → Z2, they are identical (in
fact, they are both the constant 0 function).

Formally, we have a mapping R[x] → P (R) sending p(x) 7→ p (i.e., sending each
polynomial to its corresponding polynomial function). This mapping is surjective
but may fail to be injective, as we have just seen.

We use the usual shortcuts when writing polynomials. For example, we often do not
bother to write the terms of the form 0xi. The abbreviated expressions are sometimes
called sparse polynomials. For example, the expression 2x3 + 3 is technically a
sparse polynomial which represents the “real” polynomial 2x3 + 0x2 + 0x + 3. We
also usually simplify a term of the form 1xi or (−1)xi to just xi or −xi respectively.

For convenience, we also define sloppy polynomials over R to be all expressions
of the form

∑n
i=0 aix

i (a0, . . . , an ∈ R), allowing the last coefficient an to be 0. When
discussing sloppy polynomials we talk about “the highest index n,” rather than the
“degree.” Of course every sloppy polynomial determines a unique “real” polynomial
by trimming (deleting) zero terms of highest index if needed. Warning: no one in
the world except me (and now you) uses the term “sloppy polynomials.”

Definition. Given a ring R, define + and · on R[x] “in the obvious way.” That is,
given p(x), q(x) ∈ R[x] :
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(1) To define p(x) + q(x) :
Write p(x) and q(x) as sloppy polynomials with the same highest index and

use (
n∑
i=0

aix
i

)
+

(
n∑
i=0

bix
i

)
=

n∑
i=0

(ai + bi)x
i.

(2) To define p(x) · q(x):
Write p(x) =

∑m
i=0 aix

i and q(x) =
∑n

j=0 bjx
j. Then(

m∑
i=0

aix
i

)
·

(
n∑
j=0

bjx
j

)
= (a0 + a1x+ a2x

2 + · · · ) · (b0 + b1x+ b2x
2 + · · · )

= (a0b0) + (a0b1 + a1b0)x+ (a0b2 + a1b1 + a2b0)x
2 + · · ·

=
m+n∑
k=0

( ∑
i+j=k

aibj

)
xk.

The above formulas for addition and multiplication are very useful in proofs. In
practice, though, they can be misleading, because the right-hand side expressions can
be sloppy and so might need to be trimmed. For example:

(1) If R = R and p(x) = 2x2 + 3x+ 1 and q(x) = (−2)x2 + 4x+ 3, then

p(x) + q(x) = (2x2 + 3x+ 1) + ((−2)x2 + 4x+ 3)

= (2 + (−2)x2 + (3 + 4)x+ (1 + 3) (by the formula)

= 0x2 + 7x+ 4

= 7x+ 4 (trimmed).

(2) If R = Z4 and p(x) = q(x) = 2x2 + x+ 1, then

p(x) · q(x) = (2x2 + 1x+ 1) · (2x2 + 1x+ 1)

= (2·2)x4 + (2·1 + 1·2)x3 + (2·1 + 1·1 + 1·2)x2 + (1·1 + 1·1)x+ (1·1)

= 0x4 + 0x3 + 1x2 + 2x+ 1

= x2 + 2x+ 1 (trimmed).

Theorem 22.1. R[x] is a ring containing R as a subring.

Proof sketch. A nightmare. To illustrate, I will prove that · is associative. Let p(x) =∑
i aix

i, q(x) =
∑

j bjx
j, and r(x) =

∑
k ckx

k. Then p(x) · q(x) =
∑

s dsx
s where

ds =
∑
i+j=s

aibj,

so (p(x) · q(x)) · r(x) =
∑

t etx
t where

et =
∑
s+k=t

dsck =
∑
s+k=t

( ∑
i+j=s

aibj

)
ck =

∑
i+j+k=t

aibjck.
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It can similarly be proved that p(x) · (q(x) · r(x)) is represented by the same sloppy
polynomial. �

The next theorem describes a property of the functions defined by polynomials.

Theorem 22.2. Suppose q(x), r(x) ∈ R[x] and let p(x) = q(x) · r(x). If R is com-
mutative, then p(c) = q(c) · r(c) for all c ∈ R.

Proof sketch. Write q(x) =
∑

i aix
i and r(x) =

∑
j bjx

j. Then

q(c) · r(c) = (a0 + a1c+ a2c
2 + · · · ) · (b0 + b1c+ b2c

2 + · · · )
= a0b0 + a0(b1c) + a0(b2c

2) + a0(b3c
3) + · · ·

+ (a1c)b0 + (a1c)(b1c) + (a1c)(b2c
2) + · · ·

+ (a2c
2)b0 + (a2c

2)(b1c) + · · ·
If R is commutative, then the terms can be rearranged to get

a0b0 + (a0b1 + a1b0)c+ (a0b2 + a1b1 + a2b0)c
2 + · · · = p(c). �

We can generalize this as follows. Given a ring R, its center is the set Z(R) =
{a ∈ R : ab = ba for all b ∈ R}. Fact: Z(R) is a subring of R (exercise).

Corollary 22.3. Suppose q(x), r(x) ∈ R[x] and let p(x) = q(x) · r(x). Then p(c) =
q(c) · r(c) for all c ∈ Z(R).
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23. Homomorphisms, ideals

Definition. Let R, S be rings. A function ϕ : R → S is a homomorphism (of
rings) if

(1) ϕ(a+ b) = ϕ(a) + ϕ(b) for all a, b ∈ R.
(2) ϕ(ab) = ϕ(a)ϕ(b) for all a, b ∈ R.
(3) ϕ(1R) = 1S.

Example 23.1.

(1) Z→ Zn, k 7→ k (mod n)
(2) If R is a ring and c ∈ Z(R), then ϕc : R[x] → R given by ϕc(p(x)) = p(c).

Called “evaluation at c.”
We saw yesterday that ϕc preserves multiplication if c ∈ Z(R). Preserving

addition is easy (exercise). If p(x) is the constant polynomial 1, then p(c) = 1
so ϕc(1) = 1.

Suppose ϕ : R → S is a ring homomorphism. Then it is automatically a group
homomorphism ϕ : (R,+)→ (S,+). Hence it has a kernel,

ker(ϕ) = {a ∈ R : ϕ(a) = 0S}.

Furthermore, ϕ is injective iff ker(ϕ) = {0R}.

Definition. As in the case of groups,

(1) An isomorphism is a bijective homomorphism.
(2) Write R ∼= S if there exists an isomorphism from R to S.

Definition. Let R be a ring and I ⊆ R.

(1) I is a left ideal of R if
(a) I is a subgroup of (R,+).
(b) If r ∈ R and a ∈ I, then ra ∈ I.

(2) Right deals are defined dually (a ∈ I, r ∈ R =⇒ ar ∈ I).
(3) I is an ideal if it is both a left and right ideal.

Proposition 23.2. If I is an ideal of R and 1 ∈ I, then I = R.

Proof. For every every r ∈ R we have r ∈ R, 1 ∈ I =⇒ r1 = r ∈ I, so R ⊆ I, so
R = I. �

Proposition 23.3. Let R, S be rings and ϕ : R→ S a homomorphism.

(1) im(ϕ) is a subring of S.
(2) ker(ϕ) is an ideal of R.

Proof. (1) is routine. Focus on (2). We already know that ker(ϕ) is a (normal)
subgroup of (R,+). Suppose a ∈ ker(ϕ) and r ∈ R. Then ϕ(ra) = ϕ(r)ϕ(a) =
ϕ(r) · 0S = 0S, proving ra ∈ ker(ϕ). A similar proof shows ar ∈ ker(ϕ). �
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Suppose I is an ideal of R. Then I is a (normal) subgroup of the group (R,+), so
we may form the quotient group (R,+)/I. Its elements are the cosets of I, which we
write additively as a+ I. The group operation is the usual

(a+ I) + (b+ I) = {c+ d : c ∈ a+ I and d ∈ b+ I}
and is characterized by the rule (a+ I) + (b+ I) = (a+ b) + I.

Claim. The rule (a+ I) · (b+ I) := (ab) + I defines an operation · on R/I.

Proof. We must show that the rule is well-defined. Suppose a + I = a′ + I and
b+ I = b′ + I, so a− a′ ∈ I and b− b′ ∈ I. We must show (ab) + I = (a′b′) + I, and
to do that it suffices to show ab− a′b′ ∈ I. Well

ab− a′b′ = ab− a′b+ a′b− a′b′

= (a− a′)b+ a′(b− b′).
Since I is an ideal and a− a′, b− b′ ∈ I, the above expression is in I as required. �

Warning: (a+ I) · (b+ I) does not equal the set {c · d : c ∈ a+ I and d ∈ b+ I}.

Claim. If R is a ring and I is an ideal, then (R/I,+, ·) is a ring.

Proof sketch. We already know that (R/I,+) is a group. It remains to show that +
is commutative in R/I, · is associative, 1 + I is a multiplicative identity element, and
the distributive laws hold in R/I. All of these facts can be quickly deduced from the
corresponding facts in R. For example, to prove that · is associative in R/I, observe
that for any a, b, c ∈ R,

(a+ I) · ((b+ I) · (c+ I)) = (a+ I) · (bc+ I)

= a(bc) + I (definition of · in R/I)

= (ab)c+ I as a(bc) = (ab)c in R

= · · ·
= ((a+ I) · (b+ I)) · (c+ I). �

We call (R/I,+, ·) a quotient ring and denote it R/I.

Theorem 23.4 (First Isomorphism Theorem for rings). Suppose R, S are rings and
ϕ : R→ S is a surjective homomorphism. Then R/ ker(ϕ) ∼= S.

Proof sketch. Just like the proof for groups. �



PMATH 347 – RING THEORY LECTURES 11

24. Characteristic; Principal ideals

An important example of a subring of any ring R is Z1 = {n1 : n ∈ Z}. It is
certainly a subgroup of (R,+) and contains 1. Must check closure under products.
Given m1, n1 ∈ Z1, assume first that m,n > 0. Thus

m1 · n1 = (1 + 1 + · · ·+ 1︸ ︷︷ ︸
m

) · (1 + 1 + · · ·+ 1︸ ︷︷ ︸
n

).

Using distributivity repeatedly, one can prove that this equals (mn)1 so is in Z1.
(One also must check the cases where m < 0 or n < 0.) We call Z1 the prime
subring of R and denote it R0. It is the smallest subring of R, contained in all other
subrings.

Let R be a ring and define ϕ : Z → R0 by ϕ(n) = n1. The same calculations
that showed that R0 is a subring of R also show that ϕ is a ring homomorphism.
Obviously ϕ is surjective. So we can apply the First Isomorphism Theorem to get

Z/ ker(ϕ) ∼= R0.

So we will know R0 up to isomorphism as soon as we know ker(ϕ).
Since ker(ϕ) is a subgroup of (Z,+), it must equal nZ for some n ≥ 0. If n = 0

then ker(ϕ) = {0} and so ϕ is injective. Thus in this case ϕ is an isomorphism and
R0
∼= Z. If instead n > 0 then we get R0

∼= Z/nZ.

Definition. Let R be a ring. The characteristic of R is the integer n in the previous
discussion.

Definition. Let R be a ring and a ∈ R.
(1) Ra = {ra : r ∈ R}.
(2) aR = {ar : r ∈ R}.
(3) (a) denotes the smallest ideal of R containing a. (More precisely, (a) is the

intersection of all ideals containing a.)

We call (a) the principal ideal generated by a.

Lemma 24.1. Suppose R is a ring and a ∈ R.
(1) Ra is a left ideal. It is the smallest left ideal of R containing a.
(2) Similarly, aR is the smallest right ideal of R containing a.
(3) Ra ∪ aR ⊆ (a).

Proof. (1) Obviously Ra 6= ∅. Suppose ra, sa ∈ Ra. Then ra + sa = (r + s)a ∈ Ra
and −(ra) = (−r)a ∈ Ra, so Ra is a subgroup of (R,+). Clearly if ra ∈ Ra and
s ∈ R then s(ra) = (sr)a ∈ Ra, proving Ra is a left ideal. Clearly a = 1a so a ∈ Ra.
Now suppose that I is any left ideal of R containing a. Since a ∈ I and I is a left
ideal, we get ra ∈ I for all r ∈ R; hence Ra ⊆ I. This proves Ra is contained in every
left ideal containing a, so is the smallest such left ideal.
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(2) is proved similarly. (3) Since (a) is an ideal and a ∈ (a), it follows that
ra, ar ∈ (a) for all r ∈ R. This proves Ra ∪ aR ⊆ (a). �

Note: If R is commutative, then Ra = aR and Ra is an ideal of R containing a.
Since (a) is by definition the smallest ideal containing a, we get (a) ⊆ Ra. We already

know that Ra ⊆ (a). Hence (a) = Ra = aR if R is commutative .

Example 24.2. Consider the ring R[x]. Let I = (x2+1), the principal ideal generated
by x2 + 1. Thus

I = {(x2 + 1)q(x) : q(x) ∈ R[x]} = {f(x) ∈ R[x] : x2 + 1 is a factor of f(x)}.
(In the expression (x2+1)q(x), (x2+1) does NOT denote the ideal I; the parentheses
are just being used to surround the factor of x2 + 1. It will be your job to recognize
when parentheses are being used as brackets and when they are being used to name
a principal ideal.)
I is an ideal, so we can form the quotient ring R[x]/I. What is this quotient ring

isomorphic to? Take an arbitrary element, i.e. a coset f(x)+I. Divide f(x) by x2+1
to get a quotient q(x) and remainder r(x) = a+ bx. Then

f(x) = (x2 + 1)q(x) + (a+ bx),

Hence

f(x) + I = [(x2 + 1)q(x) + I] + [(a+ bx) + I]

= I + [(a+ bx) + I] because x2 + 1 ∈ I
= (a+ bx) + I because I is the zero element of R[x]/I.

In other words, every coset of I can be expressed as (a + bx) + I for some a, b ∈ R.
Hence

R[x]/I = {(a+ bx) + I : a, b ∈ R}.

Let’s explore how addition and multiplication work in R[x]/I. Let (a+bx)+I, (c+
dx) + I be two elements of R[x]/I. Their sum is easily computed.

[(a+ bx) + I] + [(c+ dx) + I] = [(a+ bx) + (c+ dx)] + I

= [(a+ c) + (b+ d)x] + I.

Similarly,

[(a+ bx) + I] · [(c+ dx) + I] = [(a+ bx) · (c+ dx)] + I

= [(ac) + (ad+ bc)x+ (bd)x2] + I.

We can simplify this last expression as follows. Since x2+1 ∈ I we get x2+I = −1+I,
so (bd)x2 + I = −bd+ I, so

[(a+ bx) + I] · [(c+ dx) + I] = [(ac) + (ad+ bc)x− bd] + I

= [(ac− bd) + (ad+ bc)x] + I.
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This resembles multiplication in C. We might conjecture that R[x]/I ∼= C. To prove
this conjecture, define ϕi : R[x]→ C by ϕi(p(x)) = p(i). ϕi is a homomorphism (see
Example 23.1(2).) Obviously ϕi is surjective, since for any complex number a + ib
we have a + ib = ϕi(a + bx). I claim that ker(ϕi) = I. Indeed, if f(x) ∈ ker(ϕi),
i.e., f(i) = 0, then both i,−i are roots of f(x) so x2 + 1 is a factor of f(x), meaning
f(x) ∈ (x2 + 1) = I. This proves ker(ϕi) ⊆ I. For the converse inclusion, note that
ker(ϕi) is an ideal which contains x2 + 1 (obviously), so (x2 + 1) ⊆ ker(ϕi) (since
(x2 + 1) is contained in every ideal containing x2 + 1). This proves ker(ϕi) = I.

Now apply the First Isomorphism Theorem to get R[x]/I ∼= C.
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25. Maximal ideals

The ideals of a ring R are ordered by inclusion and hence form a partially ordered
set (or poset). We can schematically draw this poset with R at the top, {0} at the
bottom, and other ideals in between.

Lemma 25.1. Suppose I, J are ideals of R.

(1) I ∩ J is an ideal; it is the largest ideal of R contained in both I and J.
(2) I + J := {a + b : a ∈ I and b ∈ J} is the smallest ideal of R containing both

I and J.

Proof. (2) I, J are both (normal) subgroups of (R,+), so I+J is also a subgroup and
it contains I and J. Suppose a+b ∈ I+J and r ∈ R. Then r(a+b) = ra+rb ∈ I+J
and similarly (a + b)r = ar + br ∈ I + J, so I + J is an ideal. We’ve already noted
I, J ⊆ I + J. Suppose K is any other ideal with I, J ⊆ K. Then for all a+ b ∈ I + J
we have a, b ∈ K so a+ b ∈ K, proving I + J ⊆ K. �

Definition. Let R be a ring.

(1) An ideal I is proper if I 6= R. (Equivalently, if 1 /∈ I.)
(2) If I, J are ideals, then J properly contains I if I ⊆ J and I 6= J .
(3) I is a maximal ideal if (i) it is a proper ideal, and (ii) the only ideal properly

containing it is R.

Proposition 25.2. Suppose R is a commutative ring and I is an ideal. R/I is a field
iff I is a maximal ideal.

Proof. Throughout the proof, if a ∈ R then a denotes a + I ∈ R/I. In particular,
0 = 0 + I is the zero of R/I and 1 = 1 + I is the multiplicative identity of R/I.

(⇒) Assume R/I is a field. Then 0 6= 1, meaning I 6= 1+I, so 1 /∈ I, so I is proper.
Suppose J is an ideal properly containing I. Pick a ∈ J\I. Thus a+I 6= I, i.e., a 6= 0.
As R/I is a field, there exists b ∈ R/I such that a · b = 1, i.e., (a+ I)(b+ I) = 1 + I,
so 1 = ab + c for some c ∈ I. As a, c ∈ J and J is an ideal, we get 1 ∈ J so J = R.
This proves I is maximal.

(⇐) Suppose I is maximal. We run through the defining properties of being a
field.

(1) R/I is commutative (because R is).
(2) 1 /∈ I because I is proper, so I 6= 1 + I, so 0 6= 1.
(3) Let a ∈ R/I with a 6= 0. (Thus a /∈ I.) We must show that a has a multiplica-

tive inverse in R/I. Recall that (a) = Ra. By hypothesis, a /∈ I, but clearly
a ∈ (a) + I, so (a) + I properly contains I, so (a) + I = R. In particular,
1 ∈ (a) + I, so there exists r ∈ R and c ∈ I such that 1 = ar + c. Hence
1 + I = ar + I = (a + I)(r + I), meaning 1 = a · r, so r is a multiplicative
inverse to a. �

We would like a result similar to Proposition 25.2 but characterizing ideals I such
that R/I is an integral domain. Assume R is commutative and I is an ideal; what
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properties of I determine whether R/I is an integral domain? R/I is already com-
mutative (because R is). Clearly we need I to be proper (so 0 6= 1). To achieve the
condition of having no zero divisors, we need a · b = 0 to imply a = 0 or b = 0.

• a · b = 0 means (a+ I)(b+ I) = I, i.e., ab ∈ I.
• a = 0 or b = 0 means a+ I = I or b+ I = I, i.e., a ∈ I or b ∈ I.

Thus we need: ab ∈ I implies a ∈ I or b ∈ I.

Definition. Suppose R is a commutative ring. An ideal I of R is a prime ideal if it
is proper and ab ∈ I implies a ∈ I or b ∈ I.

Proposition 25.3. Suppose R is a commutative ring and I is an ideal. R/I is an
integral domain iff I is a prime ideal.

Proof. Proved in the earlier discussion. �

Corollary 25.4. Every maximal ideal of a commutative ring is a prime ideal.

Proof. Let I be a maximal ideal of the commutative ring R. Then R/I is a field by
Proposition 25.2. Hence R/I is an integral domain (since every field is an integral
domain). Thus I is a prime ideal by Proposition 25.3. �

The converse is not true. (Example: in Z, {0} is a prime ideal but is clearly not a
maximal ideal.)
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26. Zorn’s Lemma

Proposition 26.1. Let R be a ring. Every proper ideal of R is contained in a maximal
ideal of R.

Proof. Here is the idea of the proof. Let I be a proper ideal of R. define I0 = I.
If I0 is maximal then we’re done. Otherwise, there exists a proper ideal I1 properly
containing I0. If I1 is maximal, we’re done, and if not, then there exists a proper
ideal I2 properly containing I1. In this way we either reach a maximal ideal or we
construct an infinite sequence of proper ideals:

I = I0 ⊂ I1 ⊂ I2 ⊂ · · · ⊂ In ⊂ · · ·
Define I∞ =

⋃∞
n=0 In. We claim that I∞ is a proper ideal of R.

• Suppose a, b ∈ I∞. Then there exists n with a, b ∈ In. so a+ b,−a ∈ In ⊆ I∞.
• Suppose a ∈ I∞ and r ∈ R. Then a ∈ In for some n. Hence ra ∈ In ⊆ I∞.
• Thus I∞ is an ideal. To show it is proper, suppose instead that I∞ = R. Then

1 ∈ I∞. Hence 1 ∈ In for some n. But then In isn’t proper, contradiction.
Hence I∞ is proper.

We continue the argument. If I∞ is maximal we’re done. Otherwise, there exists a
proper ideal I∞+1 properly containing I∞. Continue: either a maximal ideal I∞+n is
found, or we get another infinite sequence of proper ideals:

I∞ ⊂ I∞+1 ⊂ I∞+2 ⊂ · · · ⊂ I∞+n ⊂ · · ·
Define I∞+∞ =

⋃∞
n=0 I∞+n. Again this is a proper ideal.

The intuition is that this cannot go on forever. To prove it, we must clarify what
we mean by “forever.” This is the job of set theory; for example, countable sequences
(no matter how many times applied) do not capture “forever.” We can “sweep this
under the carpet” by a trick from set theory.

Definition. A chain of proper ideals is set S of proper ideals with the property
that for all I, J ∈ S, either I ⊆ J or J ⊆ I. (Note: S can be uncountable.)

By a similar argument as above, if S is a chain of proper ideals, then
⋃
I∈S I is still

a proper ideal. In particular, for every chain of proper ideals there exists a proper
ideal (namely, the union of the chain) containing all the elements of the chain.

Now let I(R) be the set of all proper ideals of R. The relation ⊆ is a partial
ordering of I(R) (reflective, antisymmetric, transitive). We have proved that every
chain in (I(R),⊆) has an upper bound in I(R).

Lemma 26.2 (Zorn’s Lemma). Suppose (A,≤) is a set equipped with a partial order.
If every chain in (A,≤) has an upper bound in A, then every element of A lies below
a maximal element of A.

(A maximal element is an element a ∈ A such that a ≤ b ∈ A implies b = a.)

If we apply Zorn’s Lemma to (A,≤) = (I(R),⊆) we finish the proof of Proposi-
tion 26.1. �
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Commentary. The proof of Zorn’s Lemma is a souped-up version of the intuition
presented above. It constructs a “transfinite” chain

a = a0 < a1 < a2 < · · · < a∞ < a∞+1 · · · < a∞+∞ < · · ·
of elements of A. However,“constructs” is not quite right. At stage α, we have
an element aα which is not maximal. To “construct” aα+1, we need to choose
one element (from potentially many) which properly extends aα. There may be
no natural way to do this (even though we know some such element must exist).
Some mathematicians and philosophers have objected to “constructions” that require
infinitely many ad hoc choices. The Axiom of Choice (in set theory) asserts that
constructions of this kind are OK, so Zorn’s Lemma is correct (unless the Axiom of
Choice is false . . . ).
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27. Rings of fractions

Suppose R is an integral domain and D ⊆ R is a subset of R satisfying

(1) 1 ∈ D.
(2) 0 /∈ D.
(3) D is closed under multiplication (i.e., a, b ∈ D implies ab ∈ D).

(For example, the set D = R\{0} satisfies these properties.)
I will show that the standard construction of Q (as fractions n/d where n, d ∈ Z

with d 6= 0) can be carried out to construct an integral domain of “fractions” r/d
where r ∈ R and d ∈ D.

Let F = R×D = {(r, d) : r ∈ R, d ∈ D}. Define a relation ∼ on F by

(r, d) ∼ (s, e) iff re = sd.

Claim. ∼ is an equivalence relation on F.

Proof. It is easily shown to be reflexive and symmetric. For transitivity, suppose
(r, d) ∼ (s, e) and (s, e) ∼ (t, f). Thus re = sd and sf = te. Hence

ref = sdf = sfd = ted,

so (rf − td)e = 0. As R is an integral domain, we can deduce rf − td = 0 or e = 0.
However, e ∈ D so e 6= 0 by (2). Hence rf − td = 0, so (r, d) ∼ (t, f), proving ∼ is
transitive. �

For (r, d) ∈ F let r/d denote the equivalence class of ∼ containing (r, d). That is,

r/d = {(s, e) ∈ F : (r, d) ∼ (s, e)}.
Define F to be the set of these equivalence classes:

F = {r/d : (r, d) ∈ F}.
Note that r/d = s/e means (r, d) ∼ (s, e).

By (1), r/1 ∈ F for all r ∈ R. We call r/1 the image of r. Note that distinct
elements of R have distinct images in F , since r/1 = s/1 implies (r, 1) ∼ (s, 1), i.e.,
r1 = s1, i.e., r = s.

Next, we define + and · on F in the “grade school” way:

r/d+ s/e := (re+ sd)/de

(r/d) · (s/e) := rs/de.

Note that d, e ∈ D implies de ∈ D by (3), so the right-hand sides make sense.

Theorem 27.1.
(1) + and · are well-defined.
(2) (F,+, ·) is an integral domain.
(3) {r/1 : r ∈ R} is a subring of F isomorphic to R.
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Commentary. The assertion that “+ is well-defined” means the following: for all
r1, r2, s1, s2 ∈ R and all d1, d2, e1, e2 ∈ D, if r1/d1 = r2/d2 and s1/e1 = s2/e2,
then (r1e1 + s1d1)/d1e1 = (r2e2 + s2d2)/d2e2; equivalently, if (r1, d1) ∼ (r2, d2) and
(s1, e1) ∼ (s2, e2), then ((r1e1 + s1d1), d1e1) ∼ ((r2e2 + s2d2), d2e2). The proof of this
claim, and everything else claimed in this theorem, is left as an excellent exercise.
(In particular, 0/1 will be the zero element and 1/1 will be the identity element of
F .)

In practice, we identify each element r ∈ R with its image r/1 ∈ F . This makes R
a virtual subring of F .

Definition. The ring F constructed above is called the ring of fractions of R over
D, and is denoted D−1R.

Claim. If D = R\{0}, then F is a field.

Proof. We already know that D−1R is an integral domain, so it remains to show that
every nonzero element has a multiplicative inverse. Suppose r/d ∈ D−1R is nonzero,
i.e., r/d 6= 0/1. This means r/d 6= 0/1, i.e., (r, d) 6∼ (0, 1), i.e., r1 6= 0d, so r 6= 0. So
r ∈ D. So d/r ∈ F, and clearly (r/d) · (d/r) = (rd, rd) = 1/1. Hence r/d is invertible
with inverse d/r. �

Example 27.2. Let R = R[x] and D = R \ {0}. Then D−1R is a field containing R[x]
(virtually) as a subring, and every element of D−1/R can be expressed as a fraction
p(x)/q(x) for some p(x), q(x) ∈ R[x] with q(x) 6= 0. This field is denoted R(x) and is
called the field of rational functions over R, but note that the elements of R(x)
are not functions; they are equivalence classes of a relation ∼ defined on the set F

of pairs (p(x), q(x)).

Example 27.3. Let R = Z and D = {d ∈ Z : 3 6 | d}. D satisfies assumptions (1)−(3),
so the above construction gives an integral domain D−1Z properly containing Z, in
which every integer in D becomes a unit. More precisely,

D−1Z = {n/d : n, d ∈ Z, d 6≡ 0 (mod 3)}.
Note that D−1Z is not a field, since e.g. the element 3 is not invertible.

Example 27.4. More generally, suppose R is an integral domain and I is a prime
ideal of R. Let D = R \ I, i.e., the complement of I. Then D satisfies assumptions
(1)−(3) (exercise), so D−1R is defined. It is called the localization of R at the
prime ideal I.
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28. Chinese Remainder Theorem

Consider the ring Z. Fix m ≥ 1. Let I = (m), and consider the quotient ring Z/I.
Note that for all a, b ∈ Z,

a+ I = b+ I ⇐⇒ b− a ∈ I
⇐⇒ b− a ∈ (m)

⇐⇒ m|b− a
⇐⇒ a ≡ b (mod m).

This motivates the next definition.

Definition. If R is a ring, I is an ideal, and a, b ∈ R, then we write

a ≡ b (mod I)

to mean a+ I = b+ I (equivalently, b− a ∈ I).

Consider again the ring Z. Suppose m,n ∈ Z are coprime, i.e., gcd(m,n) = 1. We
know from MATH 135 or 145 that there exist r, s ∈ Z with rm+ sn = 1.

Now let I = (m) and J = (n). By the above, we have rm ∈ I and sn ∈ J , so
1 = rm+ sn ∈ I + J . Since I + J is an ideal, this proves I + J = Z. This motivates:

Definition. Let R be a ring. Two ideals I, J are coprime if I + J = R.

Theorem 28.1 (Chinese Remainder Theorem). 1 Suppose R is a ring and I, J are
coprime ideals. Then for all a, b ∈ R there exists c ∈ R such that

c ≡ a (mod I), and

c ≡ b (mod J).

Proof. Because I+J = R, there exist e ∈ I and f ∈ J with 1 = e+f . Let c = af+be.
Observe that

e ≡ 0 (mod I) as e ∈ I
f ≡ 1 (mod I) as 1− f = e ∈ I

Hence

c = af + be ≡ a1 + b0 (mod I)

i.e., c ≡ a (mod I). A similar proof shows c ≡ b (mod J). �

1This terminology is standard in European languages, at least. The reference is to the Sūnz̆ı
Suànj̄ıng, a mathematical book which is believed to have been written some time in 386–589 C.E.
in China. This book contains a problem which shows the author was aware of the version of this
theorem for the integers. The first known statement of an algorithm for this theorem (for the
integers) is due to an Indian mathematician from the 6th century.
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Definition. Suppose R = (R,⊕,�) and S = (S,�,�) are rings. Their direct
product is (R× S,+, ·) where + and · are defined coordinatewise:

(r1, s1) + (r2, s2) := (r1 ⊕ r2, s1 � s2)

(r1, s1) · (r2, s2) := (r1 � r2, s1 � s2).

It is a ring. Moreover, (R×S,+) is the direct product of the abelian groups (R,⊕)
and (S,�). The zero element of R× S is (0R, 0S). The identity element of R× S is
(1R, 1S).

In lecture 8 - Direct Products - I explained the test for recognizing direct products
of groups: if H,K /G and H ∩K = {1} and HK = G, then G ∼= H ×K. In lecture
12 - 2nd and 3rd Isomorphism Theorems - I showed that, under the same hypotheses,
we have G/H ∼= K and G/K ∼= H. Hence

G ∼= G/H ×G/K.

This last fact has a version that works for rings.

Corollary 28.2. Suppose R is a ring and I, J are coprime ideals.

(1) R/(I ∩ J) ∼= R/I ×R/J .
(2) If I ∩ J = {0} then R ∼= R/I ×R/J .

Proof. (2) follows from (1) since R ∼= R/{0} To prove (1), define ϕ : R→ R/I×R/J
by

ϕ(r) = (r + I, r + J).

The idea is to show that ϕ is a surjective ring homomorphism and apply the 1st
Isomorphism Theorem. I won’t check that ϕ is a homomorphism (but it is a good
exercise in understanding definitions).

I will prove that ϕ is surjective. Suppose (a + I, b + J) is an arbitrary element of
R/I ×R/J . By the Chinese Remainder Theorem, there exists c ∈ R with

c ≡ a (mod I), and

c ≡ b (mod J).

Thus

ϕ(c) = (c+ I, c+ J) = (a+ I, b+ J).

Finally, we compute the ker(ϕ). If r ∈ R, then

r ∈ ker(ϕ) ⇐⇒ ϕ(r) = 0R/I×R/J = (0R/I , 0R/J)

⇐⇒ (r + I, r + J) = (I, J)

⇐⇒ r ∈ I and r ∈ J
⇐⇒ r ∈ I ∩ J.

Hence ker(ϕ) = I ∩ J . �
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Example 28.3. Let R = Z and I = (m) and J = (n) where gcd(m,n) = 1. Then

I ∩ J = {a ∈ Z : m|a and n|a}
= {a ∈ Z : mn|a} (because gcd(m,n) = 1)

= (mn).

Thus Z/I ∼= Zm, Z/J ∼= Zn, and Z/(I ∩ J) ∼= Zmn, so the CRT gives

Zmn ∼= Zm × Zn.
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29. PIDs

Proposition 29.1. Every ideal of Z is principal.

Proof. Suppose I is an ideal of Z. If I = {0} then I = (0). Otherwise, pick a ∈ I
with a 6= 0 and |a| minimum. Clearly (a) ⊆ I. To prove ⊇, assume b ∈ I. Divide b
by a to get quotient q and remainder r, so

b = aq + r, 0 ≤ r < |a|.
a, b ∈ I implies r = b− aq ∈ I. Hence r = 0, so b = aq, proving b ∈ (a). �

Definition. A ring R is a Principal Ideal Domain (or PID) if

(1) R is an integral domain (commutative, 0 6= 1, no zero divisors).
(2) Every ideal of R is principal.

Example 29.2. The following are examples of PIDs.

(1) Z.
(2) Any field (Because a field F only has two ideals: {0} = (0) and F = (1).)
(3) R[x].

Proof. It is an integral domain. Let I be an ideal. If I = {0} then I = (0).
Otherwise pick f(x) ∈ I with f(x) 6= 0 and with deg(f(x)) minimum. Clearly
(f(x)) ⊆ I. For ⊇, assume g(x) ∈ I. Divide g(x) by f(x) to get quotient q(x)
and remainder r(x) (in R[x]), so

g(x) = f(x)q(x) + r(x), r(x) = 0 or deg(r(x)) < deg(f(x)).

f(x), g(x) ∈ I implies r(x) = g(x) − f(x)q(x) ∈ I. Hence r(x) = 0, so
g(x) = f(x)q(x), proving g(x) ∈ (f(x)). �

(4) More generally, F [x] where F is a field. (Same argument, using the division
algorithm in F [x].)

(5) Even more generally, any integral domain for which we have a “division algo-
rithm” which, given any a, b ∈ R with a 6= 0, produces a quotient/remainder
pair q, r ∈ R satisfying
• b = aq + r.
• r is ”strictly simpler” than a.

There are several ways to formulate this. A standard way leads to the defi-
nition of Euclidean domains. Z[x] and polynomial rings F [x] (where F is a
field) are examples of Euclidean domains. We won’t study Euclidean domains
in this course, but you might want to explore them on your own.
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30. Primes and irreducibles

The remainder of this course focusses on the properties of factorizations in integral
domains.

Recall that if R is a ring then R× denotes the set of units (invertible elements)
of R. Also recall that in a commutative ring R we say a divides b and write a|b if
b = ar for some r ∈ R.

Lemma 30.1. In a commutative ring R, an element u is a unit iff u|1.

Proof. u|1 iff 1 = uv for some v ∈ R, iff v = u−1, i.e., u ∈ R×. �

Corollary 30.2. In a commutative ring R, u is a unit iff (u) = (1).

Proof. (u) = (1) iff (1) ⊆ (u) (since the opposite inclusion is always true, as (1) = R).
(1) ⊆ (u) iff u|1 (by an assignment problem?). �

Definition. We say that a and b are associates and write a ∼ b if a = ub for some
unit u ∈ R×.

Example 30.3.

(1) In Z, a ∼ b iff a = ±b.
(2) In R[x], 2x+ 3 ∼ x+ 3

2
since 2x+ 3 = 2(x+ 3

2
) and 2 is invertible in R[x].

Lemma 30.4. In an integral domain R, a ∼ b iff a|b and b|a.

Proof. ( =⇒ ). Assume a ∼ b, so a = ub with u ∈ R×. Then obviously b|a. And
u−1a = b with u−1 ∈ R, by assumption, so a|b.
(⇐= ). Assume a|b and b|a. This means b = ar and a = bs for some r, s ∈ R. Hence
a = bs = (ar)s = a(rs), so a(1 − rs) = 0. As we are in an integral domain, we can
deduce a = 0 or 1− rs = 0.

Case 1. a = 0
Then b = ar implies b = 0, so we can write e.g. a = 1b. 1 is a unit so a ∼ b.

Case 2. 1− rs = 0
Then rs = sr = 1, so s is a unit, so a = sb gives a ∼ b.

Thus a ∼ b in either case, proving (⇐= ). �

Corollary 30.5. In an integral domain R, a ∼ b iff (a) = (b).

Proof. (a) = (b) iff (a) ⊆ (b) and (b) ⊆ (a). By an assignment problem (?), this is
equivalent to b|a and a|b. �

Definition. Let R be an integral domain. Assume a ∈ R with a 6= 0 and a /∈ R×.

(1) A nontrivial factorization of a is an equation a = bc where b, c ∈ R and
neither b nor c is a unit.

(2) a is reducible if it has a nontrivial factorization in R.
(3) Otherwise a is irreducible (equivalently, a = bc implies b or c is a unit).
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(4) We say that a is a prime if for all b, c ∈ R, if a|bc then a|b or a|c.

Note that these definitions are always relative to R. For example,

• 3 is both prime and irreducible in Z.
• 3 is reducible in Z[

√
3], because 3 is not a unit and 3 = (

√
3)(
√

3) is a
nontrivial factorization.
• 3 is neither reducible nor irreducible in R, because it is a unit there.

Proposition 30.6. In an integral domain, every prime is irreducible.

Proof. Suppose p is prime and p = bc. We can write p1 = bc, so p|bc, so by definition
of being a prime, p|b or p|c.
Case 1: p|c.

We also have c|p (from p = bc). So p ∼ c, say p = uc with u ∈ R×. Obviously
c 6= 0 (as p 6= 0), so bc = uc implies b = u so b ∈ R×.

Case 2: p|b.
Then a similar argument shows p ∼ b and c ∈ R×. Since either Case 1 or 2 holds,

we’ve shown that if p = bc then b or c is a unit. So p has no nontrivial factorization
in R, meaning it is irreducible. �

The converse is not always true, as the next example shows.

Example 30.7. Let R be the set of all complex numbers of the form a+ bi
√

5 where
a, b ∈ Z. R is a subring of C and so is an integral domain. It is possible to show that
R× = {1,−1} and that 3 is irreducible in R, i.e., cannot be factored nontrivially. Let
c = 2 + i

√
5 and d = 2− i

√
5. So c, d ∈ R and cd = 4 + 5 = 9, so clearly 3|cd. But 3

divides neither c nor d in R (since 2
3
± 1

3
i
√

5 /∈ R). Thus 3 is not a prime in R.
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31. Complete Factorizations

Recap: in integral domain R, suppose a 6= 0 and a 6∈ R×.

• A factorization a = bc is trivial if b or c is a unit, and is nontrivial otherwise.

We can picture nontrivial factorization in the partially ordered set of ideals of R.

(1)

(a)

(0)

R =

{0} =

The hypothesis translates as follows:

• a 6= 0 ⇐⇒ (a) 6= (0)
• a /∈ R× ⇐⇒ (a) 6= (1)

Now suppose a = bc. Focus on (b).

• If this factorization is trivial, then b or c is a unit.
– If b is a unit, then (b) = (1)
– If c is a unit, then b ∼ a, so (b) = (a)

• If the factorization is nontrivial, then neither b nor c is a unit. Because b is
not a unit, (b) 6= (1). Because c is not a unit, b � a, so (b) 6= (a). Of course
(b) ⊆ (1). Finally, b|a so (a) ⊆ (b). Hence (a) ⊂ (b) ⊂ (1). (Similar remarks
hold for (c).)

(1)

(c)(b)

(a)

(0)

It follows that the factorization is nontrivial iff (a) ⊂ (b) ⊂ (1). This proves:

Proposition 31.1. Suppose R is an integral domain and a ∈ R. Then a is irreducible
iff (a) 6= (0), (a) 6= (1), and there is no principal ideal (b) properly between (a) and
(1).
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Example 31.2. Draw a picture of the principal ideals in Z.

...

(0)

(8) (12) (20) (18) (30) (50) (27) (45) · · ·

(4) (6) (10) (9) (15) (25) · · ·

(2) (3) (5) · · ·

(1)

Notice:

• 6 = 2 · 3 translates to (2) and (3) above (6), below (1).
• 4 = 2 · 2 translates to just (2) above (4), below (1).
• Irreducibles (= primes) are just below the top (they are maximal ideals).
• Can also “see” (12) + (30); it must be the smallest ideal containing both (12)

and (30). We see that it is (6). Consistent with 6 = gcd(12, 30).

Definition. Suppose R is an integral domain, a ∈ R, a 6= 0, and a /∈ R×. A
complete factorization of a is an equation

a = p1p2 · · · pn

where n ≥ 1, p1, p2, . . . , pn ∈ R, and each pi is irreducible.

Naive algorithm to find a complete factorization. Given a ∈ R with a 6= 0
and a /∈ R×:

• If a is irreducible, then done.
• Else pick a nontrivial factorization a = bc.
• Recursively find complete factorizations for b and c:

b = p1p2 · · · pn and c = q1q2 · · · qm

• Then a = p1p2 · · · pnq1q2 · · · qm is a complete factorization of a.

There is one potential problem with this algorithm? What is the problem?
(Answer: it may never terminate)

For example, b might have a nontrivial factorization b = b1b2. Then b2 might have
a nontrivial factorization b2 = b21b22. And so on forever.
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(a)

(b) (c)

(b1) (b2)

(b21) (b22)

...

The bad thing (failure to terminate) can only happen if there is an infinite strictly
increasing chain (a) ⊂ (b) ⊂ (b2) ⊂ (b21) ⊂ · · · of principal ideals. This proves:

Proposition 31.3. Suppose R is an integral domain and R does not have an infinite
strictly increasing chain of principal ideals. Then every a ∈ R with a 6= 0, a /∈ R×
has a complete factorization.
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32. Unique Factorization

Proposition 31.3 addresses the existence of complete factorizations. Next we study
uniqueness.

Example 32.1. In Z, 6 has four complete factorizations:

6 = (2)(3)

6 = (3)(2)

6 = (−2)(−3)

6 = (−3)(−2)

These are “essentially the same” factorization.

Definition. Let R be an integral domain and a ∈ R with a 6= 0, a /∈ R×.

(1) Two complete factorizations of a,

a = p1p2 · · · pn and a = q1q2 · · · qm
are essentially the same provided:
(a) m = n, and
(b) After a suitable re-ordering of the qi’s we have pi ∼ qi for all i = 1, . . . , n.

(2) We say that complete factorizations in R are unique, when they exist,
and we write “R has UCF,” provided for any a ∈ R with a 6= 0 and a /∈ R×,
if a has a complete factorization, then any two complete factorizations of a
are essentially the same.

Example 32.2. Recall the integral domain R = {a+bi
√

5 : a, b ∈ Z} from a previous
lecture. The element 9 has two essentially different complete factorizations:

9 = 3 · 3 and 9 = (2 + i
√

5)(2− i
√

5).

Hence R does not have UCF.

Recall (Section 30) that an element p ∈ R of an integral domain is a prime if for all
a, b ∈ R, p|ab imples p|a or p|b. Suppose p is prime and p|a1a2 · · · an = a1(a2 · · · an).
Then p|a1 or p|a2 · · · an; in the latter case p|a2 or p|a3 · · · an, etc. Hence

Lemma 32.3. In an integral domain, if p is a prime and p|a1a2 · · · an, then p|ai for
some i.

Corollary 32.4. Suppose R is an integral domain, p ∈ R is a prime, and a = q1 . . . qm
is a complete factorization of a ∈ R. Then p|a iff p ∼ qi for some i.

Proof. Obviously if p ∼ q, then p|qi so p|a. Conversely, suppose p|a. Then p|qi for
some i, by the Lemma. Thus qi = pu for some u ∈ R. qi is irreducible, so p or u
must be a unit. p is not a unit (it is prime), so u is a unit. Hence p ∼ qi. �

Proposition 32.5. Suppose R is an integral domain in which every irreducible ele-
ment is prime. Then R has UCF.
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Proof. We repeat the proof from MATH 135/145. Suppose a ∈ R, a 6= 0, a /∈ R×,
and

a = p1p2p3 · · · pn and a = q1q2q3 · · · qm.
where each pi, qj is irreducible. By assumption, each pi is a prime. Clearly p1|a, so
p1|q1q2 · · · qm. As p1 is prime, the Corollary gives p1 ∼ qi for some i. We can re-order
the q’s so that p1 ∼ q1. Then p1 = u1q1 for some u1 ∈ R×. Thus

(u1q1)p2p3 · · · pn = q1q2q3 · · · qm.
Cancelling q1 (OK since we’re in an integral domain) gives

u1p2 · · · pn = q2 · · · qm.
p2 divides the left side, so divides the right side. Hence p2 ∼ qj for some j = 2, . . . ,m.
Again we can re-order the remaining q’s and assume p2 ∼ q2, say p2 = u2q2. Then

u1(u2q2)p3 · · · pn = q2q3 · · · qm.
Cancelling q2 gives

(u1u2)p3 . . . pn = q3 · · · qm.
Continuing in this way, we pair up each pi with one of the remaining q’s, until we
run out of p’s or q’s. If we run out of q’s before running out of p’s, i.e. m < n, then
after m steps we will have

(u1u2 · · ·um)pm+1 · · · pn = 1.

But then pn|1, which is impossible as pn is not a unit. A similar contradiction arises
if we run out of p’s before running out of q’s, i.e., n < m. Hence m = n and the p’s
and q’s are perfectly matched in associate pairs, meaning the two factorizations are
essentially the same. �
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33. UFDs

Summary. Suppose R is an integral domain.

(1) If R does not have an infinite strictly increasing chain of principal ideals, then
complete factorization always exits. (Proposition 31.3)

(2) If every irreducible in R is a prime, then complete factorizations are unique
(when they exist). (Proposition 32.5)

Definition. An integral domain R is a Unique Factorization Domain (UFD) if
(1) R does not have an infinite strictly increasing chain of principal ideals, and (2)
every irreducible in R is a prime.

Example 33.1. Z is a UFD.

• We’ve already seen the poset of principal ideals of Z; it has no upward chain
of infinite length.
• The set of irreducibles in Z is {2,−2, 3,−3, 5,−5, . . .} and every element p in

this set satisfies p|ab =⇒ p|a or p|b, so is a prime.

UFDs are the integral domains in which factorization works “just like in Z.” It will
become clear what I mean by this in the following discussion. Let R be an integral
domain in which every a ∈ R with a 6= 0, a 6∈ F× has a complete factorization. Let
Rir denote the set of irreducible elements of R. Consider the “associates” equivalence
relation ∼ on Rir, and choose a set P of representatives of the equivalence classes;
that is, choose P ⊆ Rir so that P contains exactly one element from each equivalence
class of ∼ in Rir. Now given a ∈ R with a 6= 0 and a 6∈ R×, and suppose that

a = q1q2 · · · qn
is a complete factorization of a. The elements q1, . . . , qn are in Rir, and it is possible
that some of them belong to the same equivalence class of ∼. Choose p1, . . . , pk ∈ P to
be the distinct elements of P associated to some qi in the above complete factorization.
Thus there is a surjective function σ : {1, . . . , n} → {1, . . . , k} such that qi ∼ pσ(i)
for each i; hence there exist units u1, . . . , un ∈ R× such that qi = uipσ(i) for each i.
Hence

a = (u1pσ(1))(u2pσ(2)) · · · (unpσ(n))
= (u1u2 · · ·un)pσ(i)pσ(2) · · · pσ(n)
= upt11 p

t2
2 · · · p

tk
k

where u = u1u2 · · ·un and each t` is the number of times qi is associated to p`. We
will call the equation

a = upt11 p
t2
2 · · · p

tk
k

describing a as a product of a unit and powers of distinct elements of P a standard
factorization using P.

Example 33.2. Zir is the set {2,−2, 3,−3, 5,−5, . . .}. The equivalence classes of
∼ in Zir are the sets of the form {p,−p} where p is a prime number. Thus we can
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choose P = {2, 3, 5, . . .}. Then every integer a ∈ Z with n 6= 0 and n 6∈ {1,−1} can
be given a standard factorization using P, i.e.,

a = upt11 · · · p
tk
k

where u ∈ {1,−1} and p1, . . . , pk are distinct prime numbers.

Continuing the general discussion, suppose that now in addition we assume that
R is a UFD. Let a ∈ R with a 6= 0 and a 6∈ R×, and let P be a set of representatives
for the equivalence classes of ∼ in Rir. In this situation, a has exactly one standard
factorization using P, up to a reordering of the irreducibles p1, . . . , pk from P. That
is, if

a = ups11 · · · p
sk
k = vqt11 · · · q

t`
`

where p1, . . . , pk are distinct elements of P, q1, . . . , q` are distinct elements from P,
the exponents s1, . . . , sk, t1, . . . , t` are all positive integers, and u, v ∈ R×, then

• k = ` and u = v.
• There exists a permutation σ ∈ Sk such that (qi, ti) = (pσ(i), sσ(i)) for each i.

This can be proved by an argument similar to the proof of Proposition 32.5. The
details are left as an exercise.

Lemma 33.3. Suppose R is a UFD, P is a set of representatives of the equivalence
classes of ∼ in Rir, and a ∈ R with a 6= 0, a 6∈ R×. Let the standard factorization of
a using P be

a = upt11 · · · p
tk
k .

Then for any b ∈ R, b|a iff b can be written

b = vps11 · · · p
sk
k

for some v ∈ R× and some integers s1, . . . , sk satisfying 0 ≤ si ≤ ti for each i.

Proof sketch. (⇐) If b can be written b = vps11 · · · p
sk
k with each si ≤ ti, then a = bc

where c = uv−1pt1−s11 · · · ptk−skk ∈ R, so b|a.
(⇒) This is proved similarly to the proof of Proposition 32.5 and is left as an

exercise. �
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34. PIDs are UFDs

Recall (Section 25) that an ideal I of a commutative ring R is a prime ideal if
I 6= R and for all a, b ∈ R, if ab ∈ I then a ∈ I or b ∈ I. In particular, every maximal
ideal is a prime ideal (see last lecture)

Lemma 34.1. Let R be an integral domain and p ∈ R with p 6= 0. (p) is a prime
ideal iff p is a prime.

Proof. (⇒) Assume (p) is a prime ideal. We already know that p 6= 0. p cannot be
a unit, since if it were, then we should have (p) = (1), contradicting the assumption
that (p) 6= R. Finally, assume a, b ∈ R and p|ab. Then ab ∈ (p). Since (p) is prime,
we get a ∈ (p) or b ∈ (p), i.e., p|a or p|b. Thus p is prime.

(⇐) Proved similarly (exercise). �

Recall (Section 29) that a Principal Ideal Domain (PID) is an integral domain
in which every ideal is principal.

Proposition 34.2. Suppose R is a PID and p ∈ R with p 6= 0. The following are
equivalent:

(1) p is irreducible.
(2) p is a prime.
(3) (p) is a maximal ideal.

Proof. (3) ⇒ (2). Assume that (p) is a maximal ideal. Then (p) is a prime ideal by
Corollary 25.4. Hence p is prime by Lemma 34.1.

(2)⇒ (1). Every prime is irreducible by Proposition 30.6.
(1) ⇒ (3). Assume p is irreducible. Then (p) 6= (1) and there is no principal

ideal properly between (p) and (1). But R is a PID, so this means there is no ideal
properly between (p) and (1). That means (p) is a maximal ideal. �

Here is an easy corollary that will be important in PMATH 348.

Corollary 34.3. Suppose R is a PID and p is an irreducible element in R. Then
R/(p) is a field.

Proof. (p) is a maximal ideal by Proposition 34.2, so R/(p) is a field by Proposi-
tion 25.2. �

Here is the main theorem of this section.

Theorem 34.4. Every PID is a UFD.

Proof. Let R be a PID. Proposition 34.2 shows that every irreducible element of R
is a prime. It remains to show that R has no infinite strictly increasing chain of
principal ideals. Suppose, to the contrary, that (a1) ⊂ (a2) ⊂ · · · ⊂ (an) ⊂ · · · is an
infinite strictly increasing chain of principal ideals. Let I = ∪∞n=1(an). Recall that I
is an ideal.

Because R is a PID, I is principal, say I = (c). Then c ∈ ∪∞n=1(an), so c ∈ (an) for
some n. But then (c) ⊆ (an), contradiction. �
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Corollary 34.5. If F is a field, then F [x] is a UFD.

Proof. F [x] is a PID (because it has a division algorithm - see Example 29.2). �

Example 34.6. Z[x] is not a PID. So we cannot use the above theorem to deduce
that Z[x] is a UFD. Similarly, the ring of polynomials F [x, y] in two variables is not
a PID, even if F is a field, so we cannot use the above theorem to prove that such
polynomial rings are UFDs. In the final sections we will see results that imply Z[x]
and F [x1, . . . , xn] are UFDs.
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35. GCDs

Lemma 33.3 implies that “greatest common divisors” behave in UFDs just as they
do in Z. First, we define greatest common divisors similarly to how they are defined
in MATH 135/145.

Definition. Let R be an integral domain and a, b, d ∈ R. We say that d is a greatest
common divisor of a and b if:

(1) d is a common divisor: d|a and d|b.
(2) d is divisible by every common divisor: for all c ∈ R, if c|a and c|b, then c|d.

Greatest common divisors, when they exist, are unique up to associates. That is,
if d, e are greatest common divisors of a and b, then e|d and d|e so d ∼ e.

Greatest common divisors of a finite list of elements a1, . . . , an are defined similarly:
they are common divisors which are divisible by all common divisors.

Lemma 35.1. Suppose R is a UFD. For every finite list a1, . . . , an ∈ R, if at least
one of the ai’s is nonzero, then the list has a greatest common divisor.

Proof. Re-order the list so that the first k entries a1, . . . , ak are nonzero and the rest (if
any) all equal 0. Note that every element of R is a divisor of 0, so a greatest common
divisor of a1, . . . , ak will also be a greatest common divisor of a1, . . . , ak, 0, . . . , 0.
Thus we can ignore the zero entries and focus on a1, . . . , ak.

If one of the ai’s is a unit, then the common divisors of a1, . . . , ak are just the units
and so 1 is a greatest common divisor.

Assume none of the ai’s is a unit. Thus each ai has a standard factorization using
a set P of representatives of the equivalence classes of ∼ in Rir. Let p1, . . . , pr be the
distinct elements of P occurring in these standard factorizations. Then we can write

a1 = u1p
t1,1
1 · · · pt1,rr

a2 = u2p
t2,1
1 · · · pt2,rr

...

ak = ukp
tk,1
1 · · · ptk,rr

where u1, . . . , uk are units and the exponents ti,j are nonnegative integers (some of
them can equal 0). In other words, the equations above are standard factorizations
using P, possibly padded by powers of the form p0j .

For each j = 1, . . . , r define mj = min(t1,j, t2,j . . . , tk,j), i.e., the minimum exponent
of pj in the standard factorizations. Now let

d = pm1
1 · · · pmr

r .

Lemma 33.3 can be used to show that the common divisors of a1, . . . , ak are precisely
the elements of the form vpe11 · · · perr where v is a unit and the exponents satisfy
0 ≤ ej ≤ mj. These are exactly the divisors of d, so d is a greatest common divisor
of a1, . . . , ak. �
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Definition. Suppose R is an integral domain and a1, . . . , an ∈ R. We say that
a1, . . . , an are relatively prime if the only common divisors of a1, . . . , an are the
units in R×; equivalently, if 1 is a greatest common divisor of a1, . . . , an.

Lemma 35.2. Suppose R is a UFD and a1, . . . , an ∈ R with at least one ai 6= 0.
Let d ∈ R be a greatest common divisor of a1, . . . , an (which we know exists by
Lemma 35.1). Define a′1, . . . , a

′
n ∈ R by a′i := ai/d (i.e., a′i is the unique solution x

to ai = dx). Then a′1, . . . , a
′
n are relatively prime.

In other words, if R is a UFD then you can always divide a finite list of elements by
their “greatest common divisor” to get a new list that is relatively prime.

Proof. Suppose c is a common factor of a′1, . . . , a
′
n and c is not a unit. Then c has a

complete factorization (since R is a UFD), so there exists an irreducible element p
with p|c. Then p is also a common divisor of a′1, . . . , a

′
n. Thus pd is a common divisor

of a1, . . . , an. Since d is a greatest common divisor of a1, . . . , an we must have pd|d,
which implies p|1, which implies p is a unit, contradiction. �



PMATH 347 – RING THEORY LECTURES 37

36. Gauss’ Lemma

Lemma 36.1. Suppose R is an integral domain and p ∈ R is a prime in R. Then p
is prime in R[x].

Proof. Assume f(x), g(x) ∈ R[x] and p|f(x)g(x). Write

f(x) = a0 + a1x+ . . .+ amx
m

g(x) = b0 + b1x+ . . .+ bnx
n.

Thus

f(x)g(x) = c0 + c1x+ . . .+ cm+nx
m+n where ck =

∑
i+j=k

aibj.

Since p|f(x)g(x), we have p|ck for all k.
Suppose neither f(x) nor g(x) is divisible by p. Thus at least one coeffcient of f(x)

and one of g(x) are not divisible by p. Let r and s be the first such that p - ar and
p - bs. Let k = r + s and look at ck:

ck = (a0bk + . . .+ ar−1bs+1) + arbs + (ar+1bs−1 + . . .+ akb0).

By the choice of r and s, p divides each ai for i < r and bj for each j < s. Since p
also divides ck, we get p|arbs. As p is prime, we get p|ar or p|bs, contradicting our
choice of r, s. �

Lemma 36.2. Suppose R is a UFD, f(x), g(x) ∈ R[x], and u ∈ R, u 6= 0. If
u|f(x)g(x), then there exists a factorization u = cd of u in R such that c|f(x) and
d|g(x).

Proof. If u is a unit (i.e., u ∈ R×), then we use u = u1. Clearly u|f(x) (since u|1)
and 1|g(x).

Assume u is not a unit. Because R is a UFD, u has a complete factorization

u = p1p2 . . . pn, each pi irreducible.

Again because R is a UFD, each pi is prime in R and so is a prime in R[x] by
Lemma 36.1.

We have p1|f(x)g(x), so p1 divides f(x) or g(x). Say p1|f(x). Let f1(x) ∈ R[x] be
the result of dividing f(x) by p1; then

p1p2 · · · pn|(p1f1(x))g(x).

Canceling p1, we get
p2 · · · pn|f1(x)g(x)

Repeating the argument, p2 must divide f1(x) or g(x). Continuing in this way, we
can “factor out” each pi. If c is the product of the pi’s we remove from f(x) and d is
the product of the pi’s we remove from g(x), then cd = u, c|f(x), and d|g(x). �

In the next Proposition, think of R being Z and F being Q.
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Proposition 36.3 (Gauss’ Lemma). Suppose R is UFD and F is its field of fractions
{n/d : n, d ∈ R, d 6= 0}. Let p(x) ∈ R[x] by a polynomial of degree ≥ 1.

Every nontrivial factorization of p(x) in F [x] can be essentially realized in R[x], in
the following sense: if p(x) = A(x)B(x) is a nontrivial factorization of p(x) in F [x],
then there exists t ∈ F× such that tA(x) ∈ R[x] and t−1B(x) ∈ R[x].

The point is that if a(x) := tA(x) and b(x) := t−1B(x) then p(x) = a(x)b(x) is a
factorization of p(x) in R[x] whose factors have the same degrees as the degrees of
the factors A(x) and B(x) in the original factorization.

Example 36.4. Let R = Z, F = Q, and p(x) = 2x2 + 7x = 3. A nontrivial
factorization of p(x) in Q[x] is

p(x) = (x+
1

2
)(2x+ 6).

We can multiply the first factor by 2 and the second factor by 1
2

to get an equivalent
factorization

p(x) = (2x+ 1)(x+ 3),

which is a factorization in Z[x]

Proof of Gauss’ Lemma. Write each coefficient ofA(x) as a fraction ni/di with ni, di ∈
R. Let r be the product of all the denominators in these expressions and let
f(x) = rA(x). Then f(x) ∈ R[x] (we have “cleared the denominators”). Similarly,
write the coefficients of B(x) as fractions, let s be the product of the denominators
in B(x), and define g(x) := sB(x) ∈ R[x]. Finally let u = rs and note that u ∈ R
and

up(x) = (rs)A(x)B(x) = f(x)g(x).

Because f(x), g(x), p(x) ∈ R[x], we can use the previous Lemma to obtain a fac-
torization u = cd of u in R such that c|f(x) and d|g(x). Thus f(x) = ca(x) and
g(x) = db(x) with a(x), b(x) ∈ R[x]. Note that cd = rs, so r/c = d/s in F . Let
t = r/c ∈ F . Then

tA(x) = (r/c)A(x) = (1/c)rA(x) = (1/c)f(x) = a(x) ∈ R[x]

t−1B(x) = (s/d)B(x) = (1/d)sB(x) = (1/d)g(x) = b(x) ∈ R[x]

as required. �
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37. Primitive polynomials over a UFD

The following result is particularly useful in Galois theory (PMATH 348).

Corollary 37.1. Suppose f(x) ∈ Z[x], deg(f(x)) ≥ 1, and f(x) is irreducible in Z[x].
Then f(x) is irreducible in Q[x].

Proof. If f(x) has a nontrivial factorization in Q[x], then f(x) has a nontrivial fac-
torization in Z[x] by Gauss’ Lemma. �

The converse is false. For example, 6x+ 8 is irreducible in Q[x] (every polynomial
of degree 1 is irreducible), but it is reducible in Z[x] since 6x + 8 = 2(3x + 4) is a
nontrivial factorization in Z[x] (neither 2 nor 3x+ 4 is a unit).

Definition. Suppose R is an integral domain and f(x) = a0+a1x+· · ·+anxn ∈ R[x].
We say that f(x) is primitive in R[x] if its coefficients a0, a1, . . . , an are relatively
prime in R.

Corollary 37.2. Suppose R is a UFD and F is its field of fractions. Let f(x) ∈ R[x]
with deg(f) ≥ 1. The following are equivalent:

(1) f(x) is irreducible in R[x].
(2) f(x) is primitive in R[x] and irreducible in F [x].

Proof sketch. (1)⇒ (2) uses Gauss’ Lemma to prove irreducibility in F [x].
(2)⇒ (1). Assume f(x) is primitive in R[x] and irreducible in F [x], but is reducible

in R[x]. Then the nontrivial factorization of f(x) in R[x] must be of the form f(x) =
dg(x) (if both factors had degrees ≥ 1 then it would be a nontrivial factorization
in F [x]). Thus d 6∈ R× and d|f(x) in R[x], so d divides each coefficient of f(x),
contradicting that f(x) is primitive. �

Corollary 37.3. Suppose R is a UFD. Every nonzero polynomial f(x) ∈ R[x] can
be factored f(x) = dg(x) were d ∈ R, g(x) ∈ R[x], and g(x) is primitive.

Example. In Z[x], 6x+ 8 = 2(3x+ 4) with 3x+ 4 primitive.

Proof of Corollary 37.3. Write f(x) = a0 + a1x + . . . + anx
n. By the 1st Lemma

from previous lectures, there exists d ∈ R which is a common divisor of a0, . . . , an
and, if ai = da′i for i = 0, . . . , n then a′0, . . . , a

′
n are relatively prime. Obviously

f(x) = d(a′0 + a′1x+ . . .+ a′nx
n) = dg(x) and g(x) is primitive. �

Crucial Lemma. Suppose R is a UFD, c, d ∈ R are non zero, and f(x), g(x) ∈ R[x]
are primitive. If (cf) ⊂ (dg) then

(1) (c) ⊆ (d),
(2) deg(f) ≥ deg(g), and
(3) Either (c) ⊂ (d) or deg(f) > deg(g).

Remark. (cf) and (dg) are ideals in R[x]. (c) and (d) denote the ideals in R.
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Proof of the Crucial lemma. Assume (cf) ⊂ (dg). Hence dg(x)|cf(x), so

d|cf(x) and g(x)|cf(x).

The second obviously implies deg(f) ≥ deg(g), proving (2). Because d|cf(x), yester-
day’s second lemma says that d has a factorization d = ab such that a|c and b|f(x).
Because f(x) is primitive, b must be a unit. Hence (using d = ab) we get that d and
a are associates, i.e., d ∼ a, which implies d|a. As d|a and a|c, we get d|c and hence
(c) ⊆ (d). This proves (1).

To prove (3), assume that (3) fails, i.e., (c) = (d) and deg(f) = deg(g).

• From (c) = (d), we can write d = cu for some unit u ∈ R×

• From dg(x)|cf(x) and the fact that f, g have the same degree, we get cf(x) = e(dg(x))

for some e ∈ R.
• Hence cf(x) = e(cu)g(x), so cancelling c we get f(x) = eug(x) .

• Hence e|f(x). But f(x) is primitive. Hence e is a unit.

• Hence (from the 2nd bullet) cf(x) ∼ dg(x) .

But that would imply (cf) = (dg), contradicting our assumption. �
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38. The Big Theorem

Theorem 38.1. If R is a UFD, then so is R[x].

Proof. Assuming R is a UFD, we must show that

(1) R[x] has no infinite strictly increasing chain of principal ideals, and
(2) Every irreducible polynomial in R[x] is prime.

(1) Assume that (f1) ⊂ (f2) ⊂ . . . ⊂ (fn) ⊂ . . . is an infinite strictly increasing
sequence of principal ideals in R[x].

By Corollary 37.3, we can factor each fn(x) = cngn(x) where cn ∈ R and gn(x) is
primitive. Thus

(c1g1) ⊂ (c2g2) ⊂ . . . ⊂ (cngn) ⊂ . . .

By the Crucial Lemma, we have

(c1) ⊆ (c2) ⊆ . . . ⊆ (cn) ⊆ . . .

and

deg(g1) ≥ deg(g2) ≥ . . . ≥ deg(gn) ≥ . . .

and for every i,

(ci) ⊂ (ci+1) or deg(gi) > deg(gi+1).

The second option cannot happen infinitely often, since degrees are non-negative
integers. Hence beyond some point we always have the first option, meaning

(cN) ⊂ (cN+1) ⊂ . . . ⊂ (cN+k) ⊂ . . .

But that means R has an infinite strictly increasing chain of principal ideals, contra-
dicting that R is a UFD. This proves (1).

(2) Assume that p(x) is an irreducible polynomial in R[x] and a(x), b(x) ∈ R[x]
with p(x)|a(x)b(x). I must show that p(x)|a(x) or p(x)|b(x).

By Corollary 37.2, we know that p(x) is primitive and irreducible in F [x], where
F is the field of fractions of R.

We also know that F [x] is a UFD (because F is a field, so F [x] is a PID). Hence
every irreducible in F [x] is a prime in F [x]. Hence p(x) is a prime in F [x].

Since a(x), b(x) ∈ F [x] and p(x)|a(x)b(x), it follows that p(x)|a(x) in F [x] or
p(x)|b(x) in F [x]. Assume for simplicity that p(x)|a(x) in F [x]. This means there
exists g(x) ∈ F [x] such that a(x) = p(x)g(x).

Our goal is to prove g(x) ∈ R[x], which will imply p(x)|a(x) in R[x]. For now,
however, we do not know that g(x) ∈ R[x].

The coefficients of g(x) are fractions. Let d be the product of all the denominators
and let g1(x) = dg(x). Then d ∈ R and g1(x) ∈ R[x] (this is ”clearing denomina-
tors”). Multiplying the equation a(x) = p(x)g(x) gives

da(x) = p(x)g1(x)

where everything is now in R[x] (or R).
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Thus d|p(x)g1(x) in R[x]. By Lemma 36.2, d has a factorization d = uv with
u, v ∈ R, such that u|p(x) and v|g1(x). But p(x) is primitive, so u must be a unit,
which implies d|g1(x) (in R[x]). Since g1(x) = dg(x), this means g(x) ∈ R[x]. �

Corollary 38.2. Z[x] is a UFD

Proof. Because Z is a UFD. �

Corollary 38.3. If R is a UFD (for example, Z or any field), then the ring R[x, y]
of polynomials over R in two variables is a UFD.

Proof. Every polynomial in two variables, say 3x2y+ 5xy− 2xy2 + 4x− y+ 2, can be
written as a polynomial in one variable (y) whose coefficients are elements of R[x].
For example,

3x2y + 5xy − 2xy2 + 4x− y + 2 = (−2x)y2 + (3x2 + 5x− 1)y + (4x+ 2).

Hence R[x, y] = (R[x])[y]. Since R is a UFD, so is R[x], and hence so is (R[x])[y] by
two applications of the Theorem. �

Obviously we can repeat this to show that R[x1, . . . , xn] is a UFD for any n.
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